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Abstract
Rechargeable aqueous Zn-ion batteries (AZIBs) are considered alternative stationary storage systems for large-
scale applications due to their high safety, low cost, and high power density. However, Zn anode issues including 
dendrite formation and side reactions greatly hinder the practical application of AZIBs. To solve the Zn anode 
issues, various strategies based on material designs have been developed. It is necessary to analyze and classify 
these strategies according to different materials, because different properties of materials determine the 
underlying mechanisms. In this review, we briefly introduce the fundamental issues in Zn anodes. Furthermore, this 
review highlights the material designs for the protection of Zn anodes in mild AZIBs. Finally, we also offer insight 
into potential directions in the material designs to promote the development of AZIBs in the future.
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INTRODUCTION
Rechargeable aqueous Zn-ion batteries (AZIBs) are regarded as a promising candidate for next-generation 
energy storage systems due to their remarkable advantages[1-6]. Common AZIBs are composed of Zn2+ 
storage cathodes, Zn metal anodes, and aqueous electrolytes containing Zn2+ salt. Among them, the typical 
cathode materials can be mainly divided into manganese-based oxides, vanadium-based oxides, Prussian 
blue analogs, and organic compounds[7-15]. Mild AZIBs usually refer to the pH range of their electrolytes of 
ca. 4-6[16]. There are several advantages of AZIBs. For instance, aqueous batteries are safe, cheap, and can be 
assembled in air. Moreover, higher ion conductivity can be obtained in aqueous electrolytes than the case in 
organic electrolytes[17]. As a result, aqueous batteries often possess high power density[18]. Besides, compared 
with alkaline metals and Ca/Mg/Al, Zn has suitable equilibrium electrode potential [-0.76 V vs. standard 
hydrogen electrode (SHE)] and high hydrogen evolution reaction (HER) overpotential in aqueous 
electrolytes. As a result, Zn metal can be directly used as the anode in aqueous electrolytes. Furthermore, Zn 
anodes with two-electron transfer characteristics possess high theoretical capacity (5855 mAh cm-3 and 820 
mAh g-1), leading to high energy density. These advantages make AZIBs have great prospects in the field of 
large-scale energy storage systems[19-20].

The electrochemical performance of AZIBs mainly depends on the design of cathodes and anodes. 
Normally, Zn metal can directly serve as the anodes in AZIBs. However, Zn anodes suffer from two main 
issues: dendrite growth and side reactions[21-23]. Similar to the Li dendrites in lithium-ion batteries[24-25], the 
unlimited growth of Zn dendrites on Zn anodes is also a fatal hazard for AZIBs due to the nonuniform Zn 
nucleation and deposition. The dendrites may pierce the separator and eventually cause the batteries to fail. 
In addition, the side reactions such as HER, corrosion, and passivation, driven by the contact between Zn 
anodes and aqueous electrolytes, are also regarded as big threats to AZIBs. The side reactions not only 
greatly increase the polarization but also reduce the Coulombic efficiency (CE) of the cell. The two issues of 
Zn anodes exist simultaneously and promote each other, which seriously affects the reversibility of Zn 
chemistry and the electrochemical performance of AZIBs.

Therefore, some strategies have been developed to stabilize the Zn anodes[26-29], including surface 
modification, structural design, and electrolyte regulation, as presented in Figure 1. These strategies 
effectively suppress the Zn dendrite growth and/or side reactions, thus being beneficial for enhancing the 
electrochemical performance of AZIBs. However, a comprehensive review of strategies focusing on material 
designs for stabilizing the Zn anodes is still absent. In this review, we describe the origins and hazards of 
dendrite formation and side reactions of Zn anodes in mild AZIBs. Subsequently, we focus on the material 
design strategies for the protection of Zn anodes and the high performance of AZIBs. The characteristics 
and functions of these materials on Zn anodes are discussed in detail. Finally, the challenges and further 
prospects of material designs for Zn anodes are put forward.

ZN ANODE ISSUES
In general, Zn metal is directly deployed as the anodes of AZIBs. The AZIBs with Zn metal anodes have 
great potential for large-scale energy storage due to their safety and low cost. However, their practical 
performances are still not as good as expected, which are primarily impeded by the anode-electrolyte 
interface issues. These issues mainly include dendrite formation and side reactions on the surface of Zn 
anodes and are analyzed as follows.
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Figure 1. Schematic diagram of the material designs for stabilizing Zn anodes in mild AZIBs.

Dendrite formation
In the mild aqueous electrolyte, the reaction mechanism of a Zn anode can be summarized as follows:

                                                                            Zn2 + (aq) + 2e- ↔ Zn(s)                                                              (1)

During electrodeposition, Zn2+ typically undergoes four processes: adsorption, diffusion, nucleation, and
growth. These processes are susceptible to the surface microenvironment of Zn anodes. Specifically, the
surface of Zn anodes is not atomically smooth, which could result in uneven electric field distribution,
heterogeneous ion flux distribution, and different nucleation barrier sites on Zn anodes. As a result, Zn2+ is
more likely to adsorb and aggregate on the higher active sites under the unrestricted 2D Zn2+ diffusion [
Figure 2A][30]. Then, the Zn2+ would nucleate on these sites to form Zn atomic clusters. The formed Zn
atomic clusters disperse heterogeneously on the surface of Zn, which would further exacerbate the uneven
field distribution in turn. These clusters can also serve as tiny protrusions with larger curvature and induce
Zn dendrite growth due to the tip effect [Figure 2B and C][31]. The growing Zn dendrites would bring several
hazards. Owing to the loose and porous 3D structure of Zn dendrites, more of the fresh Zn could contact
with aqueous electrolytes, leading to more reaction sites for side reactions. In addition, the dendrites are
prone to breaking away from Zn substrate and then becoming “dead Zn” due to the bad connection
between the dendrites and anodes. The inactive “dead Zn” with the insulating byproduct layer increases the
internal resistance and polarization of the battery. In addition to “dead Zn”, some dendrites could
continually grow along with the separator until they pierce it and thus cause a short circuit.

Side reactions
In addition to the dendrite growth, other detrimental problems of Zn anodes are side reactions, including
HER, corrosion, and passivation. Among them, HER is the primary problem, which is described as follows:
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Figure 2. (A) Schematic diagram of Zn atomic clusters formation under unrestricted 2D Zn2+ diffusion[30]. (B) Schematic diagram 
illustrating the tip effect. (C) The formation of dendrites[31]. (D) Pourbaix diagram of the Zn/H2O system containing 10-4 M Zn2+ [32]. (E) 
The gas evolution of Zn symmetric cell after resting different times in 3 M ZnSO4 electrolyte. (F) The surface morphology of Zn anode 
after immersing in 3 M ZnSO4 electrolyte for 30 days[33]. Reproduced from Ref.[30], Ref.[31], and Refs.[32-33] with permission from Wiley-
VCH, Springer Nature, and Elsevier, respectively.

                                                                            2H2O + 2e- → 2OH- + H2↑                                                            (2)

Specifically, Zn2+/Zn has a lower equilibrium potential than that of H2O/H2 in the entire pH range,
according to the Pourbaix diagram [Figure 2D][32]. Therefore, HER tends to occur on Zn metal anode
surface by chemical or electrochemical processes due to the thermodynamic activity of Zn in an aqueous
solution [Figure 2E][33]. As a result, an accompanying Zn corrosion process would exist, and HER
competition with the Zn plating would occur during the charging process of AZIBs. HER increases the
internal pressure of the battery, which could further cause extremely increased polarization, swell, and even
burst the battery. In addition, HER also results in an increased pH at the anode surface due to the
accumulated OH-. The continuously increased OH- would further react with Zn2+ and anion of Zn salts to
form byproducts with limited solubility [Figure 2F][33], such as Zn(OH)2, Zn4SO4(OH)6·xH2O (ZHS), etc.
These byproducts are electrical insulators and passivate the Zn surface to block the sites for further Zn
plating/stripping. In the meantime, they are loose in the structure; thus, they cannot avoid the further HER
and Zn corrosion on the Zn anodes. Therefore, Zn and electrolytes around anodes are constantly
consumed, leading to an inferior CE. Moreover, the rough and uneven surface caused by corrosion and
passivation could further accelerate the growth of Zn dendrites.

MATERIAL DESIGNS FOR SURFACE MODIFICATION ON ZN METAL
Surface modification on Zn metal is recognized as an attractive and effective strategy to solve the serious 
issues on Zn anode-electrolyte interfaces, such as dendrite growth and side reactions. Surface modified 
layers can be obtained through doctor-blade coating, pre-reaction, physical vapor deposition (such as 
magnetron sputtering, ion beam sputtering, and thermal evaporation), chemical vapor deposition [CVD, 
such as atomic layer deposition (ALD)], etc. In general, the modified layers have two functions: (1) as a 
barrier layer to isolate the Zn anodes from the water of aqueous electrolytes; and (2) as a guiding layer to 
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assist the uniform Zn deposition. To realize their functions, the ideal modified layers need to meet the 
following requirements: (1) high Zn2+ conductivity, facilitating fast ion diffusion and good deposition 
kinetics; (2) high adhesion to the Zn surface, high mechanical stability, and high dynamic adaptability, 
ensuring effective protection of Zn under the drama volume changes while Zn plating/stripping; (3) light 
weight and thin thickness, avoiding the remarkable degradation of energy and power densities of the 
batteries; and (4) cheap materials and simple preparation process. Many materials have been used as Zn 
surface modification thus far, which can be classified into carbon-based materials, inorganic compounds, 
organic compounds, metal-based materials, and composite materials.

Carbon-based materials
Carbon materials with outstanding electrical conductivity have been extensively utilized as modified layers 
of Zn anodes to inhibit the formation of Zn dendrites in AZIBs. As described above, under an uneven 
electric field, Zn dendrites are inclined to form on the anodes. The high electrical conductivity and large 
specific surface area of carbon materials are beneficial to uniform the interfacial electric field distribution 
and avoid charge accumulation on the Zn anode surface, thus effectively avoiding dendrite proliferation and 
stabilizing the Zn anodes. Commercially available carbon materials (activated carbon[34], graphite[35], etc.) 
with convenient manufacturing processes can be directly assembled on the anode surface to protect the Zn 
anodes. For example, Du et al.[36] mixed carbon fibers, acetylene black, and polyvinylidene fluoride (PVDF) 
to prepare a slurry, which was then sprayed onto the surface of Zn foil to form a carbon fiber micron film 
(CFMF) [Figure 3A]. By virtue of its high conductivity and surface area, CFMF could improve Zn 
electrodeposition kinetics and homogenize the electrical field. The porous scaffold structure of CFMF could 
also accommodate the Zn anode volume changes during cycling, thus endowing a stable cycling 
performance of 2500 h at 1 mA cm−2 and 1 mAh cm−2 in the symmetric cells[36]. It is worth noting that such a 
strategy could be extended to Li metal anodes for inducing the enhanced electrochemical performance[36].

Compared with commercial carbon materials, carbon nanomaterials have received more attention since 
they can adjust the Zn deposition by their larger specific surface area and nanoscale size. The common 
carbon nanomaterials that are utilized in protecting Zn anodes mainly include CNT[37], graphene[38-40], 
mesoporous hollow carbon spheres[41], and various other carbon nanomaterials[42-44]. In particular, graphene-
based materials usually exhibit a small lattice misfit (no larger than 25% as an empirical value) with Zn 
(002); thus, they can induce reversible lamella-nanostructured Zn (002) epitaxial electrodeposition, which 
presents a non-dendritic Zn deposition[38,45]. Inspired by this, Zhang et al.[46] designed a cellulose 
nanowhisker-graphene (CNG) membrane on a Zn anode surface. The CNG membrane induced a 
redirected Zn (0002) deposition due to the graphene component. Moreover, the CNG could restrain the 
contact between Zn anode and water molecules through an enhanced [Zn(H2O)6]2+ desolvation process, 
which alleviated HER and Zn corrosion. Simultaneously, the CNG could shield anions due to the 
deanionization shock from surface negative charges. Therefore, the inert byproducts were effectively 
inhibited. Benefitting from the suppressed Zn dendrites and side reactions, the CNG-modified Zn anodes 
achieved stable cycles for 5500 h at 0.25 mA cm−2 and 0.5 mAh cm−2. In addition to modifying the Zn anode 
surface, graphene-based materials can also be utilized on separators to stabilize the Zn anodes[47-48]. For 
instance, a vertical graphene (VG) carpet[49] growing on one side of separators could effectively homogenize 
the current distribution, smooth the electric field distribution, and lower the local current density 
[Figure 3B]. Therefore, it can regulate Zn2+ transport behavior and induce a dendrite-free deposition. 
Furthermore, when mixing graphene-based materials with other materials to serve as separators, regulated 
(002) Zn deposition behavior can also be achieved. Inspired by this, Cao et al.[50] designed a cellulose/GO 
(CG) composite separator. Benefitting from the in-plane and dendrite-free Zn deposition [Figure 3C], the 
CG induced stable cycles for 1750 h at 2 mA cm−2 and 1 mAh cm−2, which was far more than the 35 h 
achieved by the commercial glass fiber separator [Figure 3D]. In addition to the regulation of the electric 
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Figure 3. (A) Surface morphology of CFMF coated on Zn anode surface[36]. (B) Current distribution and electric field distribution of 
separator with VG (3D scaffold), and electric field distribution of pristine separator (2D planar structure)[49]. (C) Schematic diagram of 
CG separator inducing preferential orientation deposition of Zn. (D) The galvanostatic charge/discharge profile of Zn symmetric cells 
with CG or cellulose separator[50]. (E) Schematic illustration of the sub-Ångström ion tunnel of HsGDY[55]. (F) The effect of different 
separators on interface pH change around Zn anode. (G) Schematic diagram illustrating stabilization of interface pH and suppression of 
Zn dendrites using the CS@NGDY[56]. Reproduced from Ref.[36] and Refs.[49-50,55-56] with permission from Wiley-VCH and Elsevier, 
respectively.

field and Zn2+ ions, some functionalized carbon-based materials can offer lots of zincophilic active sites for 
Zn nucleation and deposition[51]. These sites could capture and redistribute the Zn2+ and result in lower 
nucleation overpotential, which is also conducive to dendrite-free Zn deposition.

Graphdiyne is also a typical 2D carbon material similar to graphene[52-54]. Graphdiyne can redistribute Zn2+ 
concentration field through special ion tunnels. For instance, Yang et al.[55] synthesized hydrogen-
substituted graphdiyne (HsGDY) as Zn surface protection by in situ growth. They found that HsGDY could 
promote a homogeneously dispersed Zn2+ around the Zn surface, benefitting from its sub-Ångström level 
ion tunnels [Figure 3E]. Based on HsGDY, the modified Zn exhibited a long lifetime over 2400 h in 
symmetric cells and stable 10,000 cycles in the full batteries coupled with a high 22.95 mg cm−2 loading mass 
of N-doped porous carbon cathode. Furthermore, they also found that a stable Zn-electrolyte interface 
could be obtained when the graphdiyne was used to modify the separators. To confirm this, an N-
modification graphdiyne interface (NGDY) on a cellulose separator (CS@NGDY) was constructed[56]. 
NGDY could stabilize interface pH by accelerating the desolvation process of hydrated Zn2+ [Figure 3F]. 
This could be explained by the fact that the N atoms of NGDY would interact with coordinated H2O of 
hydrated Zn2+ and capture electrons from the coordinated H2O [Figure 3G], which would further reduce 
activation energy and avoid the weakening of O-H bonds. Therefore, the CS@NGDY suppressed HER and 
the formation of ZHS, increasing the lifespan of symmetric cells by 116 times at 10 mA cm−2 and 1 mAh 
cm−2.
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Inorganic compounds
Inorganic compounds usually have excellent electrochemically and chemical stability in mild electrolytes. 
As a result, they can serve as a stable barrier layer to isolate the Zn metal to form bulky electrolytes, which is 
conducive to mitigating the HER and Zn corrosion. Various inorganic compounds have been reported as 
Zn anode coating materials so far, such as metal oxides, metal sulfides, metal nitrides, inorganic salts, 
MXene, etc.

Metal oxides have been broadly utilized to inhibit dendrites and side reactions. Different metal oxides 
possess different properties; thus, they can affect the Zn anode-electrolyte interface in various ways when 
they decorate the Zn anode surface. For example, ZrO2

[57-58] and Sc2O3
[59] have a high dielectric constant. 

When they are used as coating layers to modify the anode-electrolyte interface, they can induce controllable 
nucleation sites for Zn2+ as well as fast Zn2+ transport due to the Maxwell-Wagner polarization between the 
Zn anodes and the layers. In addition, Al-doped ZnO (AZO) prepared by magnetron sputtering possesses 
strong adsorption energy to Zn2+ due to the doped Al [Figure 4A][60]. Therefore, AZO can provide abundant 
sites to attract Zn2+, facilitating the desolvation of hydrated Zn2+ and regulating the Zn2+ flux [Figure 4B]. It is 
noteworthy that a coating with low Zn affinity can also adjust the Zn2+ flux. Because of its relatively low Zn 
affinity [Figure 4C], the F-TiO2 protective layer with a highly exposed (001) facet can repulse Zn2+ to the Zn-
layer interface [Figure 4D], thus leading to increased interfacial Zn2+ concentration and the subsequent 
uniform nucleation and lateral growth[61]. Moreover, some metal oxides (TiO2 (4.4-5.0 eV), WO3 (4.3-4.8 
eV), MoO3 (6.2-6.7 eV), and CeO2 (4.3-4.7 eV)) have a higher work function than Zn (3.6-3.8 eV), which 
means that the electrons can flow from Zn to the metal oxide to build an Ohmic contact interface when 
using these metal oxides as Zn anode protective layers [Figure 4E][62]. The Ohmic contact interface would 
further induce an anti-blocking layer at the interfaced metal oxides [Figure 4E]. The anti-blocking layer can 
not only improve Zn2+ diffusion but also reduce the Zn2+ nucleation barrier, thus regulating the 
homogeneous Zn deposition behavior. In addition to the inherent properties, a 3D nanoporous structure of 
ZnO can also accelerate the desolvation of hydrated Zn2+ and thus relieve the side reactions[63]. However, 
most metal oxides have good surface wettability. When the metal oxides layers have a large pore 
structure[64-65], the layers cannot completely inhibit the HER despite their effective suppression for Zn 
dendrites. Therefore, entire coverage and conformal deposition techniques are needed and should be 
considered, such as ALD[66-67].

In addition to metal oxides, other metal compounds have also been designed as protective layers of the Zn 
surface, such as sulfides (ZnS[68] and MoS2

[69]), nitrides (N-Zn[70], TiN[71], and Cu3N[72]), fluorides (ZnF2
[73-75] 

and gradient fluorinated alloy[76]), phosphides (ZnP[77] and ZrP[78]), etc. These metal compounds contain S, 
N, F, or P atoms that exhibit a good affinity for Zn. Therefore, they can redistribute the Zn2+ flux, drive fast 
Zn2+ diffusion, and tightly adhere to the Zn anode surface. For instance, S atoms could bond with the Zn 
atoms at the Zn metal and ZnS interphase, which would induce an unbalanced charge distribution [Figure 
4F] and further accelerate the Zn2+ diffusion through ZnS layer[68]. Moreover, a ZnS layer with poor 
electronic conductivity was in situ obtained on the Zn anodes by a vapor-solid strategy. Therefore, the ZnS 
layer was dense and robust, which exhibited good suppression for Zn dendrite growth and side reactions[68]. 
In addition to inhibiting the Zn dendrite, the metal compounds can also regulate the growth pattern of the 
byproduct through tuning their specific orientations. Taking TiN as an example, the (200) crystal facet of 
TiN on Zn anode was conducive for parallel ZHS, while the (111) one could lead to the vertical growth of 
ZHS [Figure 4G][71]. By virtue of uniform Zn deposition and alleviated side reaction, these metal compounds 
exhibit excellent cycle stability even under harsh conditions. For instance, a ZnP layer was designed on the 
Zn surface using electrodeposition. The ZnP layer could induce stable symmetric cells with over 100 h 
cycling at a large depth of discharge (DOD ~ 82%, 48 mAh cm−2) and a high current density of 15 mA cm−2

[77]. In addition, a ZnF2 layer formed on the Zn anodes via an in situ ion metathesis method possessed a high 
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Figure 4. (A) Binding energies of a foreign Zn2+ with the surfaces of bare Zn, ZnO coating, and AZO coating. (B) Schematic illustrating 
the effect of AZO coating on Zn deposition process[60]. (C) Binding energies between Zn atom and different facets of TiO2 and Zn. (D) 
Schematic illustration of the Zn plating process on Zn foil (ZF), commercial TiO2-coated ZF (ZF@C-TiO2), and faceted TiO2-coated ZF 
(ZF@F-TiO2) [61]. (E) Schematic diagram of the formation of an Ohmic contact interface and the anti-blocking layer[62]. (F) The slice of 
the electron density difference map illustrating the unbalanced charge distribution[68]. (G) Effect of different facets of TiN on the growth 
pattern of byproduct[71]. (H) Cycling stability of AZIBs with 850 mAh at 0.2 C[73]. (I) Self-assembly process of MXene layer on the Zn 
anode surface and the regulation of MXene layer on Zn deposition[90]. (J) Schematic illustrating the lattice matching degree between Zn 
anode and MXene[92]. Reproduced from Refs.[60,62,68,73,90], Ref. [61], and Refs.[71,92] with permission from Wiley-VCH, Springer Nature, and 
American Chemical Society, respectively.

Zn2+ transfer number of 0.65[73]. Based on the ZnF2 layer, an 850 mAh large-capacity battery was successfully 
obtained coupled with the MnO2 cathode. This battery could achieve 160 cycles with 93.17% capacity 
retention at 0.2 C [Figure 4H][73].

Inorganic salts have also been widely researched as modified materials on Zn anode surface. Some inorganic 
salts can act as fast Zn2+ conductors to facilitate Zn2+ diffusion at the interface between the anode and 
electrolyte, such as Zn-Mont[79], Mg-Al layered double hydroxide[80], NaTi2(PO4)3

[81], etc. Usually, these 
inorganic salts possess large interlayer space[82] or voids[81], which can serve as Zn2+ channels or sites to lower 
Zn2+ migration barrier. Therefore, they can guarantee rapid Zn2+ transfer kinetics and regulate Zn2+ flux. 
Moreover, these inorganic salts can function as an inert shield to prevent electron tunneling. As a result, 
they can eliminate Zn dendrites and side reactions simultaneously. In addition, some inorganic salts have 
similar characteristics as metal oxides[83]. BaTiO3 (BTO), for instance, has a giant dielectric constant. When 
coated on the Zn surface, the BTO layer would induce an additional directional electric field on the Zn 
surface under an external field, thus regulating the interfacial electric field and further rendering an ordered 
and fast Zn2+ migration[84-85]. Furthermore, some metal salts can also offer abundant sites for the Zn2+ 
adsorption to induce uniform Zn nucleation and deposition, such as O-atom sites in ZnMoO4

[86] and metal 
sites in NiCo layered double hydroxides[87].
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As a kind of 2D transition metal carbides/nitrides[88-89], MXene is an attractive candidate for Zn anode 
protection. Owing to the good electrical conductivity, abundant surface functional groups (-OH, -O, and -
F) and hydrophilicity, MXene can induce uniformly distributed electric field and Zn2+ flux when it is 
constructed on the Zn anode surface. Similar to rGO[40], MXene could be in situ assembled on the Zn 
surface [Figure 4I][90-91]. The in situ formed MXene layer had a tight combination with the Zn anodes, which 
was beneficial for fast Zn2+ transport and low Zn nucleation barrier. As a result, the MXene layer could 
induce a dendrite-free morphology and even a preferentially oriented Zn deposition. In addition, the 
surficial terminations of MXene have a significant influence on the Zn2+ deposition. Recently, Li et al.[92] 
studied Mxenes with different halogen functional groups (-Cl2, -Br2, and -I2) as Zn surface modified layers 
via changing the etchant. They found that halogen surficial termination could tune the Zn2+ distribution to 
tile the Zn2+ on the MXene substrate. Especially, the Cl termination could better regulate the Zn2+ than O/F, 
Br, and I due to its moderate Zn2+ adsorption and diffusion coefficient. Moreover, Ti3C2 matrix had high 
lattice matching (90%) with Zn [Figure 4J] and thus could induce Zn to deposit along the (0001) crystal 
plane[92]. With the synergetic effect, the modified Zn presented over 9000 cycles at 3 A g−1 in the full battery 
coupled with the Ti3C2I2 cathode[92].

Organic compounds
Unlike rigid inorganic compounds oxides, organic compounds, especially polymers, usually exhibit better 
flexibility to accommodate the large volume changes during cycles. More importantly, organic compounds 
have abundant and changeable functional groups, making their properties easy to regulate. The organic 
compounds designed for Zn anode modification mainly contain polymers and metal-organic frameworks 
(MOFs).

Polymers possess abundant polar functional groups and have been extensively studied to protect Zn anodes. 
The polymers have several functions: (1) serve as an ion regulator to Zn2+ migration through the adsorption 
or coordination of the functional groups[93], further redistributing the Zn2+ flux field and restricting Zn2+ 2D 
diffusion; (2) act as an electrostatic shield[94] to avoid Zn2+/electron aggregation and eliminate tip effects, thus 
suppressing the growth of Zn dendrites; and (3) function as a desolvation shield[95-96] or physical barrier 
layer[97-99] to reduce water molecules on the Zn surface, further inhibiting the side reactions and HER. It is 
worth mentioning that some polymers (such as PVDF[100] and its copolymers[101]) are ferroelectric materials 
and can regulate Zn2+ transport just as BTO discussed above does when they are coated on the surface of Zn 
anodes. At present, many polymers have been studied as the Zn anode surface modification, including 
PA[102-103], PAM/PVP[94], p o l y m e r  glue[97,104], polysiloxane[105], PPy[106], PAN[107], polystyrene[99], g - C3N 4

[108], 
COFs[109-111], COPs-CMC[112], PI[113], gelatin[114], etc. Due to the advantages discussed above, polymers can 
induce improved electrochemical performance of Zn anodes. For instance, Zhao et al.[102] proposed a PA 
coating layer on Zn anode surface inspired by the brightener. The PA layer extended the lifespan of Zn 
anodes from 131 to 8000 h at 0.5 mA cm−2 and 0.25 mAh cm−2. This could be attributed to two points. First, 
PA possessed rich polar amide groups in its molecules. These groups could strongly coordinate with Zn2+ 
and form a unique H-bonding network. The strong interactions between PA and Zn2+ could alter the Zn2+ 
distribution and restrict Zn2+ 2D diffusion, which eventually led to uniform Zn deposition. The formed H-
bonding network could constrain the water molecules to form solvated Zn2+, thus decreasing the water 
content on the Zn surface[102]. Second, the PA layer could directly block the water/oxygen to form bulky 
electrolytes to suppress the detrimental side reactions.

MOFs have also attracted great attention in recent investigations as surface modification materials for their 
adjustable pores and non-conduction. The porous structure of MOFs can significantly regulate the Zn2+ 
transport dynamics around the surface of Zn anodes. For instance, Liu et al.[115] explored the possibility of 
UIO-66 MOFs as modified materials on Zn metals. The microporous structure of MOFs facilitated a 
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hydrophilic interface and a nano-level wetting effect with Zn [Figure 5A], which further adjusted the Zn2+ 
flux on the Zn anodes and induced a non-dendrite Zn deposition. Moreover, MOFs can serve as molecule 
sieves to block active water molecules from reaching the active sites. Yang et al.[116] developed a ZIF-7 
coating to form a super-saturated electrolyte front surface on the Zn anodes [Figure 5B]. They found that 
the channel structure of the ZIF-7 could repel large-sized solvated Zn2+ complexes and partially desolvate 
the complex in advance under an electric field. Benefitting from this, a changed solvated structure and 
concentrated electrolyte were obtained in the channel, which further led to a homogeneous Zn deposition 
and decreased byproduct formation. In addition to the two merits discussed above, MOFs can also induce 
an electrokinetic effect [Figure 5C][117], leading to uniform shock electrodeposition. In the channel of ZIF-11, 
there were abundant zincophilic functional groups adsorbing the Zn2+, which contributed to forming an 
EDL. Under an applied electric field, electrokinetic effects such as electro-osmosis, electrophoresis, and 
surface conduction generated by the EDL[118] could guide the ZIF-11 with an even Zn2+ distribution and a 
uniform Zn deposition. As a result, the ZIF-11@Cu-Zn-based symmetric cells exhibited increased 
reversibility and could achieve a stable cycle for 1800 h at 0.5 mA cm−2 and 0.25 mAh cm−2[117].

Researchers have found that the organic compounds applied to the separators presented similar and 
beneficial functions because of the meaningful zincophilic functional groups and tunable structure. First, 
directly employing polymers with zincophilic functional groups as separators is an effective method for 
stable Zn anodes. Nafion possesses -SO3

− groups on its side chains, where the -SO3
− groups can interact with 

Zn2+. As a result, the Nafion membrane separators formed by the casting method could function as a cation 
selective separator to guide planar ZHS SEI and Zn (002) deposition on the anodes[119]. Moreover, a Zn2+-
substituted Nafion separator could simultaneously induce a uniform electrical field and Zn2+ concentration 
field due to the Donnan potential on the interface[120]. In addition to the -SO3

− groups in Nafion, the -CN in 
PAN can also coordinate with Zn2+ and thus homogenize the Zn2+ distribution. The PAN could guide a 
preferred Zn (101) deposition when it was used as a nanofiber porous separator via the electrospinning 
method[121]. When introducing the Li2S3 into the PAN solution, the PAN would react with the Li2S3 to form 
added S-containing functional groups. The added groups would further result in selective Zn2+ transport[122]. 
Another significant method is to apply the organic compounds to modify the separators. The polymers used 
on the separator modification include collagen hydrolysate[123], g-C3N4

[124], supramolecules[125], etc. These 
polymers own abundant zincophilic sites; thus, they can further inhibit the Zn2+ accumulation and result in a 
uniform Zn2+ distribution. In addition to polymers, the MOFs can also modify the separators. Benefitting 
from special ion tunnels in MOFs, the MOF-decorated separators can regulate uniform Zn2+ flux[126] and 
regulate the solvation structure of Zn2+[127]. Therefore, the MOF-modified separators can suppress dendrite 
formation and side reactions.

Metal-based materials
Metal-based materials often possess good Zn affinity and high conductivity. When they are used as Zn 
anode protective layers, they can not only provide nucleation sites for Zn deposition but also redistribute 
the electric field and Zn2+ flux on the anode surface[128-130]. Various metal-based materials have been used to 
modify Zn metal surface thus far. For instance, Ni5Zn21 was designed on the Zn anode surface via 
electrodeposition[131]. The Ni5Zn21 layer could more strongly bond with Zn atom compared to the bare Zn. 
Therefore, Zn preferentially nucleated around Ni5Zn21, further inhabiting the rambling dendrites growing 
on the Zn anodes. When the metal-based materials are nanoparticles and uniformly dispersed on the anode 
surface, they can also act as nanoscale “tips”. These tips have high curvature; thus, they can enlarge the local 
electric field to strongly attract Zn2+ and suppress the large Zn dendrite growth. Based on this, Cui et al.[132] 
constructed nano-Au particles (NA) on Zn anode surface via sputtering. The size of NA was about 100 nm, 
and these NA could serve as heterogeneous seeds [Figure 5D]. As a result, the NA decorated anodes 
achieved uniform Zn-flake-arrays deposition and an enhanced lifespan of 2000 h[132]. However, Au is 
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Figure 5. (A) Schematic diagram of Zn anode–electrolyte interface without or with UIO-66 MOFs layer[115]. (B) Schematic illustrating the 
formation of super-saturated front surface on the Zn anode by MOF layer[116]. (C) Schematic diagram of the electrokinetic effect in the 
MOF layer[117]. (D) Schematic illustrating the uniform Zn deposition by Au nanoparticle[132]. (E) Schematic illustration of the Zn plating 
process on bare Zn and Sb layer modified Zn anode. (F) The H adsorption Gibbs free energy of Sb (001) and Zn (001)[137]. (G) Schematic 
illustrating the dynamic micro-crosslinking of B-O bond. (H) The dynamic adaptability of PDMS/TiO2-x layer on the Zn anode 
surface[153]. Reproduced from Refs.[115,132], Refs.[116,137,153], and Ref.[117] with permission from American Chemical Society, Wiley-VCH, and 
Elsevier, respectively.

expensive, and the effect of NA on rampant side reactions should be further explored.

Multifunctional metal-based protective layers on Zn anodes have been extensively developed[133]. They can 
not only regulate the uniform Zn deposition but also restrain the side reactions. In has been studied for its 
higher equilibrium electrode potential (-0.338 V vs. SHE) than Zn and high hydrogen evolution 
overpotential[134-135]. Therefore, In can in situ form on Zn surface by cation replacement reaction to inhibit 
the Zn corrosion and other side reactions[134-136]. In also possesses a higher Zn atoms adsorption energy than 
Zn substrate to guide Zn deposition preferentially on the In layer[135]. Similarly, an Sb metal layer was 
synthesized on Zn surface by replacement reaction very recently[137]. The Sb layer could provide abundant 
zincophilic sites for Zn nucleation and guide uniform Zn2+ deposition [Figure 5E]. Meanwhile, it could also 
homogenize the electric field distribution to avoid the dendrites’ formation. Moreover, the Sb metal had a 
higher H adsorption Gibbs free energy (ΔGH*) than Zn [Figure 5F][137], which indicated that the layer on Zn 
anodes could suppress the HER process. In addition to In and Sb, Cu[33], Ag[138-140], and liquid Ga-In 
alloy[141-143] are electrochemical-inert. When they are assembled on Zn anode surface, they can also decrease 
the side reactions due to their good anticorrosion ability. As discussed above, different metals have slightly 
different properties when they are used as Zn protective layers. For instance, Ag[138-140] and Cu[33,138,144-145] 
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usually have high Zn affinity; thus, the Ag and Cu metal in protective layers can usually transform into a 
certain amount of alloy with Zn under cycling, which could further guide the uniform Zn deposition. Sn is 
not likely to form alloy phases with Zn[146-147], but Sn is conducive to inhibiting byproduct growth[148]. To 
better utilize the properties of different metals, a layer-by-layer anode (Sn/Cu/Zn) was constructed by 
Huang et al.[148] for long-life AZIBs.

Multimaterial composites
Multimaterial composites, such as organic-inorganic composites and inorganic-carbon composites, usually 
possess multifunctional and synergistic effects because they can inherit the merits of each ingredient. 
Therefore, they have been regarded as powerful and promising candidates for Zn anode protection recently. 
At present, series of organic-inorganic composites have been proposed as protective coatings to protect the 
Zn anodes, such as PVDF-TiO2

[149], Nafion-Zn-X[150], alucone[151], PAN-Si3N4
[152], PDMS/TiO2-x

[153], Zn3(PO4)2-
ZnF2-ZnS with organic outer layer[154], ZnF2/Zn3(PO4)2/CFX

[155], etc. These organic-inorganic composites are 
obtained via mixing two different kinds of matrix to coat the anodes[149] or in situ built on the Zn anode 
surface by pre-cycling in organic electrolyte[154]. In general, the organic (polymer) matrixes have rich 
functional groups[150], excellent mechanical flexibility[149,152] and high dynamic adaptability[153]. Therefore, they 
can serve as an elastic constraint to relieve the side reactions. Additionally, the inorganic ingredients in 
composites can modulate the ion distribution[156], which would further tune the uniform Zn deposition. For 
example, the PDMS/TiO2-x

[153] layer was designed by coating a slurry composed of PDMS and TiO2-x on the 
surface of the Zn plate. The PDMS/TiO2-x layer could adapt to the volume change of Zn anodes during 
cycles due to the dynamic micro-crosslinking of B-O bond in PDMS [Figure 5G and H]. Moreover, TiO2-x 
could induce rapid Zn2+ transport and uniform Zn deposition. Consequently, the PDMS/TiO2-x-coated 
anode could achieve stable cycles for 300 h at 10 mA cm−2 and 10 mAh cm−2 in symmetry cells[153].

In addition to the organic-inorganic composites, other composites are also studied as Zn surface protection 
layers recently, such as Zn4SO4(OH)6·5H2O/Cu2O[157], ZnF2-Cu[158], etc. These composites can simultaneously 
promote uniform Zn2+ deposition and inhibit side reactions on the Zn surface. Similar to organic-inorganic 
composites, these composite coatings also inherit the advantages of different materials. For instance, in the 
S/MXene@ZnS composite layer[159], doped S could facilitate the electrolyte to penetrate into the Zn anode 
surface. MXene could effectively homogenize electric field distribution and decrease local current density. 
Meanwhile, the ZnS could inhibit side reactions, promote uniform Zn2+ distribution, and accelerate Zn2+ 
migration. As a result, S/MXene@ZnS induced stable cycles for 1600 h at 0.5 mA cm−2 and 0.5 mAh cm−2 in 
symmetric cells[159]. Taking the ZnO/C hybrid layer[160] as another example, the hybrid layer had different 
advantages, eventually leading to a dendrite-free Zn deposition and suppressed HER: (1) ZnO featured a 
unique dielectric constant, which could induce controllable Zn2+ nucleation and deposition sites; and (2) 
carbon materials could help to avoid the charge accumulation and buffer structure change during cycling. 
Benefitting from their merits, the ZnO/C coated Zn symmetric cells achieved stable cycles over 2000 h at 
0.25 mA cm−2 and 0.25 mAh cm−2[160].

MATERIAL DESIGNS OF THE STRUCTURE AND CONSTITUTION OF ZN ANODES
The structure and constitution of anodes play an extremely important role in the localized ion 
concentration distribution and localized current density[161-162], thus significantly affecting the local Zn 
plating/stripping process. Different structures and constitutions of anodes can be obtained by etching, 
rolling, 3D printing, template method, CVD, freeze-drying, melting method, electroplate, etc. In this 
section, Zn surface structure designs, conductive host designs, and alloy anodes for Zn anode protection are 
discussed.
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Zn surface structure designs
At present, AZIBs primarily use commercial Zn metal as anodes, which has crystal heterogeneity and 
usually suffers from Zn dendrites with an uneven surface electric field. To regulate Zn deposition, the 
surface structure designs of Zn anodes have aroused researchers’ interest. Special surface structures can be 
prepared via treating the Zn metal, which can effectively redistribute the electric field evenly for uniform Zn 
deposition. For instance, 3D ridge-like structure[163], pitted texture[164], hexagonal-hole patterns[165], porous 
surface architectures[166], etc. can be formed on the surface of the Zn foil just by a simple chemical polishing. 
It can be attributed to the selective etching of weak crystallographic planes and grain boundaries of Zn. In 
addition, the surface texture and surficial atomic structure of Zn anodes play significant roles in solving the 
dendrite problem and improving electrochemical performance. Usually, Zn (002) crystal planes exhibit 
non-dendrites, non-byproducts, and weak HER in sharp contrast to the other crystal plane[165]. Therefore, 
many strategies have been designed to form a preferred (002) crystal plane on the Zn surface, such as an 
organic acid-etching approach[167], a large rolling deformation process[168-169], and a thermal annealing 
process[170]. The (002)-textured Zn anode exhibits better electrochemical performance than commercial Zn. 
For instance, the Zn anodes with preferred (002) orientation formed after accumulative roll bonding (ARB) 
could achieve hundreds of cycles at 40 mA cm−2 and 4 mAh cm−2 in symmetric cells [Figure 6A and B]. By 
contrast, the pristine Zn anodes failed after only the initial cycles[169]. Nevertheless, the Zn metal anodes after 
surface designs cannot avoid the dramatic volume deformation, which might not be conducive to the 
working conditions of the large DOD and large area current.

Conductive host designs
To accommodate large volume changes of the Zn anodes, more researchers have focused on the host 
designs of the anodes. The hosts for Zn anodes mainly include metal-based, carbon-based, and MXene 
hosts. In addition to providing enough space for Zn deposition, the 3D hosts often process large specific 
surface areas to cause sufficient contact area. As a result, the 3D hosts can effectively reduce the local 
current density and simultaneously provide more sites for Zn deposition, which will further inhibit the 
growth of dendrites.

3D metal-based materials are regarded as popular Zn anode hosts due to their good structure stability and 
Zn affinity. Zn metal can directly function as the skeleton by designing its 3D structure[171]. 3D-structure Zn 
metal anodes can induce spatial selective deposition and thus inhibit the dendrite growth[172]. Moreover, they 
can also achieve an interface-localized concentrated electrolyte due to the space charge effect[173], which is 
beneficial to suppress the side reactions. Even so, 3D-structure Zn metal anodes still act as both the active 
material and collector, which could reduce the utilization of Zn. To increase the Zn utilization, non-Zn 
metal-based hosts have received more attention, such as 3D Cu[174-176], 3D Ti[177], etc. Taking Ni host as an 
example, a 3D Ni host with multi-channel lattice structures was prepared using 3D printing and electroless 
plating techniques recently [Figure 6C][178]. Due to the ability to redistribute localized electric field and its 
super-hydrophilic property, the 3D Ni-Zn anode achieved low Zn nucleation overpotential and induced the 
uniform Zn deposition without dendrite growth. However, some metal-based metals would result in a “top 
growth” mode, which can contribute to dendrite growth. To solve this problem, Shen et al.[179] produced a 
stratified deposition framework (from bottom to top: Cu foam, Ni foam, and NiO) and realized stratified Zn 
deposition from bottom to top [Figure 6D]. It can be attributed to the different Zn deposition overpotentials 
and Zn affinity of metals. In addition to the dendrites, HER and other side reactions can also be suppressed 
via metal-based hosts. For instance, Jian et al.[180] prepared a nanoporous Sn host (NSH) on a Cu mesh by 
the replacement reaction. With the high HER overpotential of Sn, NSH could suppress side reactions. 
Moreover, benefitting from the nanoporous structure, NSH also redistributed the Zn2+ flux and electric field 
to further uniform the Zn deposition. Nonetheless, due to their large weight, metal-based hosts may reduce 
the energy density to some extent.
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Figure 6. (A) Schematic diagram for ARB process and the 2D X-ray diffraction patterns of Zn foils before and after different ARB cycles 
(2θ = 36.2 degrees). (B) The galvanostatic charge/discharge profile of commercial and textured Zn symmetric cells[169]. (C) Schematic 
diagram of the fabrication process of 3D Ni-Zn anode[178]. (D) Schematic illustrating stratified Zn deposition from bottom to top[179]. (E) 
Electric field simulation on the Zn/CC anode surface before and after the deposition of CNT on CC[182]. (F) Schematic illustration of 
graphene and different functional groups of N and corresponding binding energy with Zn atom[188]. (G) Schematic illustration of Zn 
plating/stripping process on bulk Zn anode and MGA-Zn anode[191]. (H) Schematic of morphology evolution for lamellar Zn88Al12 (at%) 
alloy anode[31]. (I) Schematic illustration of the 3D Zn-Mn alloy for suppressed dendrite growth[195]. Reproduced from 
Refs.[169,178-179,182,188,191] and Refs.[31,195] with permission from Wiley-VCH and Springer Nature.

Carbon-based 3D hosts have the advantage of light weight, which is conducive to improving the energy 
density of AZIBs. The excellent mechanical stability of carbon-based 3D hosts also gives them the ability to 
be used in flexible and wearable devices. Carbon fiber (CF) and carbon cloth (CC) purchased directly have 
poor hydrophilia and zincophilia[181], which means that these carbon materials alone are insufficient to 
function as efficient hosts for Zn anodes. Many activated strategies have been developed within the 3D 
carbon frameworks to introduce Zn deposition sites and enhance the electrochemical performance of Zn 
anodes. For example, 3D CNT frames grown on CC using the CVD method enhanced the affinity with Zn 
and decreased the Zn nucleation overpotential[182]. Moreover, the 3D CNT frames exhibited enlarged 
specific areas and a more uniform electric field distribution [Figure 6E]. Based on the merits, a higher CE of 
97.9% and better cycle stability for 200 h at 2 mA cm−2 of anode were endowed. Other methods are also 
effective for stable Zn plating/stripping, such as depositing 3D CNT on CC[182], printing Ag nanoparticles on 
CC[183], and coating graphene on CF[184]. Additionally, introducing defects[185], zincophilic atoms[186], or 
zincophilic functional groups[187] are also efficient ways to activate the carbon matrix and strengthen 
interfacial interaction between Zn and the carbon matrix. For instance, Cao et al.[188] introduced 3D 
nitrogen-doped vertical graphene nanosheets into the CC. They found that the binding energies of Zn2+ 
absorbed on pyrrolic N (prN) (-0.377) and pyridinic N (pnN) (-0.356 eV) were larger than that of the 
carbon atomic group (-0.263 eV) [Figure 6F]. Therefore, the doped N could serve as nucleation sites for 
Zn2+ to reduce the Zn nucleation overpotential and lead to the homogeneous Zn deposition.
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Apart from metal and carbon hosts, MXene is also a popular candidate for Zn host. It has been proven that 
Ti3C2Tx MXene paper host can endow the Zn anodes with a suppressive dendrite growth and fast Zn 
plating/stripping kinetics because of its conductivity and hydrophilicity[189]. Furthermore, an increased Zn 
deposition stability can be achieved when introducing zincophilic metals into the system[190]. For instance, 
Tian et al.[190] designed Sb nanoarrays on Ti3C2Tx MXene paper. The Sb could function as a zincophilic 
nucleation seed to reduce nucleation overpotential and further regulate homogeneous Zn deposition. 
Nevertheless, 2D MXene paper is insufficient to accommodate large Zn deposition compared to the 3D 
structure. To address this issue, Zhou et al.[191] constructed a 3D flexible MXene/graphene aerogel (MGA) 
scaffold, where the Ti3C2Tx sheets were assembled onto the surface of rGO. Benefiting from the novel 
structure, MGA could effectively pack the deposited Zn. Moreover, the F terminal in the MXene could 
induce a ZnF2-rich SEI [Figure 6G], which was effective for uniform Zn deposition as well as inhibited 
byproduct ZHS formation and HER (3.8 × 10−3 mol h−1 cm−2)[191]. In addition to MXene, some other novel 
hosts have also aroused research interest recently, such as MOF ZIF-8-500[192] and TiOx/Zn/N-doped 
carbon inverse opal (TZNC IO) host[193]. These novel frameworks are also efficient for a long lifetime of Zn 
anodes.

Zn alloy anodes
In addition to modulating the physical structure of Zn anodes, alloy design for Zn anodes is also a 
significant strategy through tuning the chemical constitution of Zn anodes[194]. For instance, Wang et al.[31] 
introduced an alternating lamellar Zn88Al12 (at%) alloy anode. They found that the Al layers could act as a 
2D host to accommodate the deposited Zn, and the insulating Al2O3 shells generated on the Al layers could 
prevent the electrons transfer from Al to Zn2+ [Figure 6H]. These characters could guide Zn2+ deposition and 
finally achieve a dendrite-free behavior. Moreover, the alloy strategy can improve the stability of Zn anodes 
together with a 3D structure. Taking Zn-Mn alloy as an example, a Zn-Mn alloy with a 3D structure was 
obtained only using the electrodeposition method. The formed alloy anode could not only control the Zn2+ 
diffusion kinetics through favorable diffusion channels [Figure 6I] but also regulate Zn nucleation by a 
higher surface binding energy[195]. As a result, the anode with a 3D Zn-Mn alloy could achieve 1900 stable 
cycles in the harsh conditions of 80 mA cm−2 and 16 mAh cm−2 in sea water-based aqueous electrolytes[195].

To inhibit HER on Zn anodes, Wang et al.[196] introduced Sn to alloy with Zn. The appropriate Sn amount 
could effectively suppress the HER due to the enlarged ΔGH*. Meanwhile, Sn could offer favorable sites to 
decrease the energy barrier for Zn nucleation, which would further regulate the Zn deposition and induce a 
dendrite-free behavior[196]. In addition to Sn, Cu is a promising element to improve the corrosion resistance 
of alloy anodes. As is known, Cu possesses an intrinsically inert nature. The Cu-Zn alloy could effectively 
alleviate the HER and Zn corrosion[197]. Moreover, the zincophilic Cu could also provide abundant Zn2+ 
adsorption sites to promote homogeneous Zn nucleation and deposition[197]. Benefitting from the 
suppressed dendrites and side reactions, the Cu-Zn alloy anode achieved stable cycles for over 1600 h at 5 
mA cm−2 and 2.5 mAh cm−2 in symmetric cells. It is worth noting that this Cu-Zn alloy anode could also 
enhance the electrochemical performance of cells in the alkaline system[197].

MATERIAL DESIGNS OF ELECTROLYTES
The composition and concentration of electrolytes affect the anode–electrolyte interface, which is directly 
related to dendrites, HER, and the formation of byproducts. Zn salts used in AZIBs mainly include 
ZnSO4

[198-201],  Zn(CF3SO 3)2
[202-203], ZnCl 2

[204], Zn(BF 4)2
[205], Zn(CH 3COO) 2, Zn(NO 3)2, Zn(ClO 4)2

[206], and 
Zn(TFSI)2

[207]. Among them, ZnSO4 is the most popular salt because of its stable property and low cost[208]. 
Anions of Zn salts have important impacts on the electrolytes and anodes[209-210]. For example, compared 
with SO4

2−, the bulky CF3SO3
− can reduce the water amount around the Zn2+ to some extent and reshape the 
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Zn2+ coordination. Therefore, the Zn(CF3SO3)2 electrolyte can reduce the solvation effect[211] and even induce 
a preferred Zn (002) texture deposition[212]. In addition to choosing suitable Zn salts, electrolyte regulation 
strategies, such as increasing electrolyte concentration, introducing electrolyte additives, employing 
hydrogel, and solid-state electrolytes, also have beneficial effects on the Zn anodes. Among them, hydrogel 
electrolytes can be obtained via introducing polymer directly or introducing monomer to induce 
polymerization in aqueous solutions containing Zn salts. Solid-state electrolytes can be prepared by 
dissolving Zn salts in a polymer network through non-aqueous solvent[213] or hot-press casting[214].

Highly concentrated electrolytes
Increasing the electrolyte concentration is a simple and effective strategy to improve the electrochemical 
performance of AZIBs. The merits of using concentrated electrolytes can be concluded in two ways. (1) 
Decreasing the amount of water molecules and breaking the hydrogen-bond networks in the bulk 
electrolyte: These are beneficial for reducing the side reactions, alleviating the active materials’ dissolution, 
expanding the electrochemical stability window, and lowering the freezing point to some extent. (2) 
Changing the solvation structure of Zn2+[215] : this can not only further govern the Zn deposition and 
suppress Zn dendrite growth, but it is also conducive to restrained side reactions. For instance, Zhang 
et al.[216] found that the concentration of ZnCl2 in aqueous could reach up to 30 m [where m is molality (mol 
kg−1)], and the electrolyte would transform into a “water-in-salt” (WIS) electrolyte. Usually, with enough 
water molecules available, Zn2+ could be solvated to form stable [Zn(H2O)6]2+. However, the number of 
[Zn(H2O)6]2+ was minor in 30 m ZnCl2 electrolyte because few free water molecules existed in this WIS[216]. 
Moreover, there were fewer and fewer water molecules involved in the solvation structure of the Zn2+ with 
the increased ZnCl2 concentration from 5 to 30 m. As a result, the concentration of [ZnCl4]2− would increase 
and that of [Zn(OH2)2Cl4]2− would decrease in the electrolyte. The average CE of the Zn anode could also 
increase from 73.2% to 95.4%[216]. In addition to improving the reversibility of Zn plating/stripping, the 30 m 
ZnCl2 WIS electrolyte also has the ability to mitigate the dissolution problem of active material[217-218] and 
widen the voltage window[218-219] compared to a dilute one.

Common electrolytes, such as ZnSO4 and Zn(CF3SO3)2 electrolytes, can also achieve improved 
electrochemical performance after increasing their concentration. For instance, 3 M [where M is molarity 
(mol L−1)] ZnSO4 electrolyte can not only suppress the dissolution of V2O5 cathode but also enhance the 
stability of the Zn anodes compared to that in 1 and 2 M electrolytes[220]. Furthermore, with the ZnSO4 

concentration increasing from 2 to 4.5 M in the presence of 0.1 M MnSO4 electrolyte additives, strongly 
aggregated ion pairs would replace the water molecules around Zn2+[199]. Therefore, the concentrated 
electrolyte of 4.2 M ZnSO4 + 0.1 M MnSO4 obtained an improved Zn plating/stripping CE of 99.21%[199]. A 
similar phenomenon is evidenced in the Zn(CF3SO3)2 electrolyte, where the CE of full batteries in Zn(CF3SO
3)2 electrolyte increases with salt concentration boosting from 1 to 4 M[208]. However, the saturation 
concentration of most Zn salts is limited at ~4 M[221-222] or even smaller[206], where a lot of free water exists 
and most Zn2+ ions are surrounded by six water molecules. In view of this, researchers attempted to add 
other salts in Zn electrolytes to obtain highly concentrated electrolytes. These highly concentrated 
electrolytes can also decrease the water molecules and alter the solvation structure of Zn2+[223-224]. For 
instance, a saturated WIS electrolyte was investigated by introducing 20 m LiTFSI into 1 m Zn(TFSI)2

[225]. In 
this novel WIS electrolyte, water molecules could be severely confined within the Li+ solvation structures, 
and the Zn2+-solvation sheath was occupied primarily by TFSI− to form (Zn-TFSI)+ structure[225]. The 
changed Zn2+-solvation sheath could improve the reversibility of the Zn anodes (CE ~ 100%) and 
simultaneously restrain the side reactions. However, it is worth noting that Zhang et al.[226] recently found 
that Zn2+ was still mainly solvated by six waters in the first solvation shell in 1 m Zn(TFSI)2 + 20 m LiTFSI 
electrolyte. Therefore, more studies need to be developed in this electrolyte system. In addition to the 
changed Zn2+ solvation structure, researchers found that an enhanced threshold of critical current density 
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for cation depletion could also result in regulated Zn deposition and suppressed dendrite growth in the
highly concentrated electrolyte[227].

Electrolyte additives
In addition to the concentration control, the composition change of an electrolyte via a small amount of
electrolyte additives can also affect the stability of Zn anodes. Electrolyte additives can be mainly divided
into inorganic and organic additives.

Inorganic additives
Some metal ions have more negative reduction potential than Zn2+, such as Mn2+[199], Na+[228], Li+[229], etc. As a
result, these metal ions can competitively adsorb on the Zn protrusions and thus inhibit the dendrite growth
according to an electrostatic shield mechanism. For instance, Li+ can adsorb on the Zn anode surface and
further establish a new interface between the anode and electrolyte. The new interface can guide non-
dendrite Zn growth and inhibit the HER[230]. Additionally, the Li2O/Li2CO3 layer could be preferentially
formed on the Zn surface to provide a shielding effect when adding 2 M LiCl into 3 M ZnSO4

[229]. It is worth
noting that, in addition to metal ions, other inorganic cations (such as NH4

+[231-233]) can also adsorb on the Zn
protrusions and regulate the Zn deposition process. Furthermore, some metal ions can inhibit the Zn
dendrite growth by regulating the Zn nucleation process. For instance, Li et al.[234] found that Ce3+ and La3+

could guide the Zn nucleation through a progressive process instead of an instantaneous one, thereby
resulting in stable Zn stripping/plating behavior.

In addition to guiding Zn deposition directly, the introduced inorganic salts can also in situ form an SEI
protective layer on the Zn surface to stabilize the anode-electrolyte interface[235]. In LIBs, SEI layers can be in
situ built at the anode surface through the decomposition of electrolyte components and/or salt anions[236].
However, in AZIBs, SEI with in situ formation remains a huge challenge. It can be attributed to that the
relatively high reduction potential of Zn deposition and restricted voltage windows of water. As a result,
HER and Zn plating are usually generated prior to the decomposition of salt anions. To in situ form SEI on
Zn anodes, several mechanisms or methods have been developed by adding inorganic salts. One of these is
to make use of the locally increased OH− caused by HER. For instance, Zeng et al.[237] found that a dense and
uniform Zn3(PO4)2·4H2O SEI could form by adding Zn(H2PO4)2 to Zn(CF3SO3)2 electrolyte. As shown in
Figure 7A, through the chemical reaction

                                                            2H2PO4
− + 4OH- + 3Zn2+ → Zn3(PO4)2. 4H2O↓                                          (3)

the Zn3(PO4)2·4H2O film would precipitate on the anode as SEI with the increased OH− leftover from HER.
Similarly, ZnF2-Zn5(CO3)2(OH)6-organic bi-layer SEI was produced by introducing Zn(NO3)2 additive into
Zn(CF3SO3)2 aqueous electrolyte[238]. This bi-layer SEI could promote Zn2+ diffusion and block water
penetration, thus enabling a highly reversible Zn plating/stripping (CE ~ 99.8%)[238]. In addition to utilizing
the increased OH−, another method is to add salts that are thermodynamically instable in aqueous
environments. Inspired by this, Chu et al.[239] added KPF6 in 2 M ZnSO4 aqueous electrolyte. They found that
a composite SEI (ZCS) could be in situ formed on the Zn anode, and the ZCS was mainly composed of Zn3

(PO4)2 and ZnF2. It could be attributed to the decomposition of PF6
− and the further reaction between the

decomposition products and Zn. Benefitting from the in situ formed ZCS, the largest cumulative capacity
on the anode could reach up to 2020 mAh cm−2 and the symmetric cells realized stable cycles for 250 h at 10
mA cm−2 and 20 mAh cm−2. In addition to the above two methods, SEI can also be formed in Zn anodes
when introducing some metal ions with higher reduction potential than Zn2+, such as Bi3+, Pd2+[240], Sn2+

[241-242], In3+[243], etc. These metals could preferentially deposit on the anodes before Zn and thus can act as SEI
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Figure 7. (A) Schematic diagram of the in situ formation of Zn3(PO4)2·4H2O SEI on Zn anode surface[237]. (B) Schematic diagram of 
preferential Sn deposition than Zn in the 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive. The deposited Sn would further 
facilitate the formation of a uniform zincophobic Zn5(OH)8Cl2·H2O SEI, and the water activity was decreased due to the strong H2O-Cl- 
interactions[241]. (C) Schematic illustration of the PEG additive in the electrolyte for uniform Zn deposition. (D) The galvanostatic 
charge/discharge profile of symmetric cells with 0% or 70% PEG additive[284]. (E) Schematic diagram of PVIPS gel electrolyte for 
changing the solvated structure of Zn2+ and inducing a Zn (002) texture[311]. (F) The MD simulation snapshot of ZCE at 300 K illustrating 
the enhanced ion dynamics and the diagram illustrating the Zn2+ hopping-type transport mechanism in the ZCE[329]. Reproduced from 
Refs.[237,241,311,329], and Ref.[284] with permission from Wiley-VCH and Elsevier.

layers to guide Zn deposition and suppress the side reactions [Figure 7B].

Organic additives
The other popular and effective candidate of electrolyte additives are organic additives, including 
alcohols[244-247], ether[248-252], aldehydes[253-254], esters[255-256], amino acid[257], polymers[258-259], organic salts[259-266], etc. 
The organic additives usually function as trace mineral supplements or co-solvent. They can affect Zn 
deposition in three ways.

Firstly, they prefer to adsorb on the surface or protuberance of the Zn anodes due to their stronger 
absorptive function than H2O[254] or because of the tip effect[267]. The adsorbed organic additives can not only 
occupy the active sites for HER and further alleviate side reactions[263] but also serve as zincophilic sites for 
Zn nucleation and restricting 2D Zn2+ diffusion[268]. As a result, these organic additives can suppress the 
continuous dendrite growth and even guide different crystallographic orientations and surface textures of 
deposited Zn[269]. Secondly, organic additives can inhibit the invasion of free water into the Helmholtz 
plane[270] or change the Zn2+ solvation structure[271-272]. The changed solvation structure would guide Zn 
deposition and even interrupt the hydrogen bonding network among water molecules[273] to reduce water 
activity. The reduced water activity can not only broaden the electrochemical stability window[274] but also 
lower the freezing point of the electrolyte[275]. These are beneficial to the inhibited side reactions and the 
further expanded usage of AZIBs. More importantly, an SEI could be in situ formed, driven by the 
decomposition of organic additives[276] or polymerization. For instance, Zeng et al.[277] found that a stable 
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polydopamine SEI could be constructed via an in situ electrochemical polymerization of dopamine additive. 
In addition to the polymerization, the introduced organic additives can be decomposed on the anodes to 
form SEI layers due to the inhibited HER after excluding water in the EDL structure[278]. Benefitting from the 
three effects on the anodes, some organics have been frequently studied as additives in AZIBs, such as 
DMSO[279-280] and PEG[281-283]. Wu and co-workers[284] found that the PEG additive had several advantages at 
the same time. These advantages included enabling Zn (002) deposition preferentially, decreasing the water 
activity, and forming an anion-dominated solvent structure and ZnF2-rich SEI films [Figure 7C]. Benefitting 
from these merits, the Zn anode in electrolyte with 70% PEG additive achieved a super-high cyclic 
performance for 9000 or 8000 h at 1 or 2 mA cm−2 [Figure 7D][284].

Hydrogel and solid-state electrolytes
Employing the hydrogel/quasi-solid electrolytes is also considered a promising solution to Zn anode issues 
because of their limited water content and decent ionic conductivity. They are generally composed of Zn 
salts and polymer skeleton networks, including non-crosslinked and crosslinked hydrogel electrolytes[285]. 
Unlike the crosslinked type, non-crosslinked hydrogel electrolytes tend to exhibit amorphous morphology 
and poor mechanical properties; thus, they require additional separators in most cases. Based on different 
polymer skeletons, the hydrogel electrolytes used in AZIBs can mainly be divided into PEO-based[286], 
PVDF-based[287], PAN-based[288], PVA-based[289-293], PAM-based[294-299], natural biomass-based[300-304], etc. 
Appropriate Zn salts should be selected to match the polymers because some polymers are incompatible 
with salts. For example, commonly used polymers (PEO, PVA, agar, gelatin, and sodium polyacrylate) in 
AZIBs would precipitate in electrolytes containing SO4

2− according to the Hofmeister series[305]. Similar to 
polymer electrolyte additives, polymer chains of hydrogel electrolytes can closely adsorb onto the Zn 
anodes, especially on the bulge. These polymer chains can serve as electrostatic shielding layers to inhibit 
dendrite growth and prevent water from contacting the anodes[306]. Moreover, polymers can guide Zn2+ 
transport and deposition through local segmental motion because the Zn2+ would coordinate with oxygen-
containing functional groups on the polymer chains[302,307-310]. For instance, Hao et al.[311] found that, in 
polyzwitterionic PVIPS gel electrolyte, the SO3

− groups could bond to Zn2+ and change the Zn2+ solvation 
structure from [Zn(H2O)6]2+ to R-SO3

− [Zn(H2O)4]2+ −SO3-R [Figure 7E]. The changed solvated Zn2+ would 
further guide the Zn2+ transport and inhibit the side reactions. Moreover, the imidazole groups in PVIPS gel 
electrolyte were able to synergize with SO3

− groups to guide Zn2+ nucleation and deposition along the (002) 
plane. Most crosslinked hydrogel electrolytes exhibit high mechanical integrity, which is beneficial to 
suppress dendrite formation[312]. However, the hydrogel electrolytes with high modulus may cause poor 
interfacial contact with anodes. To solve this, Cao et al.[313] developed a mechanoadaptive morphing gel 
electrolyte (MorphGE). MorphGE with high modulus effectively inhibited Zn dendrite growth under the 
well interfacial contact with Zn anodes. Moreover, MorphGE also relieved the side reactions due to its 
anchoring for desolvated Zn2+. As a result, MorphGE induced long cycles for 2400 h at 1 mA cm−2 and 1 
mAh cm−2, and even 100 h at 10 mA cm−2 and 10 mAh cm−2 in symmetrical Zn cells. It is worth noting that 
the hydrogel electrolytes can expand the application of AZIBs in flexible and wearable energy storage 
devices[314].

All-solid-state electrolytes can fundamentally eliminate the side reactions driven by water, thus improving 
the utilization of Zn anodes. However, few studies on all-solid electrolytes have been reported[315]. That is 
because the divalent Zn2+ has a higher charge density, which induces quite sluggish diffusion kinetics in 
solid materials at room temperature[316]. Water can activate inorganic electrolytes to some extent. For 
example, MOF-based Zn2+ solid electrolytes[317] and inorganic colloidal electrolytes[318-319] have been explored 
to obtain good Zn2+ migration and suppression ability for both dendrites and side reactions. However, their 
Zn2+ conduction mechanism is actually Zn2+ being transported through water. Recently, an inorganic Zn2+ 
conductor electrolyte (ZHAP-Zn) with a solid-liquid hybrid Zn2+ transport channel has been developed[320]. 
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The ZHAP-Zn enabled a high Zn2+ transference number of 0.75 and achieved dendrite-free Zn 
plating/stripping over 2000 h at 0.5 mA cm−2. Nevertheless, the use of all-solid-state electrolytes without 
water can still be a challenge. In general, polymers with lower glass transition temperatures[321] and all-
amorphous regime[322] present higher ionic conductivity and can be used in AZIBs. Additionally, the use of 
inorganic fillers (such as TiO2

[323-324], ZrO2
[321], Al2O3

[325], MXene[326], etc.) and the bulky anionic salts[327-328] can 
effectively reduce the crystallinity of the polymer to improve Zn2+ conductivity, but their influence on Zn 
dendrites is rarely researched. Very recently, a Zn2+ conductive solid electrolyte (ZCE) was prepared and 
studied for the Zn anode by crystallization of Zn(TFSI)2-based deep eutectic solvent[329]. In ZCEs, TFSI− was 
preferentially adsorbed on the surface of Lewis acid TiO2, thus weakening ion association and resulting in a 
high Zn2+ transference number (0.64). Moreover, an interface Zn2+ conduction pathway was established via 
the adsorbed TFSI− on the surface [Figure 7F], which endowed ZCEs with a high ionic conductivity of 5.91 
× 10−5 S cm−1 at 30 °C. Benefitting from the good Zn2+ conductivity, sufficient mechanical strength, and 
water-free characteristics, the ZCEs induced Zn plating/stripping for 4000 h at 0.01 mA cm−2 without 
dendrites or side reactions. However, the ionic conductivity of all-solid-state electrolytes is still far below the 
practical application requirements, and the research for all-solid-state Zn-ion batteries is still in the initial 
stages.

CONCLUSIONS AND OUTLOOK
AZIBs have attracted extensive attention because of their advantages of low price, high safety, and high 
power density. However, the anode-electrolyte interface is often accompanied by some harmful problems 
that hinder the performance of AZIBs. Due to the uneven distribution of electric field and Zn2+ 
concentration field, dendrite growth often exists on the Zn anodes, causing the battery to short circuit. In 
addition to Zn dendrites, another big issue on Zn anodes is the side reactions (HER, corrosion, and 
passivation) driven by the thermodynamic activity of Zn metal in an aqueous solution. The side reactions 
could reduce Zn utilization and the CE of the Zn plating/stripping on Zn anodes. For this, material designs 
for the anodes and electrolytes have been developed. For instance, on the Zn anodes, protective layers can 
physically isolate the anodes and bulky electrolytes, thus alleviating the side reactions. Moreover, layers of 
modified Zn anodes or separators can also regulate Zn2+ transfer kinetics deposition and induce a dendrite-
free deposition behavior. In the electrolyte, trace amounts of electrolyte additives can regulate the solvated 
structure of Zn2+ to guide uniform Zn deposition and mitigated side reactions. More detailed information 
about material designs for stable Zn anodes can be seen in Table 1. Although the material design for Zn 
protection has made many advances, there are still some factors limiting their actual application from the 
lab to commercialization, and further research efforts are needed.

(1) Surface modification of Zn is recognized as an effective strategy to stabilize Zn metal anodes. At present, 
numerous inorganic and organic materials have been explored for modifying the Zn anode surface. Zn 
anodes modified by these materials achieve enhanced electrochemical performance. However, most buffer 
coatings are made using the doctor-blading method and thus suffer from poor bonding strength. They are 
prone to peel off due to the repeated volume changes during cycles. Therefore, more methods need to be 
developed to enhance the contact between the layers and anodes during cycling. For instance, the protective 
layers realized via in situ formation have a tight bond with Zn. However, the rigid and fragile nature of in 
situ Zn2+ -conducting materials or organic layers with low ion conductivity may induce limited area capacity 
and DOD of the Zn anodes. Composite coatings inherit the advantages of several materials and thus can 
achieve synergistic effects to greatly improve the stability of Zn anodes. Therefore, in situ constructing 
composite layers with high flexibility and Zn2+ conductivity on the Zn anodes is a strategy worth 
considering in the future.
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Table 1. Summary of different material design strategies for stable Zn anodes

Representative indicators
Symmetric 
cells

Asymmetrical 
cells

 
Designs Materials Synthesis Important parameter 

(electrolyte or salt)
Lifespan (h) 
(C1, C2)a CE Cycles 

(C1, C2)a

Reference Remarksb

CG separator Casting 2 M ZnSO4 1750 (2, 1) 
400 (20, 10)

98.68% 100 (1, 1) [50]

HsGDY In situ growth 2 M ZnSO4 2400 (0.5/1/2, 
0.1)

/ / [55]

N-C Casting 2 M ZnSO4 1000 (1, 1) 98.76% 120 (2, 2) [42]

Carbon-based 
materials

CNG Drying 3 M ZnSO4 2956 (1, 0.5) 99.4% 300 (/, 
0.5)

[46]

·Simple preparation 
·Redistribution of surface 
electric 
·Less effect on large DOD

ZrO2 Casting 2 M ZnSO4 3800 (0.25, 
0.125) 
2100 (5, 1)

99.36% 230 (20, 
5)

[57]

ZnO Liquid-phase synthesis 2 M ZnSO4 + 0.1 M 
MnSO4

500 (5, 1.25) 99.55% 300 (2, 
0.5)

[63]

ZnS CVD 1 M ZnSO4 1100 (2, 2) 99.2% 200 (2, 1) [68]

ZnF2 In situ ion metathesis 2 M ZnSO4 2500 (1/2/5, 1) ~99.5% 1000 (1, 1) [73]

MXene In situ 
reducing/assembling

2 M ZnSO4 800 (0.2, 0.2) / / [90]

ZnP Electrodeposition 2 M ZnSO4 3200 (5, 1.25) 
300 (20, 30)

99.5% 200 (2, 
0.5)

[77]

CaCO3 Casting 3 M ZnSO4 + 0.1 M 
MnSO4

836 (0.25, 
0.05)

/ / [83]

Inorganic compounds

BaTiO3 Coating 4000 (1, 1) 
1300 (10, 2)

/ 120 (1, 1) [85]

·Simple preparation 
·Physical barrier for free water 
·Crack on the large DOD

PA Casting 2 M ZnSO4 8000 (0.5, 
0.25)

95.12% 300 (0.4, 
0.4)

[102]

FCOF Pulling 2 M ZnSO4 1700 (5, 1) 97.2% 320 (80, 1) [110]

Gelatin Casting and crosslinking 1 M Zn(OTF)2 4000 (1, 1) / / [114]

Organic compounds

MOF Casting 2 M ZnSO4 3000 (0.5, 0.5) / / [116]

·Simple preparation 
·Physical barrier for free water 
·Certain shape adaptability 
·Lower ionic conductivity

ZnSe CVD 2 M ZnSO4 1500 (1/10, 1) / / [128]

In Ion exchange 2 M ZnSO4 1400 (0.25, 
0.05)

/ / [136]

Cu/Zn Ion exchange and 
annealing

3 M ZnSO4 1500 (1, 0.5) 91.8% 100 (5, 
0.5)

[33]

2100 (0.25, 

Surface modification on 
Zn metal

Metal-based 
materials

Ga-In Coating 3 M ZnSO4 / / [141]

·Simple preparation 
·Redistribution of surface 
electric 
·Certain solutions for side 
reactions 
·Less effect on large DOD
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0.05) 
1200 (1, 0.1)

AEC (TiO2-PVDF) Coating 2 M ZnSO4 2000 (0.885, 
0.885)

99.4% 1000 (1.77, 
0.885)

[153]

Nafion Zn-X Casting 2 M ZnSO4 2000 (5, 0.5) 97% 130 (0.5, 
0.5)

[150]

Multimaterial 
composites

Ti3C2Tx 
MXene/ZnS

Coating 2 M znSO4 1100 (1, 0.5/1) 
400 (5, 5)

/ / [159]

·Simple preparation 
·Physical barrier for free water 
·More complicated mechanism 
·At initial stage

Pitted surface 
texture

Etching 2 M ZnSO4 1000 (1, 1) / / [164]

hexagonal-hole 
patterns

Etching 2 M ZnSO4 1800 (0.5, 0.5) 99.57% 700 (2, 1) [165]

3D porous surface Etching 1 M ZnSO4 930 (4, 2) / / [166]

Zn surface structure 
designs

PPZ@Zn Etching 2 M ZnSO4 3000 (1, 0.5) / / [167]

·Redistribution of surface 
electric 
·Poor solution for side reactions

Conductive host 
designs

SDF Template, deposition and 
sputtering

2 M ZnSO4 1000 (2, 1) / / [179]

MGA Freeze-drying 2 M ZnSO4 1050 (10, 1) 99.67% 600 (10, 1) [191]

3D Ti-TiO2 Electrodeposition and 
dealloying

2 M ZnSO4 2000 (1, 1) 95.20% 200 (10, 5) [177]

·Redistribution of surface 
electric and ion flux 
·Beneficial to more Zn and large 
DOD 
·Lower volume energy density 
·Poor solution for side reactions

Zn88Al12 (at%) Metallurgy 2 M ZnSO4 without O2 2000 (0.5, /) �100%c / [31]

The structure and 
constitution design of Zn 
anodes

Zn alloy anodes

Zn3Mn Electrodeposition 2 M ZnSO4 in seawater 760 (80, 16) �100%c 
99.62%

/ 
2500 (10, 
/)

[195]

·Dendrite-free 
·Certain solutions for side 
reactions 
·Less effect on large DOD

30 m ZnCl2 / / 600 (0.2, 
~0.033)

95.4%d / [216]

3 m Zn(Otf)2 +17 m 
NaClO4

/ / 1600 (1, 0.25) ~99.96% 700 (0.5, 
0.25)

[224]

Highly concentrated 
electrolytes

1 m Zn(TFSI)2+ 20 
m LiTFSI

/ / 170 (0.2, 
~0.033)

~100%c / [225]

·Simple preparation 
·Potential for large DOD 
·Higher cost 
·Higher viscosity 
·Lower ionic conductivity

50 mM NH4Oac / 2 M ZnSO4 3500 (1, 1) 99.7% 1800 (1, 
0.5)

[233]

25 mM Zn(H2PO4)2 / 1 M Zn(OTF)2 1200 (1, 1) 99.4% 400 (/, 
0.5)

[237]

0.05 M KPF6 / 2 M ZnSO4 1200 (2, 4) 99.37% 90 (4, 2) [239]

300 mM In(Otf)3 / 3 M Zn(OTF)2 5700 (2, 2) 99.94% 1931 (0.5, 
0.5)

[243]

70 wt% PEG / 1M Zn(OTF)2 9000 (1, 1) 
8000 (0.5/2, 1)

/ / [284]

6000 (0.5, 1000 (0.5, 

Design of electrolytes

Electrolyte additives

0.5 m Me3EtNOTF / 4 m Zn(OTF)2 99.8% [276]

·Simple preparation 
·Low cost 
·Potential for large DOD 
·More complicated mechanism
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0.25) 0.5)

DMSO H2O/DMSO = 4.3:1 
(vol.%)

1.3 m ZnCl2 1000 (0.5, 0.5) 99.5% 400 (1, 
0.5)

[280]

PVIPS Crosslinking ZnSO4 500 (5, 5) 99.6% 400 (1, 1) [311]

PVA-B-G Crosslinking ZnSO4 + MnSO4 1400 (2, 2) / / [292]

polyzwitterionic 
PSBMA

Crosslinking ZnSO4 3500 h (0.5, 
0.5)

/ / [303]

ZS/GL/AN Thermal initiation method ZnSO4 3000 (0.2, 0.2) 
3000 (0.5, 5)

/ / [307]

PAMPSZn Ion exchange and 
crosslinking

/ 4500 (1, 1) 99.3% 400 (/, /) [309]

ZHAP-Zn Ion exchange and pressing / 2000 (0.5, 
0.125)

/ / [320]

Hydrogel and solid-
state electrolytes

ZCE Crystallizing solvent Zn(TFSI)2 4000 (0.01, 
0.005)

/ / [329]

·Certain mechanical strength 
·Multifunctional, such as 
flexible, self-healing, freeze-
tolerant 
·Reduced amount of free water 
·Intolerance for some Zn salt 
·Low ionic conductivity 
·Low power density 
·Aging problem

a(C 1, C2), current density (mA cm-2) and area capacity (mAh cm-2);bother features besides dendrite-free;c the CE is obtained through chronocoulometric curves; d the CE measurement is followed by a “reservoir” 
galvanostatic protocol established by Zhang’s group[330-331] and Ma et al.[332-333]; the CE using a “reservoir free” galvanostatic protocol unless otherwise specified.

(2) The structure and constitution designs of Zn anodes are significant for stable Zn anodes. The change in surface morphology of Zn metal can effectively 
regulate Zn deposition and alleviate dendrite growth. However, as the deposited Zn increases, the effect of the original surface morphology becomes smaller, 
and Zn dendrites may still grow. Compared with typical 2D Zn anodes, 3D anodes can not only accommodate more deposited Zn and larger volume variation, 
but also effectively reduce the local current density and redistribute the electric field due to its high specific surface area and good electrical conductivity. 
Nevertheless, the 3D skeleton cannot prevent side reactions, and, conversely, the nanoscale host may accelerate the reaction kinetics of side reactions due to its 
more active sites. The alloy strategy can inhibit HER by introducing elements with inert nature or higher HER overpotential. The formed alloy can guide the 
Zn deposition to some extent but may also fail when the alloy surface is completely covered by the deposited Zn. Cooperative strategies combining structure 
design with alloy strategy, surface protection, or hydrogel electrolyte may be workable plans for a higher electrochemical performance of Zn anodes.

(3) Modulating the composition and concentration of electrolytes is a promising way to optimize the anode-electrolyte interface and promote the utilization of 
Zn anodes. Introducing electrolyte additives is considered an effective method to reduce Zn dendrites. In addition to protecting the anodes, they can also act 
on the cathode and thus affect the whole battery. For example, organic additives usually lead to increased polarization that further deteriorates the rate 
performance of AZIBs, and the inorganic ones may complicate the battery system. Therefore, an in-depth study of additives for anodes and cathodes should be 
considered. Moreover, exploring composite additives is a possible way to obtain a better performance of AZIBs. High concentration electrolytes, especially 
“water-in-salt” electrolytes, can change the Zn2+ solvation structure, thus restraining the dendrite growth and side reactions. However, the concentrated 
electrolytes usually cause high cost, high viscosity, and decreased ionic conductivity. Balancing the trade-offs of various aspects, such as enhancing the Zn 
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utilization, keeping high Zn2+ conductivity, and maintaining a low cost, is highly demanded. Hydrogel or 
solid-state electrolytes can also solve the Zn anode issues due to their less water amount and suitable 
mechanical strength. Their extra mechanical properties also expand the application of AZIBs to the flexible 
and wearable fields. However, their poor contact with anodes and low intrinsic ion conductivity are major 
headaches for their further development. Although some inorganic fillers are conducive to enhancing ionic 
conductivity of hydrogel or solid-state electrolytes, corresponding studies are rare and their effects on Zn 
anodes are still not clear. To improve the power density of AZIBs, the development of hydrogel or solid-
state electrolytes with high ionic conductivity and high dynamic adaptability is still urgently needed.

(4) Although the material design strategies of Zn anodes have been investigated and developed, the in-depth 
understanding of these issues and strategies to improve the performance of the Zn anodes are limited and 
still in the lab. There are still many problems to be solved for achieving the practical application of AZIBs. 
For instance, the test protocols of Zn anodes are not unified. It means that the different studies and 
strategies lack comparability to a certain extent. In addition, current material design strategies of Zn anodes 
are mostly based on excess Zn and small DOD, which may fall short of commercial requirements and cover 
up the shortcomings of strategies. Moreover, the compatibility of material designs for stabilizing Zn anodes 
with cathode materials needs more exploration, especially the designs on electrolytes. Besides, the basic 
advantages of AZIBs, such as low cost and high safety, cannot be thrown away during the development. 
Therefore, it is recommended that a test standard that meets commercial requirements, including the 
current density and DOD, should be urgently formulated to accelerate the practical application of AZIBs. 
The cost and safety should also be evaluated simultaneously for the further large-scale development of 
AZIBs.
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