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Abstract

Aim: There is increasing appreciation of the role of the renin-angiotensin system (RAS) in carcinogenesis with 
recent evidence showing expression of the RAS by cancer stem cells (CSCs) in different types of cancer. We have 
recently demonstrated the presence of three CSC subpopulations within metastatic melanoma (MM) to the brain: 
a Melan-A+ subpopulation and a Melan-A- subpopulation within the tumor that express OCT4, SALL4, SOX2 and 
NANOG; and a pSTAT3+ subpopulation localized to the CD34+ endothelium of microvessels within the tumor. In this 
study we investigated the expression and localization of components of the RAS in relation to these CSCs in MM 
to the brain. 

Methods: 3, 3-diaminobenzidine immunohistochemical (IHC) staining of components of the RAS: pro-renin receptor 
(PRR), angiotensin converting enzyme (ACE), angiotensin II receptor 1 (ATIIR1) and angiotensin II receptor 2 (ATIIR2) 
was performed on the same ten samples of MM to the brain included in our previous study. Immunofluorescence 
IHC staining of these components of the RAS was performed with embryonic stem cell markers OCT4 and NANOG, 
and endothelial marker CD34, on two of the samples of MM to the brain from the original cohort of ten patients. 
Western blotting (n = 5) and NanoString mRNA analysis (n = 4) were performed on samples of MM to the brain to  
confirm protein and mRNA expression of these components of the RAS, respectively. 



Results: DAB IHC staining showed the presence of PRR, ACE, ATIIR1 and ATIIR2 in all ten samples of MM to the 
brain. IF IHC staining showed that the CSC subpopulations in MM to the brain expressed PRR, ATIIR1 and ATIIR2; 
and a CSC subpopulation on the endothelium of the microvessels expressed ACE. Western blotting and NanoString 
mRNA analysis confirmed protein and mRNA expression of these components of the RAS, respectively. 

Conclusion: CSCs in MM to the brain expressed components of the RAS. Targeting the CSCs using modulators of 
the RAS may be a novel therapeutic approach for treating this aggressive cancer.
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INTRODUCTION
Metastatic melanoma (MM) to the brain occurs in 30% of melanoma patients and accounts for 5%-8% of all 
brain tumors[1]. For many years, the median survival of MM to the brain is 6-9 months following mainstay 
treatments including surgical excision, stereotactic radiosurgery and external beam radiotherapy[2-5]. 
Investigations into MM to the brain have identified real time preferential hematogenous dissemination 
of tumor cells[6], with survival of these cells within brain capillaries, migration to breach the blood brain 
barrier, angiogenesis and intraparenchymal proliferation[7].

Although immunotherapies that enhance T-lymphocyte activity such as Ipilimumab, anti-cytotoxic 
T-lymphocyte associated antigen-4 and anti-programmed cell death-1 inhibitors can improve the median 
survival, some cause significant toxicities[8,9]. Up to 50%-60% of MM patients harbor the BRAF V600 
somatic mutation[10]. Vemurafenib, a BRAF inhibitor, increases the median survival to 16 months[11] 

but despite an initially good response, progression-free survival remains poor, at seven months[5]. Used 
together, kinase inhibitors, BRAF-targeted and MEK-targeted small molecule drugs relieve intracranial 
symptoms and induces remission but cessation due to toxicity causes rapid intracranial and/or 
extracranial disease progression[12]. The short period of remission after neuro-mimicry and individualized 
tumor targets[13] has been attributed to the initiation, propagation and differentiation of cancer stem cells 
(CSCs)[14].
 
The CSC concept proposes that cancer is caused by CSCs that possess the ability for uncontrolled 
growth and propagation[15]. CSCs have been demonstrated in many types of cancer including breast 
carcinoma[16], glioblastoma[17] and oral cavity squamous cell carcinoma (OCSCC)[18-20]. We have recently 
identified and characterized three CSC subpopulations within MM to the brain: a Melan-A+ subpopulation 
and a Melan-A- subpopulations that express embryonic stem cell (ESC) markers OCT4, SALL4, SOX2 
and NANOG within the tumor, and a pSTAT3+ subpopulation localized to the CD34+ endothelium of 
microvessels within the tumor[21].

The RAS has been linked to carcinogenesis for some time[22]. In the classical RAS, angiotensinogen (ANG) 
is converted to angiotensin I (ATI) by renin. ATI is then converted to angiotensin II (ATII) by angiotensin 
converting enzyme (ACE). The RAS is implicated in central nervous system disorders such as Parkinson’s 
disease and dementia with neuroprotective and neurotoxic features although its role in carcinogenesis is 
not discussed in a recent review[23]. GB cells in culture express ANG, pro-renin, ACE, ATII, angiotensin 
II receptor 1 (ATIIR1) and angiotensin II receptor 2 (ATIIR2); and renin inhibitors decrease DNA 
synthesis, induce apoptosis and reduce viable cell numbers[24]. Renin and its precursor pro-renin bind 
to pro-renin receptor (PRR) to activate the MAPK signaling cascades. PRR is associated with increased 
cell proliferation, decreased apoptosis and highly expressed in pancreatic ductal adenocarcinoma[25]. CSC 
subpopulations in GB[26] and OCSCC of different subsites[27-29] express components of RAS.
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We here hypothesized expression of the RAS by CSCs in MM to the brain and investigated the expression 
and localization of components of the RAS: PRR, ACE, ATIIR1 and ATIIR2, in relation to the putative 
CSC subpopulations we have recently identified[21], using immunohistochemical (IHC) staining, Western 
blotting (WB) and NanoString mRNA analysis.

METHODS
Tissue samples
Samples of MM to the brain from ten patients were sourced from the Gillies McIndoe Research Institute 
Tissue Bank and used in this study that was approved by the Central Health and Disabilities Ethics 
Committee (Ref. 15CEN28) with written informed consent from all participants.

Histology and IHC staining 
Hematoxylin and eosin (H&E) staining was performed on 4 μm thick formalin-fixed paraffin-embedded 
sections of MM to the brain from ten patients included in our previous study[21], to confirm the presence 
of the tumor by an anatomical pathologist (HDB). 3,3-diaminobenzidine (DAB) IHC staining for CD34 
(ready-to-use, cat# PA0212, Leica), Melan-A (ready-to-use, cat# PA0233, Leica), ACE (1:100; cat# MCA2054, 
AbD Serotec, Kidlington, UK), PRR (1:2000; cat# ab40790, Abcam), ATIIR1 (1:30; cat# ab9391, Abcam), 
ATIIR2 (1:2000; cat# NBP1-77368, Novus Biologicals, LLC, Littleton, CO, USA) as well as NANOG (1:100; 
cat# ab80892, Abcam, Cambridge, UK), OCT4 (1:1000; cat# ab109183, Abcam) and ERG (1:200; EPII, Cell 
Marque, Rocklin, CA, USA), diluted with BondTM primary antibody diluent (cat# AR9352, Leica), was 
performed as previously described[30].

To localize the components of the RAS in relation to the putative Melan-A+ and Melan-A- OCT4+/
SALL4+/SOX2+/NANOG+ CSC subpopulations within the tumor, and the pSTAT3+ subpopulation on 
the endothelium of microvessels within MM to the brain[21], immunofluorescence (IF) IHC staining was 
performed on two representative samples of MM to the brain from the original cohort of ten patients 
included for DAB IHC staining. Components of the RAS were co-stained with ESC markers OCT4 or 
NANOG as the surrogate markers for the Melan-A+ and the Melan-A- OCT4+/SALL4+/SOX2+/NANOG+ 
CSC subpopulations, or endothelial markers ERG or CD34 for the pSTAT3+ subpopulation on the 
endothelium of microvessels within the tumor. Antibodies used for PRR and ATIIR2 detection were 
VectaFluor Excel anti-rabbit 594 (ready-to-use; cat# VEDK-1594, Vector Laboratories) and Alexa Fluor 
anti-mouse 488 (1:500; cat#A21202, Life Technologies). Antibodies for ACE and ATIIR1 detection were 
VectaFluor Excel anti-mouse (ready-to-use; cat# VEDK2488, Vector Laboratories) and Alexa Fluor anti-
rabbit 594 (1:500; cat# A21207, Life Technologies). 

Human tissues used for positive controls were placenta for PRR, liver for ATIIR1, and kidney for ATIIR2 
and ACE. Negative controls were used in secondary and tertiary antibody staining by omitting the primary 
antibodies on a randomly selected sample of MM to the brain.

Image analysis
DAB IHC stained-slides were viewed and images were captured with an Olympus BX53 light microscope 
fitted with an Olympus SC100 digital camera (Olympus, Tokyo, Japan), and processed with the CellSens 2.0 
software (Olympus). IF IHC-stained images were captured using an Olympus FV1200 biological confocal 
laser-scanning microscope and processed with CellSens Dimension 1.11 software using 2D deconvolution 
algorithms (Olympus). 

WB
Five snap-frozen samples of MM to the brain from the original cohort of ten patients underwent WB as 
described previously[28], using the primary antibodies: anti-PRR (ATP6IP2, 1:500; cat# ab40790, Abcam), 
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anti-ATIIR1 (AT2R1, 1:500; cat# sc-1173, Santa Cruz, CA, USA), anti-ATIIR2 (1:5000; cat# ab92445, 
Abcam), anti-ACE (1:200; cat# sc-12184, Santa Cruz) and anti-β-actin (1:2000 cat# ab8226, Abcam). 
Secondary antibodies used were Alexa Fluor 647 rabbit anti-mouse for β-actin (1:2000 cat# A21202, Thermo 
Fisher Scientific), donkey anti-goat HRP (1:10000; cat# ab97120; Abcam) and a rabbit anti-goat SuperclonalTM 
biotin conjugated secondary antibody (1:20000; cat# A27013, Thermo Fisher Scientific) followed by a PierceTM 
Streptavidin Poly-HRP (1:5000, cat# 21140, Thermo Fisher Scientific) at 4 °C for 10 min for the ACE 
tertiary cascade. β-actin antibody probing was performed with the iBindTM Flex device (cat# SLF2000, Life 
Technologies) using primary mouse monoclonal anti-β-actin (1:2000; cat# ab8226, Abcam) and secondary 
donkey anti-mouse AlexaFluor 488 (1:2000; cat# A21202, Thermo Fisher Scientific). Clarity Western ECL 
(cat# 1705061, Bio-Rad) was used to visualize HRP detected bands and the Chemi Doc MP Imaging System 
(Bio-Rad) and Image Lab 5.0 software (Bio-Rad) were used for detection and analysis. Positive controls 
were mouse brain extract for PRR and ATIIR1, mouse lung protein extract for ACE and PC3 cell lysate for 
ATIIR2. Negative controls were mouse kidney for PRR, human tonsil for ACE, mouse kidney for ATIIR1 
and NTERA2 for ATIIR2.

NanoString mRNA analysis
RNA extraction, as previously described[27], was performed on four snap-frozen samples of MM to 
the brain from the same cohort of ten patients included in DAB IHC staining underwent. RNA was 
subjected to NanoString nCounterTM Gene Expression Assay (NanoString Technologies, Seattle, WA, 
USA) as completed by New Zealand Genomics Ltd (Dunedin, NZ). Probes for the genes encoding 
PRR (NM_005765.2), ATIIR1 (NM_000685.3), ATIIR2 (NM_000686.3), ACE (NM_000789.2) and the 
housekeeping gene GAPDH (NM_002046.3) were designed and synthesized by NanoString Technologies. 

RESULTS 
Histology and DAB IHC staining
H&E staining (data not shown) demonstrated the presence of MM in all ten samples that stained positively 
for the melanoma marker Melan-A (data not shown). The endothelium of the microvessels expressed 

Figure 1. Representative DAB IHC-stained sections of metastatic melanoma to the brain showing endothelial staining of ACE (A, 
brown), and mostly cytoplasmic staining of PRR (B, brown), ATIIR1 (C, brown) and ATIIR2 (D, brown). Nuclei were counter-stained with 
hematoxylin (A-D, blue). Original magnification: 200×. DAB: 3, 3-diaminobenzidine; IHC: immunohistochemical; ATIIR1: angiotensin II 
receptor 1; ATIIR2: angiotensin II receptor 2; PRR: pro-renin receptor; ACE: angiotensin converting enzyme
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ACE [Figure 1A]. The tumor tissue widely expressed PRR [Figure 1B], ATIIR1 [Figure 1C] and ATIIR2 
[Figure 1D], mostly in the cytoplasm.

Human tissues used for positive controls: placenta for PRR, liver for ATIIR1, and kidney for ATIIR2 and 
ACE demonstrated the expected staining patterns [Supplementary Figure 1]. The omission of the primary 
antibody provided a control for the secondary antibody (data not shown).

IF IHC staining
IF IHC staining showed cytoplasmic expression of PRR [Figure 2A, red] on the OCT4+ [Figure 2A, green] 
CSCs within MM to the brain. ACE [Figure 2B, green] was expressed only on the ERG+ [Figure 2B, red] 
endothelium of the microvessels. ATIIR1 [Figure 2C, green] was expressed by the NANOG+ [Figure 2C, 
red] CSCs, while ATIIR2 [Figure 2D, red] was expressed on the OCT4+ [Figure 2D, green] CSCs in MM to 
the brain.
 
Supplementary Figure 2A-H displays individual IF IHC stains shown in Figure 2. Supplemental Figure 2I 
shows the appropriate negative control on a section of MM to the brain by the omission of the primary 
antibody. 

WB
PRR, at a molecular weight of 40 kDa, was present in all five samples of MM to the brain [Figure 3A]. The 
negative control of mouse kidney also showed a comparatively faint band. ACE, at 190 kDa, was detected 
in all five samples, with multiple smaller molecular weight bands detected in all the samples [Figure 3B], 
possibly due to degraded protein. ATIIR1 was seen in two of the five samples at 45 kDa, with a 28-kDa 

Figure 2. Representative IF IHC-stained sections of metastatic melanoma to the brain demonstrating cytoplasmic expression and some 
nuclear expression of PRR (A, red) on the OCT4+ (A, green) cells. ACE (B, green) was expressed by the ERG+ (B, red) endothelium of the 
microvessls. Some NANOG+ (C, red) cells expressed ATIIR1 (C, green). ATIIR2 (D, red) was expressed in the cytoplasm of the OCT4+ (D, 
green) cells. Cell nuclei were counterstained with 4’, 6’-diamidino-2-phenylindole (A-D, blue). Scale bars: 20 μm. IF: immunofluorescence; 
IHC: immunohistochemical; PRR: pro-renin receptor; ATIIR1: angiotensin II receptor 1; ATIIR2: angiotensin II receptor 2; ACE: angiotensin 
converting enzyme
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band was also present in all five samples and the positive control [Figure 3C], possibly due to degradation. 
ATIIR2 was seen in all five samples at 50 kDa [Figure 3D]. 

NanoString mRNA analysis
NanoString mRNA analysis revealed very high levels of mRNA expression for PRR, moderate levels of 
ACE and low levels of ATIIR1 mRNA expression, while ATIIR2 was below detectable levels [Figure 4].

DISCUSSION 
We have recently identified three CSC subpopulations within MM to the brain: a Melan-A+ subpopulation 
and a Melan-A- subpopulations that express the ESC markers OCT4, SALL4, SOX2 and NANOG, and 
a pSTAT3+subpopulation localized to the CD34+ endothelium of the microvessels within the tumor[21]. 
This study demonstrated the expression of PRR, ATIIR1 and ATIIR2 by these CSCs subpopulations we 
have identified. The demonstration of widespread expression of these cell surface receptors by DAB IHC 
staining, may be due to their relatively abundant expression within the samples we have examined. Using 

Figure 3. Representative images of Western blots performed on five samples of metastatic melanoma to the brain. PRR was detected 
in all five samples at 40 kDa (A). ACE was detected in all five samples at 190 kDa, with multiple lower bands consistent with protein 
degradation (B). ATIIR1 was detected at 45 kDa in two samples and at 28 kDa in all five samples (C). ATIIR2 was present at 50 kDa in 
all five samples (H). Positive controls were mouse brain extract for PRR (A), mouse lung protein extract for ACE (B), mouse brain for 
ATIIR1 (C), PC3 cell lysate for ATIIR2 (D). Negative controls were mouse kidney for PRR (A), human tonsil for ACE (B), mouse kidney for 
ATIIR1 (C), and NTERA2 for ATIIR2 (D). PRR: pro-renin receptor; ATIIR1: angiotensin II receptor 1; ATIIR2: angiotensin II receptor 2; ACE: 
angiotensin converting enzyme
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OCT4 and NANOG as surrogate markers, IF IHC staining revealed localization of PRR, ATIIR1 and 
ATIIR2 to the OCT4+/OCT4+/SALL4+/SOX2+/NANOG+ CSC subpopulations while ACE was localized the 
CSC subpopulation on ERG+ endothelium of the microvessels which we have shown to express pSTAT3 
previously. The expression of PRR, ACE, ATIIR1 and ATIIR2 was confirmed by WB. NanoString mRNA 
analysis showed high levels of expression of PRR, lower expression levels of ACE and ATIIR1. ATIIR2 
was below detectable levels which may be due to mRNA degradation or its transient presence during 
transcription within the samples examined. 

We have previously reported expression of PRR, ATIIR1 and ATIIR2 by the SOX2+ CSC subpopulation, 
and exclusive expression of ACE by the subpopulation on the endothelium of the microvessels, in human 
isocitrate dehydrogenase-wildtype GB[26] and OCSCC affecting different subsites[27-29]. mRNA expression 
of renin, ACE, ATIIR1 and ATIIR2 has been demonstrated on primary cultured human keratinocytes, 
melanocytes, dermal fibroblasts and dermal capillary endothelial cells, but ATIIR2 is not detected in 
melanocytes[31]. 

Cellular proliferation associated with ATI-treated and ATII-treated infantile hemangioma cell culture has 
shown to be diminished by ACE inhibitor ramipril and the ATIIR2 antagonist PD123319, and is enhanced 
by ATIIR2 agonist CGP42112[32], implying a role for the RAS peptides in stem cell proliferation.
 
Blockade of the RAS leads to inhibited growth of colorectal cancer liver metastases in the regenerating 
liver[33] and recent reports of increased overall survival of GB patients treated with angiotensin receptor 
blockers[34], support the role of the RAS in cancer. It is exciting to speculate that CSCs in MM to the brain 
maybe a novel therapeutic target by modulating the RAS, although more work including a larger sample 
size, control tissue samples and in vitro and in vivo functional work is needed to determine the precise role 
of the RAS in this aggressive cancer.

In conclusion, in this study we have demonstrated the expression and localization of components of the 
components of the RAS: PRR, ACE, ATIIR1 and ATIIR2 in MM to the brain. PRR, ATIIR1 and ATIIR2 are 
localized to the CSC subpopulations within the tumor while ACE is expressed by the CSC subpopulation 
on the endothelium of the microvessels. Targeting the CSCs using modulators of the RAS may be a novel 
therapeutic approach for MM to the brain.

Figure 4. Relative expression of mRNA transcripts of PRR, ACE, ATIIR1 and ATIIR2 by NanoString mRNA analysis of four samples 
of metastatic melanoma to the brain showing high levels of expression of PRR, moderate levels for ACE, low levels for ATIIR1 and 
undetectable levels for ATIIR2, relative to the housekeeping gene GAPDH. PRR: pro-renin receptor; ATIIR1: angiotensin II receptor 1; 
ATIIR2: angiotensin II receptor 2; ACE: angiotensin converting enzyme
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