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Abstract
Accurate diagnosis of rolling bearing faults plays a crucial role in ensuring the stable operation of rotating 
machinery systems. However, in actual engineering applications, a significant disparity between the volume of 
normal data and the quantity of fault data collected impairs diagnostic performance. Bearing fault diagnosis under 
sample imbalance conditions is an engineering challenge encountered in the field of fault diagnosis. To improve the 
fault diagnosis accuracy under unbalanced sample conditions, a rolling bearing fault diagnosis method based on 2D 
grayscale images and Wasserstein Generative Adversarial Networks (WGAN) is proposed. The method consists of 
three main steps. First, the acquired bearing vibration signals are transformed into 2D grayscale images. Second, 
the WGAN generation model is used to generate more fault samples. Finally, both the original samples and the 
generated samples are used to train the Convolutional Neural Networks classification model. The validity and 
effectiveness of the proposed method are evaluated and compared to other bearing fault diagnosis approaches 
using the Case Western Reserve University Bearing Data Center dataset. The experimental results demonstrate the 
superior quality of the generated samples and the improved fault identification accuracy achieved by the proposed 
method.
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1. INTRODUCTION
As the modern industry continues to advance, rotating machinery is being increasingly utilized in practical 
engineering applications, with a focus on enhanced integration and intelligence. Rolling bearings, vital 
transmission components in rotating machinery, are susceptible to failure due to long-term operation in 
harsh conditions such as high-speed operation and overload. These failures can lead to abnormal machinery 
operations and substantial economic losses. Therefore, accurate and efficient fault diagnosis of rolling 
bearings holds immense practical importance.

Traditional methods in rolling bearing fault diagnosis primarily emphasize extracting meaningful features 
from vibration signals. These features are subsequently analyzed using signal processing techniques and 
empirical knowledge. In recent years, the application of deep learning in intelligent fault diagnosis has 
gained significant attention. This approach leverages the robust feature learning capability and end-to-end 
diagnostic characteristics of deep learning, making it a prominent research area in artificial intelligence[1]. 
Xing et al. proposed a locally connected restricted Boltzmann machine capable of achieving bearing fault 
diagnosis by obtaining features directly from the original signal based on the conventional RBM[2]. Jia et al. 
implemented bearing fault feature mining and intelligent diagnosis from frequency domain data using a 
self-encoder network with a deep architecture[3]. Shao et al. proposed a convolutional Deep Belief Network 
(DBN) and used the exponential moving average technique to improve the performance of the diagnostic 
model[4]. Although these methods improve the accuracy of rolling bearing fault diagnosis, all the above 
methods need to provide the same amount of fault data as normal data samples. However, in actual 
industrial production, it is difficult to collect sufficient fault data to train a deep-learning fault diagnosis 
model to achieve high accuracy. Therefore, a challenge that merits investigation is how to train a rolling 
bearing defect diagnosis model with a small number of fault samples.

At present, experts and scholars have mainly researched the sample imbalance problem from two aspects: 
data and algorithms. The former aims to expand the number of minority class samples by sample 
resampling or data generation, while the latter hopes to increase the sensitivity and penalty of the model to 
the minority class to reduce the diagnosis error or to use integrated learning methods to train a classifier 
with better performance. On the data side, Chawla et al. introduced the synthetic minority class 
oversampling technique (SMOTE) to address the class imbalance in the training set[5]. This technique 
involves the random generation of virtual samples. On the algorithmic side, current research focuses on 
developing new algorithms with data features or improving the structure of existing algorithms. Jia et al. 
proposed a deep normalized convolutional neural network (CNN) to categorize unbalanced fault data in a 
way that maximizes the activation of neurons[6]. Sun et al. added a cost parameter to the AdaBoost 
framework to adjust the weights of a few samples[7]. Sampling techniques are frequently employed in fault 
diagnosis to enhance data. However, these methods primarily improve the data at a superficial level, 
generating new signals through linear interpolation without exploring the underlying features and 
distribution patterns in depth. Furthermore, these methods may produce incorrect or unnecessary samples 
and fail to expand the diversity of the dataset. With the rapid development of intelligent fault diagnosis 
technology, the Transfer Learning and Generative Adversarial Network (GAN) have gained significant 
attention as a research focus in fault diagnosis.

Data augmentation can be accomplished by employing transfer learning-based methods that leverage other 
relevant datasets to reweight data samples[8-12]. However, the performance of transfer learning is related to 
the similarity of the data distributions in the source and target domains. If there is a large deviation between 
the source and target domains, this may lead to negative migration in the target diagnostic task, resulting in 
poor diagnostic performance. A GAN is a data generation model proposed by Goodfellow et al., which can 
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generate data with a similar distribution to the original data using random noise[13]. The generated data can 
be added to the fault dataset with an insufficient number of samples, thus changing the imbalance in the 
training dataset.

Wang et al. proposed a hybrid approach for gearbox fault diagnosis, combining GAN and Stacked 
Denoising Autoencoders (SDAE)[14]. GANs were employed to augment the minority samples, while SDAEs 
served as classifiers for diagnosing the final fault type. Lee et al. employed Empirical Mode Decomposition 
to obtain energy spectrum data from the minority class samples[15]. They then used GANs to generate 
augmented energy spectrum data, enabling fault diagnosis in the presence of imbalanced sample conditions. 
Zhou et al. achieved fault diagnosis under unbalanced sample conditions by generating fault features 
extracted by Autoencoders from a few fault samples instead of the fault data themselves by GANs[16]. 
Current research has made significant advancements in addressing imbalanced fault diagnosis issues. 
However, the aforementioned papers overlook the difficulties posed by the adversarial mechanism of GANs 
in reaching the Nash equilibrium state for generating and discriminating networks. Furthermore, the 
existing GAN-based models struggle to maintain high-performance data generation across all fault types, as 
the deep features in the original vibration signals have limited learning capability. This limitation 
compromises the accuracy and robustness of fault detection.

To better solve the above problems, this paper proposes a rolling bearing fault diagnosis method based on 
2D grayscale images and WGAN. By converting time-domain signals into 2D grayscale images, the noise in 
the signals is transformed into non-relevant factors such as image brightness and grayscale. This effectively 
reduces the impact of signal noise on the final image classification results. Due to Deep Convolution 
Generative Adversarial Network (DCGAN) with a certain depth of two-dimensional convolutional layer, it 
can extract image features and generate images well, while WGAN introduces Wasserstein distance to make 
the model more stable during training and avoid the gradient disappearance and pattern collapse problems 
that occur in GANs[17]. Table 1 compares the advantages and disadvantages of GAN, DCGAN, and WGAN.

Therefore, by combining the advantages of DCGAN and WGAN, the utilization of a two-dimensional deep 
convolutional layer in WGAN can generate samples with higher quality and richer diversity. Our main 
contributions are as follows:

(1) To address the training instability in DCGAN and the limited feature extraction capability of WGAN for 
images, a WGAN with deep two-dimensional convolutional layers is designed by combining the advantages 
of DCGAN and WGAN.

(2) To generate data that closely resemble the fault data distribution, a data generation approach utilizing 
2D grayscale images and WGAN is developed.

The paper is structured as follows: Section 2 provides an overview of the theoretical background. Section 3 
describes the flow of the proposed method. Section 4 verifies the effectiveness of the proposed method 
through experiments. Section 5 concludes the whole paper.

2. THEORETICAL BACKGROUND
2.1 Generative adversarial network
The GAN is a type of unsupervised generative model that comprises two components: a Generator (G) and 
a Discriminator (D). The basic structure of GAN is illustrated in Figure 1. The generator produces pseudo-
samples by utilizing random vectors. The generated samples, along with real samples, are then inputted to 
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Table 1. Comparison of GAN, DCGAN, and WGAN

Methods Advantages Disadvantages

GAN High quality of generation, no need for prior knowledge Diversity training instability, gradient vanishing, and pattern 
collapse

DCGAN Powerful image generation, structural stability Training complexity, high computational costs

WGAN Addresses gradient vanishing and pattern collapse, stable 
training

Training complexity, hyperparameter sensitivity

Figure 1. The structure of GAN.

the discriminator. The task of the discriminator is to distinguish between fake and real samples.

In the process of model optimization, the discriminator and generator are trained alternately against each 
other. The generator continuously improves the generation ability of the network so that the generated 
samples are close to the real samples, while the discriminator continuously improves the discriminative 
ability of the network to identify the fake samples and the real samples as much as possible. Eventually, the 
discriminator and the generator reach an equilibrium state, making it difficult for the discriminator to 
determine the truth of the data. The objective function of GAN can be represented by Equation (1).

where Pdata denotes the distribution of the real data. Pz denotes the distribution of the random variable z. 
D(x) denotes the probability that the real sample x is discriminated as the real sample. G(z) denotes the data 
generated by the generator. D(G(z)) denotes the probability that the generated sample G(z) is identified as a 
true sample by the discriminator. The training objective of the network is to minimize the generator loss 
and maximize the discriminator loss.

2.2 Wasserstein generative adversarial network
The original GAN uses JS distance to measure the similarity between two distributions, leading to problems 
such as gradient disappearance and pattern collapse during the training of the GAN. To solve this problem, 
Arjovsky et al. proposed the Wasserstein GAN (WGAN)[18]. The Wasserstein distance can better reflect the 
difference between two distributions and can be used to represent the minimum cost of convergence of the 
generated data distribution to the actual distribution, as shown in Equation (2).
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where (Preal, Pg) denotes the set of joint distributions of two distributions of Preal and Pg. (x, y)~γ denotes a 
generated sample y and a real sample x in the joint distribution γ. ||x - y|| denotes the generated sample y 
and the distance between the real sample x. E(x,y)~γ[||x - y||] denotes the expectation of the sample for the 

distance in the joint distribution γ.   denotes the lower bound on the expected value in all possible joint 
distributions γ.

From the above definition, it is clear that the greatest advantage of Wasserstein distance over JS distance is 
that Wasserstein distance can still describe the distance between Preal and Pg even if there is no intersection 
between the two distributions. Therefore, the combination of the Wasserstein distance metric and GAN can 
not only fundamentally solve the problems of gradient disappearance, training instability, unclear 
optimization objectives, and model collapse that exist in GAN but also visualize the training degree of the 
model through the Wasserstein distance. However, it is difficult to solve Equation (2) directly, so Equation 
(2) is transformed into its dual form using a pairwise theory, as shown in Equation (3).

The above equation represents the upper bound on  for all functions f satisfying 
the condition that the Lipschitz constant for function f satisfies ||fL ≤ 1||. It is possible to fit a series of 
functions f with a series of neural networks, but they must satisfy ||fL ≤ 1||. To satisfy the condition, it is 
necessary to train the neural network in such a way that the updated variation values of the parameters do 
not exceed the given values.

From Section 2.1, it can be seen that the discriminant network of the original GAN network is a binary 
classification problem. The discriminant network of the WGAN network is mainly used to fit the 
Wasserstein distance between the real samples and the generated samples, so the last layer of the sigmoid 
layer is removed based on the original GAN network. The discriminant network aims to maximize the 
Wasserstein distance between real and generated samples, while the generative network aims to minimize 
the Wasserstein distance. Therefore, the objective function of the discriminative network can be expressed 
as Equation (4).

The objective function of the generated network can be expressed as Equation (5)

From Equation (4) and Equation (5), the discriminator objective function responds to the distance between 
two distributions; therefore, the degree of training of the model can be observed by this function, and when 
the distance is smaller, the better trained the model is, and the more realistic the generated samples are.

3. THE PROPOSED METHOD
In this paper, a fault diagnosis method of rolling bearings based on 2D grayscale images and WGAN under 
unbalanced sample conditions is proposed. Figure 2 illustrates the overall framework of the proposed 
method. The method is divided into three main steps: Signal-to-image conversion, fault sample generation, 
and sample classification.
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Figure 2. The overall framework of the proposed method.

3.1 Signal-to-image conversion method
Data preprocessing methods play a crucial role in extracting relevant features from voluminous historical 
data. However, selecting appropriate features can be a time-consuming task that greatly influences the final 
outcomes. This paper uses a data preprocessing method that converts one-dimensional vibration signals 
into 2D grayscale images[19].

As shown in Figure 3, in this conversion method, the time-domain raw signal is arranged. To generate an 
image of size M*M, then a segment signal of length M2 is obtained randomly from the raw signal. The 
preprocessing method is defined as in Equation (6).

where L(i), i = 1, 2, …, M2 denotes the value of the time domain raw signal. P(j, k) (j = 1, 2, …, M, k = 1, 2, 
…, M) denotes the pixel intensity of the image. The round(∙) function normalizes the pixel value across the 
grayscale map, ranging from 0 to 255, which is exactly the pixel intensity of the grayscale map.

The advantages of this data processing method include the elimination of manual extraction of signal 
features, direct processing of the raw time-domain signal, no need for pre-set calculation parameters, and 
minimizing reliance on the experience of experts.
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Figure 3. Signal-to-image Conversion method.

3.2 WGAN generation model
Since the two-dimensional convolution calculation has a powerful feature learning ability for images, the
WGAN generation model with two-dimensional convolution layers is used to strengthen the learning
ability of deep features of the raw vibration signal and improve the quality of the generated data while
avoiding gradient disappearance and pattern collapse and increasing the diversity of the generated data. The
network structure of the WGAN generator is shown in Figure 4, which contains four transposed
convolutional layers; the network structure of the discriminator is shown in Figure 5, which contains four
convolutional layers.

3.3 CNN classification model
After the 1D vibrational signals are converted into grayscale images, the CNN classification model can be
trained to classify these images. The CNN classification model used in this paper contains two alternating
convolutional and pooling layers and two fully connected layers, and its network structure is shown in
Figure 6.

3.4 General procedures of the proposed method
The flow chart of the rolling bearing fault diagnosis method based on 2D grayscale images and WGAN is
shown in Figure 7, which includes six main steps in total.

Step 1: The vibration signal of the bearing components in the test bench is collected by using acceleration
sensors.

Step 2: Adopt the rolling window acquisition method to segment the vibration signal and, at the same time,
convert the vibration signals into grayscale images, and then divide the obtained grayscale images into the
training set and test set.
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Figure 4. The network structure of the generator.

Figure 5. The network structure of the discriminator.

Figure 6. The network structure of the CNN classification model.



Page 9 of He et al. Complex Eng Syst 2023;3:13 https://dx.doi.org/10.20517/ces.2023.20 15

Figure 7. Flowchart of the proposed method.

Step 3: Build the WGAN sample generation model, input a small number of fault samples from each 
training set into the WGAN model for training, and then save the model parameters after the training is 
completed.

Step 4: Use the trained WGAN generation model to expand the samples in each training set so that the 
number of samples in each training set is the same.

Step 5: Build the CNN classification model, input the expanded balanced training set into the CNN 
classification model for training, and save the model parameters after the training is completed.

Step 6: Input the test set into the trained CNN classification model for testing and get the classification 
results.

4. EXPERIMENTAL VERIFICATION
For these case studies, Python 3.8 is utilized as the programming language, and Pytorch 2.0 serves as the 
deep learning framework. The computer setup includes a Windows 64-bit operating system, a Core i7-
10700 CPU @ 2.90 GHz with 16 GB RAM, and an added GPU (NVIDIA Quadro P2200) with 5 GB memory 
to enhance the training speed.

4.1 Laboratory bearing dataset
The experimental data used in this paper is a rolling bearing dataset provided by the Case Western Reserve 
University (CWRU) Bearing Data Center. The CWRU rolling bearing dataset was acquired on a test stand 
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with a sampling frequency of 12 kHz, and the bearing type being monitored was SKF6025. There were three 
types of bearing failures to be tested: inner race fault (IF), outer race fault (OF), and roller fault (RF), and 
each had three damage sizes: 0.18 mm, 0.36 mm, and 0.54 mm so that a total of ten health conditions can be 
obtained.

Six Datasets, A, B, C, D, E, and F, were produced for this experiment, as shown in Table 2. Among these, 
Dataset A is a balanced dataset with 1,000 samples under each health condition. Datasets B, C, D, and E are 
randomly selected according to the imbalance ratio of 1:5, 1:10, 1:20, and 1:40 for the faulty samples in 
Dataset A. There are 200, 100, 50, and 25 samples under each health condition, respectively. Dataset F is the 
test dataset with 100 samples in each health condition.

4.2 Fault diagnosis results and analysis
The specific parameters of the method are listed as follows. The batch size is 32, the learning rate of the 
generator and discriminator is 0.00005, and the maximum number of iterations is 10,000. To prevent 
overfitting while training the model, the Dropout method is used. Dropout is a method that randomly 
removes neurons during the learning process. During training, neurons in the hidden layer are randomly 
selected and then deleted. The deleted neurons are no longer signaling.

4.2.1 Comparing generated samples and real samples
A random selection of three fault conditions is made for comparison. Figures 8 and 9 display the time 
domain and frequency spectrum of both real and generated samples. The two figures demonstrate that the 
generated samples have good diversity under different fault conditions while maintaining the key features of 
the raw signal. Therefore, the generated signals are similar to the real signals, which indicates that the data 
generated using the generative model based on grayscale images and WGAN can be expanded to the 
original dataset to solve the data imbalance phenomenon.

The cosine similarity is used to qualitatively evaluate the generated samples. The cosine similarity between 
the generated samples and the real samples in Figure 7 was calculated as 0.939, 0.945, and 0.907, 
respectively. The cosine value varies from -1 to 1, with greater values indicating greater similarity between 
the two signals.

4.2.2 Diagnosis results under different imbalance ratio datasets
Firstly, the imbalanced Datasets B, C, D, and E are fed into the CNN classification model for training, and 
then the diagnosis results are obtained on the test Dataset F. Secondly, the imbalanced Datasets B, C, D, and 
E are input to the WGAN generation model for sample expansion, and after the samples are balanced, they 
are input to the CNN classification model for training, and then the diagnosis results are obtained on the 
test Dataset F. The experiment results are shown in Table 3.

As can be seen from Table 3, the fault recognition accuracy gradually decreases with the gradual increase of 
the imbalance rate, from the initial 91.9% to 68.1%, which indicates that for the imbalanced dataset, the 
classifier cannot effectively learn the features of the data, leading to the decrease of the classification 
accuracy. However, after expanding a few classes in the unbalanced samples by the WGAN generation 
model, the recognition rates all increased, and the classification accuracy improved more obviously with the 
gradual increase of the unbalanced ratio, and the recognition accuracy improved from 68.1% to 89.5% even 
under the Dataset F with severe unbalance ratios.
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Table 2. Description of bearing datasets

Datasets The number of samples Fault type Fault diameter(mm) Label

A/B/C/D/E/F 1000/1000/1000/1000/1000/100 N 0 0

1000/200/100/50/25/100 IF 0.18 1

1000/200/100/50/25/100 IF 0.36 2

1000/200/100/50/25/100 IF 0.54 3

1000/200/100/50/25/100 OF 0.18 4

1000/200/100/50/25/100 OF 0.36 5

1000/200/100/50/25/100 OF 0.54 6

1000/200/100/50/25/100 RF 0.18 7

1000/200/100/50/25/100 RF 0.36 8

1000/200/100/50/25/100 RF 0.54 9

N: Normal; IF: inner race fault; OF: outer race fault; RF: roller fault.

Table 3. Recognition accuracy before and after sample expansion

Dataset B Dataset C Dataset D Dataset E

Before expansion 91.9% 84.4% 77.3% 68.1%

After expansion 98.9% 98.5% 94.2% 89.5%

Figure 8. The time-domain waveform comparison between generated samples (right) and real samples (left).

Taking Dataset C as an example, the fault recognition rate for each category is calculated, and the confusion 
matrix is drawn. The comparison of the confusion matrix before and after sample expansion is shown in 
Figures 10 and 11. From Figure 10, it is evident that under the unbalanced sample condition, the 
recognition rate of some categories is very low. From Figure 11, it can be seen that the recognition rate of 
each category is improved after sample expansion.

4.2.3 Performance under noise environment
In this section, to verify the noise immunity of the algorithm proposed in this paper. Gaussian white noise is 
added to the original signal to get the composite signal with different signal-to-noise ratios (SNR). These 
composite signals are then used to train the model to obtain diagnostic accuracy in a noisy environment. 
Taking Dataset C as an example, the results of the proposed model diagnosing noisy signals are shown in 
Table 4.
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Table 4. Classification results at different SNRs

SNR (dB) -6 -4 -2 0 2 4

Accuracy 98.22% 97.78% 98.32% 98.4% 98.12% 98.46%

Table 5. Diagnosis accuracy of different approaches

Approach Dataset B Dataset C Dataset D Dataset E

Time-domain signals and GAN 96.6% 95.6% 94.0% 89.0%

Time-domain signals and WGAN 98.6% 96.3% 94.2% 90.0%

Grayscale images and DCGAN 97.1% 94.1% 83.8% 75.6%

Grayscale images and WGAN 98.9% 98.5% 94.2% 89.5%

Bold represents the highest recognition accuracy under the same dataset.

Figure 9. The frequency spectrum comparison between generated samples (red) and real samples (blue).

Table 4 demonstrates the fault classification accuracies for SNRs ranging from -6 dB to 4 dB. When the SNR 
is equal to -4 dB, the accuracy is the lowest at 97.78%, but it is also very close to the accuracy measured 
when no noise is added. (The accuracy without adding noise is 98.5%.) It can be seen that the model 
proposed in this paper has a good noise immunity capability.

4.2.4 Comparison with other methods
To further demonstrate the effectiveness of the proposed method in dealing with the sample imbalance 
problem, the proposed method is compared with the approach based on time-domain signals and GAN, the 
approach based on time-domain signals and WGAN, the approach based on grayscale images and GAN to 
evaluate its fault diagnosis capability. To minimize potential random errors, ten tests were performed for 
each approach. Table 5 shows the fault identification accuracy of different approaches with sample 
imbalance datasets.
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Figure 10. Confusion matrix before sample expansion.

Figure 11. Confusion matrix after sample expansion.
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From Table 5, it can be concluded that the fault identification accuracy of the proposed approach in this 
paper is higher than other approaches on both Datasets B and C. On Dataset D, the proposed approach in 
this paper performs as well as the approach based on time-domain signals and WGAN but is better than the 
other two approaches. Compared with the approach based on time-domain signals and WGAN, the 
recognition rate of the proposed method in this paper is lower on Dataset E. In conclusion, the diagnostic 
ability of the proposed approach in this paper is superior to other approaches.

5. CONCLUSIONS
In this paper, a new data generation method based on 2D grayscale images and WGAN is designed. The 
proposed method can address the issue of low fault recognition rates under sample imbalance conditions. 
Firstly, the raw vibration signals are converted into 2D grayscale images. Secondly, the fully connected 
layers in the original GAN network are replaced by two-dimensional convolutional layers, which enhance 
the deep feature learning capability of the raw vibration signals. Finally, the Wasserstein distance is utilized 
in the loss function of GAN to address issues such as gradient disappearance and pattern collapse. This 
inclusion enhances the quality and diversity of the generated samples. The experimental results show that 
the bearing fault diagnosis model based on 2D grayscale images and WGAN can solve the problem of a low 
fault recognition rate under the sample imbalance condition. Moreover, compared with other methods, the 
samples generated using the proposed method have higher quality and a higher fault identification rate.

However, the diagnosis results using the generated data from the proposed method still differ from the 
results using the original data. This suggests that there is still room for improvement in the data generation 
algorithms mentioned in this paper. Additionally, the proposed method is not suitable for machines in 
variable operating conditions. In the future, the bearing fault diagnosis method under variable working 
conditions needs further research.

DECLARATIONS
Authors’ contributions
Writing-Original Draft and Conceptualization: He J
Technical Support: Lv Z
Validation and Supervision: Chen X

Availability of data and materials
Not applicable.

Financial support and sponsorship
None.

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
© The Author(s) 2023.



Page 15 of He et al. Complex Eng Syst 2023;3:13 https://dx.doi.org/10.20517/ces.2023.20 15

REFERENCES
Diez-olivan A, Del Ser J, Galar D, Sierra B. Data fusion and machine learning for industrial prognosis: trends and perspectives towards 
industry 4.0. Inf Fusion 2019;50:92-111.  DOI

1.     

Xing S, Lei Y, Jia F, Lin J. Intelligent fault diagnosis of rotating machinery using locally connected restricted boltzmann machine in 
big data era. In: 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM); 2017. pp. 1930-
34.  DOI

2.     

Jia F, Lei Y, Lin J, Zhou X, Lu N. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of
rotating machinery with massive data. Mech Syst Signal Process 2016;72-3:303-15.  DOI

3.     

Shao H, Jiang H, Zhang H, Duan W, Liang T, Wu S. Rolling bearing fault feature learning using improved convolutional deep belief 
network with compressed sensing. Mech Syst Signal Process 2018;100:743-65.  DOI

4.     

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 
2002;16:321-57.  DOI

5.     

Jia F, Lei Y, Lu N, Xing S. Deep normalized convolutional neural network for imbalanced fault classification of machinery and its 
understanding via visualization. Mech Syst Signal Process 2018;110:349-67.  DOI

6.     

Sun Y, Kamel MS, Wong AK, Wang Y. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit 2007;40:3358-
78.  DOI

7.     

Deng Y, Shichang D, Shiyao J, Chen Z, Zhiyuan X. Prognostic study of ball screws by ensemble data-driven particle filters. J Manuf 
Syst 2020;56:359-72.  DOI

8.     

Deng Y, Huang D, Du S, Li G, Zhao C, Lv J. A double-layer attention based adversarial network for partial transfer learning in 
machinery fault diagnosis. Comput Ind 2021;127:103399.  DOI

9.     

Jia S, Deng Y, Lv J, Du S, Xie Z. Joint distribution adaptation with diverse feature aggregation: a new transfer learning framework for 
bearing diagnosis across different machines. Measurement 2022;187:110332.  DOI

10.     

Deng Y, Du S, Wang D, Shao Y, Huang D. A calibration-based hybrid transfer learning framework for RUL prediction of rolling 
bearing across different machines. IEEE Trans Instrum Meas 2023;72:1-15.  DOI

11.     

Deng Y, Lv J, Huang D, Du S. Combining the theoretical bound and deep adversarial network for machinery open-set diagnosis 
transfer. Neurocomputing 2023;548:126391.  DOI

12.     

Goodfellow I, Pouget-abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM 2020;63:139-44.  DOI13.     
Wang Z, Wang J, Wang Y. An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its 
application to planetary gearbox fault pattern recognition. Neurocomputing 2018;310:213-22.  DOI

14.     

Lee YO, Jo J, Hwang J. Application of deep neural network and generative adversarial network to industrial maintenance: a case study 
of induction motor fault detection. In: 2017 IEEE international conference on big data (big data). 2017. pp. 3248-53.  DOI

15.     

Zhou F, Yang S, Fujita H, Chen D, Wen C. Deep learning fault diagnosis method based on global optimization GAN for unbalanced 
data. Knowl Based Syst 2020;187:104837.  DOI

16.     

Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. 2016. 
Available from: https://arxiv.org/abs/1511.06434 [Last accessed on 14 August 2023].

17.     

Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. 2017. pp.214-23. Available from: https://arxiv.org/
abs/1701.07875 [Last accessed on 14 August 2023].

18.     

Wen L, Li X, Gao L, Zhang Y. A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans Ind 
Electron 2018;65:5990-8.  DOI

19.     

https://dx.doi.org/10.1016/j.inffus.2018.10.005
https://dx.doi.org/10.1109/ieem.2017.8290228
https://dx.doi.org/10.1016/j.ymssp.2015.10.025
https://dx.doi.org/10.1016/j.ymssp.2017.08.002
https://dx.doi.org/10.1613/jair.953
https://dx.doi.org/10.1016/j.ymssp.2018.03.025
https://dx.doi.org/10.1016/j.patcog.2007.04.009
https://dx.doi.org/10.1016/j.jmsy.2020.06.009
https://dx.doi.org/10.1016/j.compind.2021.103399
https://dx.doi.org/10.1016/j.measurement.2021.110332
https://dx.doi.org/10.1109/tim.2023.3260283
https://dx.doi.org/10.1016/j.neucom.2023.126391
https://dx.doi.org/10.1145/3422622
https://dx.doi.org/10.1016/j.neucom.2018.05.024
https://dx.doi.org/10.1109/bigdata.2017.8258307
https://dx.doi.org/10.1016/j.knosys.2019.07.008
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
https://dx.doi.org/10.1109/tie.2017.2774777

