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Abstract

The salvage of mangled lower-extremities after severe injury remains a daunting operative dilemma, but one that 
continues to evolve with advances in microsurgical and orthopedic techniques. Specifically, trends in clinical practice 
including the decision to salvage and timing of soft-tissue coverage are changing in concordance with improvements 
in wound care, flap selection for soft-tissue provision, and preoperative imaging. Due to these improvements, more 
complex wounds are increasingly eligible for reconstruction. It remains unclear, however, whether success in limb 
salvage confers improved functional patient outcomes. We present a review of the literature tracing recent advances 
in the salvage of mangled extremities following traumatic injury, with a focus on practice trends regarding timing of 
reconstruction, operative approaches, and preoperative imaging.
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INTRODUCTION
Complex high-energy trauma to the lower extremity often entails significant and devastating morbidity for 
patients. Lower extremity injury accounts for greater than 250,000 hospital admissions each year in the US; 
more than half involve open long-bone fractures, crush, or major soft-tissue injury[1]. Return of function 
can be an arduous process requiring multidisciplinary care and ongoing therapy for months to years. 
Plastic surgeons involved in the care of these patients should be well versed in the unique demands required 



by reconstruction of these complex anatomic and functional deficits. Clinical decision-making should be 
guided by our developing understanding of tissue physiology, orthopedic reconstructive principles, and 
developing technology used to guide preoperative planning and intraoperative decision making. When 
effective, limb reconstruction can confer a close approximation of pre-morbid functionality. However, 
the calculus of when, how, and on whom to intervene remains incompletely defined and often plagued 
by equivocation. Fortunately, the tools used to assess the severity and distribution of injury, including 
expanding use of novel imaging techniques, as well as refinement of reconstructive approaches continue 
to develop. This review focuses on the advances made regarding approaches in surgical management and 
perioperative assessment of complex lower-extremity injuries. Advances in orthopedic fixation, as well 
as advances in the provision of soft-tissue reconstruction, guided by long-standing principles of surgical 
management continue to drive the functional, aesthetic, and patient-centered outcomes conferred by limb-
salvage. 

INITIAL ASSESSMENT AND DECISION TO PROCEED WITH LIMB SALVAGE
The inclination to salvage a mangled extremity, by any means necessary, is an understandable ref lex 
for patients and physicians alike. This inclination, however, belies the utility of amputation in restoring 
functionality of patients. Data from the landmark, Lower Extremity Assessment Project (LEAP) group, 
published in 2002, provide the most thorough analysis to date of lower extremity trauma treatment and 
outcomes, including demographic data of the civilian population who suffer these injuries as well as 
their ultimate functional status and variables surrounding their recovery[2]. The study found comparable 
functional outcomes among individuals who had undergone reconstruction versus those who had 
undergone amputation. Roughly one half of all patients followed for the duration of the study exhibited 
significant disability as objectively assessed by the Sickness Impact Profile score. The sobering conclusion 
gleaned from this multi-center study was that reconstruction conferred no functional benefit when 
compared with amputation, and outcomes from both groups were poor; little more than 30% of patients 
exhibited return to functionality compared with uninjured age-matched counterparts, and fewer than 60% 
of patients had returned to work at seven years post-injury. These conclusions, however, should be weighed 
critically, as subsequent analyses highlight the impact of socioeconomic factors, as opposed to treatment 
course, as predictors of ultimate outcomes[3,4]. It should be emphasized that the LEAP trial focused on 
civilian patients. Much of the literature regarding advances in lower extremity reconstruction following 
high-energy trauma has been gleaned from the arena of combat. As such, treatment guidelines taken from 
one patient population, while informing of the other, cannot be translated without qualification, given 
distinct mechanisms of injury, concurrent trauma/injury, treatment setting, etc.[5]. Despite the multitude of 
wound assessment and grading scales (discussed in more detail below), there remain no hard and fast rules 
regarding when a severely damaged limb should be amputated [Figure 1]. Despite previous orthodoxy, 
damage to posterior tibial nerve, and an insensate foot are no longer absolute contra-indications for limb 
salvage[6,7]. Instead, reconstruction should be evaluated and approached on a case by case basis and must be 
in line with the ultimate goals of the patient.

ASSESSMENT OF INJURY AND PROGNOSIS OF RECONSTRUCTION
Multiple validated grading scales exist for the purposes of assessing extremities following traumatic injury 
and attempt to guide treatment accordingly. Unfortunately, all have demonstrated limited utility when 
applied in the clinical setting, and there remains no gold standard of a translatable universally applicable 
injury assessment tool. Nevertheless, the injury assessment scales, including the Mangled Extremity 
Severity Score[7], Predictive Salvage Index[8], Limb Salvage Index[9], and the Nerve Injury, Ischemia, Soft 
Tissue Injury, Skeletal Injury, Shock, and Age of the Patient[10] score, provide an objective and structured 
assessment of complex injuries. Each purportedly identifies unique variables predictive of ultimate 
amputation, including level of arterial injury, timing from injury to index operation, volume of soft tissue 
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lost, etc., which are ostensibly essential in the characterization of the injury. However, using a dataset of 
over 500 patients with lower extremity trauma, Bosse et al.[11] prospectively analyzed seven commonly used 
injury severity scales and found these scales to have limited utility in predicting amputation versus salvage. 
Each of these scales demonstrated adequate sensitivity, but limited specificity, in which low scores were 
concordant with salvage potential, but increasing values provided no indication regarding the likelihood of 
amputation in injuries thought to be more severe. This work serves to cement the salience of individualized 
assessment and care tailored to the unique circumstances of the patient. 

The Gustilo-Anderson classification of open fractures remains a relevant and commonly used assessment 
tool, to grade open fractures in the setting of lower extremity injury. The classification system, and 
subsequent modification subdivide severity of injury into three categories, each with ascending level 
with increasing involvement of soft-tissue, and ultimate vascular injury[12,13]. This classification system, 
however, was devised to assess risk of subsequent infection and does not aim to predict likelihood of 
amputation. Nonetheless, the Gustilo classification is an effective scale with demonstrated intra-observer 
reproducibility[14]. 

The determinants of a patient’s prognosis following reconstruction are multiple, varied, and not solely 
dependent on the wound itself, timing of reconstructions, or approach to treatment; as observed in 
the LEAP trial, most independent risk factors for poor functional outcomes and amputation include 
socioeconomic circumstance of the patient’s and not the treatment plan initially employed[3]. Again, the 
decision to proceed with reconstruction versus amputation is dependent on the gestalt of the patient 
and injury. Patients must not only overcome modifiable risk factors, and pathophysiologic sequelae of 
systemic disease; public perception and stigma regarding amputation continue to complicate the personal 
decision of whether to proceed with amputation, as well as the support network of the patient during their 
recovery[15].
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Figure 1. A: adult male struck by motor vehicle. Resulting degloving injuries included exposure of right femoral head, visible peroneal 
nerve, exposure of right metatarsals, and exposure of left proximal tibia; B: immediate reconstruction with lateral gastrocnemius pedicled 
flap with STSG to proximal right leg, free rectus abdominus flap with STSG to dorsal right foot, and free anterolateral thigh flap to proximal 
left leg. Dorsal left foot covered with integra, and subsequently skin grafted; C: patient six weeks after initial reconstruction. STSG: split 
thickness skin graft



TIMING OF RECONSTRUCTION
Historically, surgeons have advocated for prompt soft-tissue coverage of lower-extremity defects following 
trauma[16,17]. In his landmark study in 1986, Godina demonstrated improved rates of flap loss, infection, 
and length of hospital stay with soft-tissue coverage provided within the first 72-h of injury[16]. Three days 
remains the benchmark goal for acute reconstruction. Indeed, despite a trend towards a more permissive 
timeline of soft-tissue coverage, recent analyses corroborate improved free-flap failure rates and reduced 
rates of infection with immediate reconstruction within the 72-h window, although these statistical 
analyses remain dependent on Godina’s index cohort of over 500 patients, to date the most prolific of 
studies analyzed[18]. Obviously, surgeons strive for prompt bony stabilization and soft-tissue coverage as 
soon as logistically possible; however, clinical reality and the presence of concomitant injury to vital organ 
systems often preclude definitive reconstruction in the acute setting. Facilitated by advances in wound care, 
this critical window has since been liberalized in the setting of recent studies demonstrating noninferior 
outcomes with reconstruction in the subacute and chronic phases of injury following serial debridement 
without compromise of flap survival rates or patient function[17,19-25]. This trend has accelerated over the 
previous decade: the mean timing of definitive reconstruction has progressed from 6 to 12.5 days in the 
decade from 2002 to 2011[26]. This trend also reflects the prioritization of adequate wound debridement to 
ensure adequate preparation of the recipient wound bed. As demonstrated by Karanas et al.[20], definitive 
soft-tissue coverage should allow for serial debridement to minimize the risk of catastrophic deep-space, 
or bony infection, even if this process delays reconstruction outside of the acute window. Data from 
the armed combat literature also underlie the importance of ensuring a clean and adequately debrided 
wound bed[27]. Pollak et al.[27] found that time to initial operative debridement was not an independent risk 
factor for the risk of infection following high-energy low-extremity trauma; however, prompt admission 
to definitive trauma treatment center was protective, suggesting prompt global patient management and 
wound care is essential to favorable reconstructive outcomes. 

Perhaps more than any other therapeutic advancement, the widespread use of negative pressure wound 
therapy (NPWT) has proven essential for the temporization of definitive reconstruction[22,24,28]. Multiple 
hypotheses exist as to why the physiologic advantages of NPWT have facilitated the optimization of wound 
care including providing ideal wound healing environment via minimization of edema, reducing surface 
area of the wound, and providing reduced capillary afterload translating to increased perfusion of nascent 
granulation tissue[29,30]. Indeed, the physiological benefits attributed to NPWT are felt to oppose the effects 
of tissue fibrosis, inflammation, and edema thought to potentially threaten microvascular anastomoses 
driving the emphasis of early reconstruction. The use of NPWT has extended the critical time to definitive 
soft-tissue coverage to as far out as weeks to months from the initial injury, with numerous studies 
documenting comparable rates of flap loss, infection, and hospital stay following soft tissue coverage. In 
fact, certain cohorts report improved outcomes approaching significance of chronically reconstructed 
wounds compared with more acute reconstruction, lending further credence to temporization of 
reconstruction outside of the acute window[24]. As initially observed by Steiert et al.[22], increasingly 
permissive time to definitive coverage appears concordant with the increasing complexity of the wounds 
being reconstructed, which helps to better understand the deviation from the 72-h orthodoxy. To be clear, 
when feasible, recent data still corroborate improved outcomes with earlier reconstruction. The work of 
Liu et al.[23] demonstrated that, while delay to definitive reconstruction past seven days conferred increased 
risk for osteomyelitis and potential f lap complications, NPWT was protective against reoperation and 
venous thrombosis in those populations unable to undergo acute reconstruction. Taken together, prompt 
reconstruction should remain the operative goal, but timing should involve nuanced considerations of the 
patient and injury, as excellent outcomes remain feasible long after the previously espoused 72-h window[31]. 
Unfortunately, operative considerations are not the only determinants of timing to reconstruction; the 
work of Shammas et al.[32] identified a number of sociodemographic risk factors, including older age, 
nonwhite race, and geographic region for delays to soft tissue coverage. Acute reconstruction should not 
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be performed at the expense of patient and wound optimization, as definitive soft-tissue coverage in the 
subacute, and chronic intervals have been demonstrated to be safe and effective. 

Soft tissue coverage is similarly dependent on the integrity of bony fixation to provide adequate tension 
across joints for preservation of locomotion, and to prevent collapse of soft-tissues. Fortunately, the science 
and practice of orthopedic reduction and fixation has developed in parallel with microsurgical techniques. 
Amongst the most challenging operative dilemmas from orthopedic injury is the management of resulting 
segmental defects. Multiple surgical strategies exist and remain used in clinical practice to restore 
bony length and adequate union following traumatic bone loss or defects resulting from debridement. 
Techniques including distraction osteogenesis (Ilizarov Technique), autologous bone grafting, and 
mesh implants have demonstrated adequate results regarding ultimate restoration of bone length and 
stability[33-35]. More recently, the Masquelet technique has emerged as a novel and reliable strategy for the 
purposes of restoration of bone defects[36]. Initially described in results published in 2000, the strategy 
utilizes staged operations to induce a periosteum surrogate, “Inflammatory Membrane”, around a cement 
spacer, which is subsequently replaced with autologous bone graft[37,38]. Amongst multiple retrospective 
studies, clinical success rates have been reported in up to 89%-93% of cases, despite bony defects greater 
than 10 cm[39,40]. Despite the paucity of long-term functional outcomes, the technique has gained clinical 
traction, and has been used increasingly in concert with advances in provision of soft-tissue coverage for 
the purposes of lower extremity reconstruction. 

OPERATIVE CONSIDERATIONS OF RECONSTRUCTION 
Once the degree of injury has been appropriately assessed, the decision to proceed with reconstruction 
has been made, and the stability of the wound bed has been assured, considerations regarding the 
appropriate tissue to be transplanted must be made. General principles regarding the distribution of 
injury and corresponding donor site of soft-tissue coverage remain applicable and continue to guide 
surgical management. The tenets of the reconstructive ladder remain applicable when reconstructing 
lower extremity injuries. Often, despite significant fractures, local muscle flap coverage and skin grafting 
provide excellent results. However, given unique challenges posed at certain areas, namely around the 
knee and proximal tibia, as well as the distal leg, ankle, and foot, surgeons are increasingly utilizing more 
complex solutions, as espoused by the “reconstructive elevator” paradigm. As conceived and popularized 
by Gottlieb and Krieger[41], the reconstructive elevator argues for skipping over simpler solutions in favor 
of a reconstructive approach that more accurately approximates the functional and anatomic deficits of the 
injury. For instance, given the paucity of tissue, and resulting exposure of bony and articulating surfaces, 
free-flap reconstruction has become the default surgical option for injuries of the distal lower extremity. 

While certain micro-surgical principles have remained unchallenged, recent data have led to the 
liberalization of other reconstructive dogmas held by many practicing surgeons. The requirement of 
a clean wound bed for recipient tissue remains an immutable tenet of reconstruction. The translation 
of autologous tissue should only occur in a clean wound-bed free of necrotic or infected tissue, and 
preferably over appropriately reduced bony framework. In contrast, discussion regarding the selection 
of autologous tissue to be harvested as well as the selection of recipient vasculature continues to evolve. 
Recently, a trend towards the use of perforator fasciocutaneous f laps has proportionately displaced the 
use of bulkier myofasciocutaneous free-f laps[42]. Improved understanding of perfasomes, and increasing 
facility with perforator dissection have resulted in the wide-spread adoption of using fasciocutaneous 
flaps for extremity reconstruction[42,43]. Despite concerns that the use of fasciocutaneous flaps preclude the 
superior blood supply conferred by transferred muscle, these flaps are no more prone to ischemia and flap 
failure. Similarly, fasciocutaneous flaps are resistant to shear and breakdown in weight bearing areas when 
compared with muscle containing flaps[44]. That being said, multiple “work-horse” flaps provide appropriate 
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tissue qualities for corresponding defects: the latissimus dorsi flap provides significant tissue bulk for large 
tissue deficits, the neurotized gracilis flap provides potential for restoration of active motion, etc. In a span 
of 30 years, microsurgical flaps have become common practice in lower extremity reconstruction. There 
remains a disproportionately high rate of complications of free-f laps in microsurgical reconstruction, 
with a 14% rate of major complications cited in a retrospective review of over 400 injuries. Independent 
risk factors for flap compromise include prolonged operative time, preoperative anemia, steroid use, and 
diabetes[45].

Other considerations, including selection of recipient vessels, remain of paramount importance. Clinical 
orthodoxy favors selection of vessels proximal to the site of injury, given progressive decrease in size of 
available source vessels more distal in the leg. However, this orthodoxy has recently been challenged by 
select institutions, as selection of recipient vessels distal to the site of injury was recently demonstrated to 
be non-inferior in a retrospective review of 312 free-tissue transfers for soft-tissue reconstructions of open 
tibial fractures[46]. This remains a point of contention, but feasibility provides an alternative in the event of 
complication precluding more proximal access. 

A common paradigm in the reconstruction of lower extremity remains the anatomic subdivision of the leg 
into thirds: proximal, middle, and distal. The distal third provides unique reconstructive challenges due 
to paucity of local tissue available for local tissue rearrangement, and superficial distribution of structures 
requiring coverage. As such, the distal third of the leg manifests the opportunity to put the principles of the 
“reconstructive elevator”, into practice, yet remains plagued by higher rates of complications[47]. Free-flaps 
remain the preferred option for reconstruction of substantial deficits in this region. However, comparison 
of free-flap coverage demonstrates increase rates of free-flap loss, and complications at the distal third of 
lower extremity injuries, when compared to more proximal leg injuries[47,48]. The use of propeller flaps has 
arisen as a viable option for soft-tissue coverage when free-tissue transfer is contraindicated, or simply 
not feasible[49] [Figure 2]. Propeller flaps provide substantial soft-tissue for coverage of essential structures 
via improved understanding of perfosome distribution without need for microanastomosis in precarious 
anatomic regions. Historically, perforator flaps had been thought to require thick cuffs of subcutaneous 
tissue to protect the pedicle from kinking, thereby restricting the arc of rotation, and often resulted in 
dog-ears at the axis of rotation. As understanding of perfasomes has advanced, including the course and 
distribution of these short branching vessels, local pedicled flaps have been used with increasing regularity 
for lower extremity reconstruction[43,50]. Particularly in the distal third of the lower extremity, multiple local 
flaps including the reverse sural fasciocutaneous flaps can be used with regularity to reconstruct complex 
defects, and can be staged as delayed flaps without any question of tissue viability[51,52]. More proximally, 
muscle flaps, such as the anterior tibial and soleus flaps, can be translated to cover bony defects following 
trauma, further establishing the role of local pedicled f laps in soft-tissue reconstruction of the lower 
extremity. 

ADVANCES REGARDING IMAGING TECHNOLOGY TO ASSESS LOWER EXTREMITY INJURY
Imaging in the setting of complex injury can be used to not only evaluate the viability of limb salvage, 
but also to orient eventual reconstruction via the identification, localization, and qualitative assessment of 
potential recipient vessels for purposes of microvascular reconstruction. Hard signs of ischemia, including 
hemorrhage, expanding hematoma, and absent distal pulses, are sufficient to prompt operative intervention 
to ensure continued perfusion of the distal extremity; in the absence of obvious signs, however, modalities 
used for assessment of vascular injury remain variable and institution dependent. 

The “gold standard” of evaluating vascular injury remains arteriography, but this modality is limited 
by persistent rates of iatrogenic injury, commonly cited at 1%-5%, as well as increased timing of 
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performance and cost to the hospital system[53,54]. Since its introduction in clinical practice in the early 
1990s, computed tomographic angiography (CTA) has become the de-facto diagnostic modality of choice 
to assess vascular injury in the setting of lower-extremity trauma[55]. Due to a more favorable side-effect 
profile, as well as imaging resolution comparable to that of angiography, CTA has begun to replace 
arteriography as the preferred diagnostic modality to evaluate vascular injury[56,57]. Despite the obvious 
advantage of predisposing patient’s to less ionizing radiation and the avoidance of complications such as 
pseudoaneurysm, vessel thrombosis, and vessel injury, the routine use of CTA has long been continuously 
debated but has gained routine acceptance in clinical practice[58]. While CT imaging may demonstrate 
vascular injury, and patency of residual vessels, this modality does little to evaluate f low in potential 
donor vessels to sustain microvascular reconstruction in the setting of collateral flow. Furthermore, the 
sensitivity of CTA is limited in the identification of vasospasm and local injury[59]. For these reasons, many 
institutions continue to rely on arteriography for preoperative imaging and planning. In individuals whose 
renal function preclude administration of iodinated dyes, carbon dioxide angiography remains a viable 
and underutilized imaging modality[60,61]. Compared with iodinated contrast, CO2 angiography decreases 
the incidence of acute kidney injury from 11.1% to 4.7%. As such, CO2 angiography may provide valuable 
diagnostic data in populations unable to receive large contrast loads secondary to compromised renal 
function or adverse reactions to iodinated contrast. 

When microvascular reconstruction is required, recipient vessel selection outside the zone of injury is 
of paramount importance, made more so by the limitations conferred by the associated injury. Some 
institutions argue for the continued utility of obtaining formal arteriography, but primarily in the setting 
of chronic lower extremity wounds, as these studies may demonstrate previously unrecognized vascular 
pathology and allow for prompt endovascular intervention facilitating ultimate reconstruction[62]. Others 
argue that any diagnostic imaging in the setting of trauma is superfluous, as thorough clinical examination 
and intraoperative adaptation are sufficient to conduct soft-tissue reconstruction[63]. 

Figure 2. A: adult male following degloving injury to left lower extremity; B: preoperative marking for posterior tibial artery perforator 
propeller flap; C: immediate postoperative result, medial view; D: immediate postoperative result, lateral view
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However, preoperative vessel imaging remains common practice in the traumatic setting. Similar to 
the evolution of imaging for the purposes of injury identification, vessel selection has evolved from the 
transition from angiography to CTA over the previous decade[64,65]. For the purposes of free-flap planning, 
Duymaz et al.[66] were able to demonstrate the utility of obtaining lower extremity CTAs in correlating 
arterial injury with eventual f lap loss, although no direct comparisons were made to preoperative 
angiography. As previously mentioned, routine use of CTA provides excellent assessment of lower-
extremity anatomy without the associated co-morbidities of formal angiography [Figure 3]. 

Development of ancillary imaging modalities to assess perforator vessel for preoperative planning 
continues to evolve. Recent work by Feng et al.[67] suggests the use of color doppler ultrasound demonstrates 
greater fidelity of identifying and localizing dominant perforators of lower extremity flap when compared 
to CTA in a head-to-head comparison. The use of Indocyanine green (ICG) has also emerged as an 
adjunctive imaging modality to assess the microvasculature of perforator and local tissue f laps in 
microsurgical reconstruction. ICG is a cyanine dye with near-infrared spectral absorbance that binds 
circulating plasma proteins. As such, ICG in concert with near infrared imaging has been used across 
multiple medical disciplines for the purposes of vascular and lymph perfusion imaging. In the field of 
plastic surgery, ICG has been used with increasing frequency for the purposes of local, perforator, and free-
flap perfusion distribution. Most published studies to date use ICG to assess viability of skin flaps of the 
trunk, head, and neck[68-70]. The technology was recently demonstrated, albeit in a limited series of 23 patients, 
to significantly improve complication rates of tissue necrosis and deep-space infection in patients with 
Gustilo Type IIIB when used as an adjunct to guide initial debridement[71]. While its use has yet to be 
routinely adopted, ICG has proven a reliable adjunct available to clinicians to assess tissue perfusion in the 
operating room. 

CONCLUSION
Advances in microsurgical techniques, the advent of negative pressure wound technology in temporizing 
wound care, and improvements in preoperative imaging have facilitated changing treatment practices in 
the reconstruction of traumatic lower extremity injuries over the previous two decades. Despite persistent 
challenges, as evidenced by high rates of postoperative infection, flap loss, and poor functional recovery, 

Figure 3. Computed tomographic angiography imaging of traumatized extremity with identification of potential recipient vessel prior to 
planned perforator flap for anterior tibial soft tissue 
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reconstruction has become increasingly available for injuries previously thought to be unsalvageable. The 
pre-existing dogma advocating for immediate soft-tissue reconstruction within a 72-h window has since 
been liberalized in the setting of improved wound-care, the widespread use of negative pressure wound 
therapy, and the advent of damage-control orthopedic surgery, allowing reconstruction of increasingly 
complex injuries in severely sick patients. The improved understanding of perfosomes and refinement 
of microsurgical technique have facilitated the paradigm of the reconstructive elevator to more closely 
approximate pre-morbid anatomy and function. The use of ancillary imaging including CTA, angiography, 
and doppler ultrasound has refined the identification and characterization of recipient vessels for free-
tissue transfers. As technological advances continue to augment preoperative assessment, routine wound 
care, and intraoperative planning, reconstruction will continue to more closely approximate pre-injury 
functionality, improving patient outcomes and satisfaction. 
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