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Abstract
Hepatocellular carcinoma (HCC) represents a significant global health challenge, with a complex etiology and 
limited treatment options. The integration of multi-omics technologies, including genomics, transcriptomics, 
proteomics, and metabolomics, has revolutionized our understanding of HCC, offering novel insights into its 
molecular underpinnings. This comprehensive review synthesizes the current knowledge on the application of 
multi-omics in HCC, highlighting its role in disease classification, early detection, and the development of targeted 
therapies. We discuss the identification of key driver mutations and single nucleotide polymorphisms (SNPs) that 
enhance risk prediction models, with implications for personalized medicine. The multi-omics approach has 
facilitated the discovery of distinct HCC subtypes, each with unique molecular signatures and tumor 
microenvironments (TME), which are critical for predicting prognosis and guiding treatment strategies. 
Furthermore, we explore the implications of these findings for precision medicine, emphasizing the potential of 
biomarker identification and targeted therapies, including immune checkpoint blockade (ICB). The review 
concludes by underscoring the transformative impact of multi-omics on HCC research and clinical practice, 
heralding a new era of personalized medicine with the promise of improved patient outcomes.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the most common pathological type of primary liver cancer, accounting 
for more than 90% of primary liver cancers[1,2]. HCC has the fifth-highest incidence globally and the second-
highest mortality rate, indicating its severity and threat to public health[3]. In Asia, especially China, the 
incidence and mortality of HCC are relatively high[4]. The causes of HCC are diverse, including hepatitis 
virus infection, cirrhosis, aflatoxin exposure, smoking, obesity, diabetes, and other factors[5]. In terms of 
treatment, the therapeutic strategies for HCC include local treatment such as surgery, ablation, and 
interventional therapy. However, less than 30% of patients are suitable for radical treatment at the first 
diagnosis[6]. For patients with advanced HCC, the systemic therapy regimen of targeted combined 
immunotherapy has become the new standard of first-line therapy for advanced HCC. 
Immunocombination therapy, especially the combination of immune checkpoint inhibitors and 
macromolecular anti-angiogenesis drugs, has achieved remarkable results and significantly improved the 
survival rate of patients[7]. However, the low early diagnosis rate and high recurrence rate, which affect 
patient survival, remain treatment challenges of HCC. Current surveillance tools, including abdominal 
ultrasound, are insufficiently sensitive to detect early HCC, especially in obese and/or non-viral liver disease 
patients.

Multi-omics techniques, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and 
microbiome, provide comprehensive information about cell function and state[8]. The application of multi-
omics technology in cancer research not only deepens our understanding of disease, but also provides new 
strategies and methods for cancer diagnosis, treatment, and prevention, showing broad application 
prospects[9,10]. In recent years, with the vigorous development of multi-omics technologies, HCC molecular 
typing systems have been discovered and established. By further refining the classification using multiple 
omics characteristics, subtypes with different molecular characteristics and clinical prognoses can be 
identified, providing a new approach to precise diagnosis and treatment in HCC.

MULTI-OMICS OF HCC CLASSIFICATION
Genetic variations in HCC classification
The genetic susceptibility to HCC is characterized by genetic heterogeneity[11]. Genomic studies have 
identified numerous driver mutations in HCC, including alterations in key genes such as TERT, TP53, 
CTNNB1, ARID1A, and KMT2C (Chang et al., 2023)[12]. These mutations contribute to the development of 
HCC through various mechanisms, including promoting cell proliferation, inhibiting apoptosis, and 
disrupting cellular metabolism. The traditional clinical model created by Cadier et al.[13] was improved to 
better predict the probability of HCC development in patients with cirrhosis, by incorporating information 
on seven single nucleotide polymorphisms (SNPs), including rs738409 (PNPLA3), rs58542926 (TM6SF2), 
rs187429064 (TM6SF2), rs641738 (MBOAT7), rs72613567(HSD17B13), rs429358 (APOE), and rs708113 
(WNT3AWNT9A). However, the model is primarily intended for Europeans, and its applicability to East 
Asians remains uncertain[14]. The research of Chen et al. indicates a strong association between four SNPs 
rs429358 (APOE), rs58542926 (TM6SF2), rs708113 (WNT3AWNT9A), rs738409 (PNPLA3) and liver cancer 
in Europeans[15]; however, only one SNP, rs738409 on the PNPLA3 gene, is linked to HCC in East Asians, 
with the other three showing no such correlation. This suggests that current European models may not be 
directly applicable to the East Asian population. Additionally, the SNP rs429358 located on the APOE gene 
is also not significantly associated with Europeans. A genome-wide systematic comparison of genetic 
differences between Europeans and East Asians in HCC showed that on chromosome 6, East Asians exhibit 
more significant sites, with SNP rs200715955 being the most prominent signal, while Europeans lack 
notable SNPs on this chromosome. Both populations demonstrate strong genetic signals on chromosome 
19; however, for East Asians, the most significant SNP is located at the IFNL4 gene (rs8107030), while for 
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Europeans, it is the SNP at the SUGP1 gene (rs739846)[15]. SNPs on the IFNL4 and SUGP1 genes are not 
currently included in existing predictive models; in the future model construction, it is necessary to consider 
the genetic effects of multi-population, so as to improve the prediction efficiency and increase the external 
validity of the model. In addition, the use of genetic risk scores associated with the phenotype of HCC can 
also effectively improve the efficacy of the model. For example, the causes of HCC mainly include hepatitis 
virus infection, alcoholic liver disease, non-alcoholic liver disease, etc. If the genetic scores of related risk 
factors are added to the future prediction model, the predictive efficacy of the model will be greatly 
improved. If these genetic scores can be combined into a single valid score and associated with related 
pathways, it will greatly simplify the model and detection costs.

Multi-omics improves the gross classification of HCC
In 1987, Moriyama’s group classified HCC into five gross subtypes based primarily on tumor shape: single 
nodular type (type I), single nodular type with extra nodular growth (type II), contiguous multinodular type 
(type III), poor demonstrated type (also named as infiltrative type, type IV), and early HCC type[16]. Several 
limited retrospective studies have suggested a correlation between tumor shape and prognosis in patients 
with HCC; even imaging features reflecting the gross appearance of HCC have been proposed to be 
predictive of outcomes after Radiofrequency Ablation ( RFA), transcatheter arterial chemoembolization 
(TACE), and even lenvatinib therapy[16,17]. Despite the utility of the classification system for HCC, its clinical 
implementation has been limited due to diagnostic challenges associated with certain subtypes and a 
scarcity of cases representing each subtype that would facilitate robust clinical investigation. Thus, selecting 
interventions for patients with solitary HCC remains a challenge. Despite gross classification being 
proposed as a potential prognostic predictor, its widespread use has been restricted due to inadequate 
studies with sufficient patient numbers and the lack of established mechanisms.

Fan et al. sought to investigate the prognostic impacts on patients with HCC of different gross subtypes and 
assess their corresponding molecular landscapes. Multi-omics technology such as transcriptomics, 
proteomics, copy number variation (CNV analysis), Weighted Gene Co-Expression Network Analy 
(WGCNA) were performed on tumors and non-tumor tissues from 49 patients to investigate the 
mechanisms underlying gross classification[18,19]. Inverse probability of treatment weight (IPTW) was used to 
control for confounding factors. A prospective cohort of 400 patients who underwent hepatic resection for 
solitary HCC was reviewed and analyzed and gross classification was assessed. The research provides an 
easy-to-use modified gross classification system (MMC) for HCC based solely on margin morphology. It 
finds distinct molecular expression patterns, gene mutations, and components of tumor microenvironment 
(TME) among the four gross subtypes. Infiltrative type HCC exhibits the most similarities to intrahepatic 
cholangiocarcinoma in terms of gross appearance, prognosis, and downregulated expression profiles. Only 
infiltrative type HCC shows the response to adjuvant TACE[19], indicating the potential effective treatment 
methods for different gross subtypes of HCC.

By combining transcriptome and genomic profiling, HCC can be classified into molecular subtypes G1 ~ 
G6 with different biological characteristics. G1 and G2 are associated with HBV infection, and both AKT 
pathways are activated. G3 ~ G6 are associated with HCV infection and excessive alcohol consumption. 
TP53 and TCF1 mutations occur in G3 and G4, respectively. G5 and G6 have a high CTNNB1 mutation rate 
and activated WNT pathway, indicating a good prognosis. The study also found that 50% of tumor WNT or 
AKT pathways are activated, suggesting that inhibiting these signaling pathways may benefit relevant 
patients.
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Multi-omics of HCC and precise diagnosis and treatment
Liquid biopsy is an innovative diagnostic technique that detects and monitors diseases by analyzing 
molecular components such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes, 
microRNAs (miRNAs), and tumor education platelets in blood and other biological fluids such as urine, 
saliva, etc. Compared with traditional tissue biopsy, liquid biopsy has the characteristics of noninvasiveness, 
high reproducibility, easy operation, and real-time monitoring of disease progression. The main application 
areas of liquid biopsy include: early cancer detection, tumor staging and monitoring, and treatment 
response monitoring. Liquid biopsy and multi-omics improve the precise diagnosis and treatment of HCC 
both in research and clinical settings. Currently, major advances and breakthroughs in precision medicine 
primarily rely on genomic analysis. Advancements in multi-omics techniques have provided a theoretical 
foundation for personalized and targeted therapies. Based on the multi-omics technology, the biomarkers 
discovered in the blood of HCC patients play an important role in disease diagnosis, early detection, 
prognosis evaluation, and treatment response monitoring. In primary HCC, as protein biomarkers, 
AKR1B10 is overexpressed in early stages of highly and moderately differentiated liver cancer, and 
downregulated in late-stage tumors with lower differentiation, indicating potential for early diagnosis of 
HCC. AKR1B10 is an effective serological marker for detecting liver cancer, with a sensitivity and specificity 
of 72.7% and 95.7%, respectively. Especially in AFP-negative HCC patients, AKR1B10 has a sensitivity of 
71.2% and a specificity of 92.6% for diagnosing HCC. miRNAs such as miRNA-21, miRNA-221, and 
miRNA-224 are unregulated in liver cancer and can serve as potential novel serum biomarkers. 
Additionally, miRNAs such as miRNA-18a, miRNA-221, miRNA-222, and miRNA-224 also play a role in 
diagnosis and prognosis. The downregulation of miRNA-101, miRNA-106b, miRNA-122, miRNA-195, and 
miRNA-125b expression is associated with the inhibition of HCC progression. Extracellular vesicles (EVs) 
contain various biochemical signals, such as genetic material, proteins, etc., and are considered biomarkers 
for early detection of HCC. In a small study, the sensitivity of EV detection reached 94.4% and the 
specificity reached 88.5%. CTCs are malignant cells derived from primary tumors or metastasized to the 
systemic circulation, which are measured through liquid biopsy and, to some extent, represent samples of 
tumor lesion cells in patients. Detecting the quantitative abundance, biological characteristics, and genomic 
heterogeneity between CTCs can predict the disease prognosis and treatment response of liver cancer 
patients. Though these biomarkers typically require a combination of multiple biomarkers and other 
diagnostic tools for comprehensive evaluation, the multi-omics technology is reshaping biomedical 
research, integrating multidimensional data such as genomics, transcriptomics, proteomics, and spatial 
profiling, opening up new paths for disease mechanisms, diagnosis, treatment, and drug development[20-26]. 
The development of multi-omics has promoted the molecular state monitoring of HCC, and may pave the 
way for new methods to overcome tumor progression and treatment resistance. The development of 
multicenter, multi-omics, and large-scale liver cancer data analysis and high-throughput, multi-platform 
validation technologies is expected to provide important support for precise drug target selection and 
optimization for patients. At the same time, conducting multi-omics analysis on tumor biopsy samples - 
pre- and post-treatment, as well as in cases of primary recurrence - can help monitor tumor subclonal 
evolution, further deepening the understanding of genotype-phenotype correlations, as well as the 
mechanisms of treatment sensitivity and resistance. The application of multi-omics technology in the 
precise diagnosis and treatment of HCC is shown in Figure 1.

Approved therapy for HCC
The target therapy for HCC
Systemic therapy is the main treatment method for advanced HCC. Targeted therapy is a treatment 
approach designed at the cellular molecular level that specifically targets known oncogenic sites. The drugs 
used in this therapy enter the body and selectively bind to these oncogenic sites to exert their effects, leading 
to the specific death of tumor cells without affecting the surrounding normal tissue cells. Molecular targeted 
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Figure 1. Application of multi-omics in precision treatment of HCC.

drugs primarily intervene in the treatment of malignant tumors by targeting key points in their 
pathophysiological development. Currently, there is no unified classification method for molecular targeted 
drugs. At therapeutic doses, drugs that act on only one target point are called single-target inhibitors; in 
contrast, drugs that act on multiple targets at therapeutic doses are called multi-target inhibitors. The multi-
target inhibitors such as sorafenib, lenvatinib, donafenib, regorafenib, cabozantinib, ramucirumab, and 
apatinib have become the backbone of systemic therapy for advanced HCC. Sorafenib is the first approved 
multi-target receptor tyrosine kinase (RTK) inhibitor, mainly for its effects on proliferation and 
angiogenesis, and has been used as a first-line treatment for HCC since 2007. However, only about 5% of 
patients have a partial response to sorafenib. Lenvatinib is another multi-target RTK inhibitor that shares 
certain common targets with sorafenib and uniquely inhibits fibroblast growth factor receptor (FGFR). 
Serum biomarkers, including VEGF, ANG2, and FGF19, have been shown to be closely associated with the 
efficacy of lenvatinib. The approved Targeted therapy for HCC is shown in Table 1. Despite significant 
treatment progress, most advanced HCC patients still exhibit treatment resistance and disease progression. 
Therefore, screening patients who are most likely to benefit from specific therapies is extremely important, 
as it can maximize potential benefits, reduce avoidable toxicity, and save medical resources[27-34].

The immunotherapy for HCC
Besides the multi-target drug mentioned above, the cell signal of HCC also showed the potential for the 
target therapies [shown in Table 2]. Current immunotherapy drugs for HCC primarily target PD-1/PD-L1 
and CTLA-4. Research is also exploring new targets and combination therapies[27-46].

Given the complexity of HCC, the current therapeutic effect is still very limited, and how to more accurately 
identify patients suitable for certain drugs or treatment modalities has become the focus of clinical 
attention. Multi-omics technology provides key technologies for these studies and has uncovered potentially 
effective precision treatments.
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Table 1. Approved therapy for HCC

Target drug Target gene/signaling pathway

sorafenib[35] RAF kinase, EGFR-2, VEGFR-3, PDGFR-β, KIT, FLT-3/RAF/MEK/ERK

lenvatinib[36] VEGFR-11, VEGFR-2, VEGFR-3, FGFR1, FGFR2, FGFR3, FGFR4, PDGFR, CKIT, RET

donafenib[37] VEGFR, PDGFR, RAF

regorafenib[37] VEGFR-1,2,3, TIE-2, BRAF, KIT, RET, PDGFR, FGFR

cabozantinib[38] MET, VEGFR1/2/3, ROS1, RET, AXL, NTRK, KIT

ramucirumab[39] EGFR, ALK

HCC: Hepatocellular carcinoma.

Table 2. Signaling pathways in HCC[46]

Signaling pathway Drug

Wnt/β-catenin Celecoxib, PKF118-310, PKF115-584, CGP049090

RAF/MEK/ERK(MAPK) Sorafenib, Regorafenib, Danoprevir/PD 0325901/PD 0325901

Hippo Bortezomib

HRR Inhibitors of ARP

FGF19- FGFR4 BLU-554

HGF/c-MET Cabozantinib/Tivantinib

HCC: Hepatocellular carcinoma.

The panoramic map of gene mutation and molecular expression of metastatic liver cancer is still weak, and 
the evolution law of clonal selection in the metastasis process of liver cancer is still unclear, resulting in the 
lack of sufficient theoretical guidance for the clinical diagnosis and treatment of metastatic liver cancer. Sun 
et al. generated Multi-omics analytical methods, including genomics, transcriptomics, single-cell RNA 
sequencing (scRNA-seq), spatial transcriptomics, and immunohistochemical techniques, which were used 
to detect 257 primary and 176 metastatic regions from 182 HCC patients to obtain comprehensive 
information on primary and metastatic HCC, such as the spatial distribution and interactions of cancer 
cells, as well as their interactions with the surrounding microenvironment[47]. The research found primary 
tumors rich in hypoxia signatures facilitated polyclonal dissemination. Genomic divergence between 
primary and metastatic HCC is high, and early dissemination is prevalent. The remarkable neoantigen 
intratumor heterogeneity observed in metastases is associated with decreased T cell reactivity, resulting 
from disruptions to neoantigen presentation. The somatic copy number alterations are highly selected 
events driving metastasis. Mutations in the Wnt pathway affect CTNNB1, AXIN1, or, more rarely, APC. 
Subclones without Wnt mutations show a stronger selective advantage for metastasis than those with Wnt 
mutations and are characterized by a microenvironment rich in activated fibroblasts favoring a 
prometastatic phenotype. Finally, metastases without Wnt mutations exhibit higher enrichment of 
immunosuppressive B cells that mediate terminal exhaustion of CD8+ T cells via HLA-E: CD94-NKG2A 
checkpoint axis. The study indicated that metastatic HCC has a high degree of intratumoral heterogeneity 
and a complex evolutionary trajectory, suggesting that each patient population may have unique biological 
characteristics and developmental pathways. Subclonal selection is an important factor in the progression of 
metastatic liver cancer, and the TME [especially cancer-associated fibroblasts (CAFs) and B cells] plays a 
crucial role in promoting or inhibiting metastasis. These findings not only advance our understanding of 
metastatic HCC, but also provide valuable insights for the development of new diagnostic methods and 
treatment strategies. It is the first time to systematically depict the spatio-temporal evolution panorama of 
liver cancer metastasis, reveal the complex evolutionary trajectory and clonal selection mechanism of liver 
cancer metastasis, and provide valuable data and theoretical basis for the development of new markers for 
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the prediction of liver cancer metastasis and new therapeutic targets.

A major challenge for proteomics-driven precision medicine is how to use the comprehensive proteome to 
identify subtypes of patients with shared biological factors that can be targeted for treatment[48,49]. Patients 
with HCC at the same clinical stage can have extremely different prognoses, and molecular subtyping 
provides an opportunity for individualized precision treatment.

In one study, genomic, transcriptomic, proteomic, and phosphoproteomic profiling of primary tumor 
tissues and paired para-tumor tissues from HCC patients (N = 160) are integrated. Proteomic profiling 
identifies three HCC subtypes (SI-SIII) with different clinical prognoses[50]. These subtypes differ 
significantly in overall survival (OS) and relapse-free survival (RFS) and are associated with clinical stage, 
tumor markers, and other pathological features, which are validated in three publicly available external 
validation sets. A simplified panel of nine proteins associated with metabolic reprogramming is further 
identified as a potential subtype-specific biomarker for clinical application. Multi-omics analysis further 
reveals that three proteomic subtypes have significant differences in genetic alterations, microenvironment 
dysregulation, kinase-substrate regulatory networks, and therapeutic responses. There were significant 
differences in the response of the three subtypes to sorafenib. Specifically, SII and SIII tumors showed high 
sensitivity to sorafenib, while SI was primarily resistant to it. After 4 days of treatment, the response of each 
patient-derived cell (PDC) to sorafenib was measured by calculating the AUC of the dose-response curve, 
and the differences in response to sorafenib were compared among the three protein subtypes. The results 
showed that sorafenib effectively inhibited the proliferation of PDC with broad drug sensitivity, indicating 
that HCC PDC is highly heterogeneous. Notably, growth inhibition of PDC was significantly stronger in SII 
and SIII compared to SI, especially at concentrations of 32 mM or higher of sorafenib. In addition, the 
percentage of tumors that reached the semi-maximum inhibitory concentration (IC50) was significantly 
higher in SIII than in SI, suggesting that SIII tumors may benefit more from sorafenib. These findings 
demonstrate that proteomics holds great promise in identifying HCC-subtype patients with different 
prognoses who might benefit from further clinical treatment.

The revolutionary progress of immune checkpoint blockade (ICB) therapy, such as anti-PD-1/L1 and anti-
CTLA4 antibodies, has extended the survival of various cancer patients. Although many efforts have been 
made to enhance the clinical benefits of HCC immunotherapy, particularly with T cells possessing different 
cell lytic activities, the response of these therapies in HCC patients is still very limited. Most previous studies 
on scRNA seq datasets in the HCC TME have only focused on the heterogeneity of TME at the cellular 
level, neglecting its spatial structure and potential impact on treatment response[51-53]. In another study, the 
authors integrated single-cell and spatial multi-omics data to identify and characterize the tumor immune 
barrier (TIB) structures associated with immune therapy efficacy in the HCC TME. They found that 
secreted phosphoprotein 1 (SPP1) macrophages and CAFs interact to promote the formation of TIB 
structures, which limit tumor immune invasion, indicate the structure present in the HCC 
microenvironment was identified, SPP1+macrophages are a potential clinical therapeutic target for 
HCC[54,55]. These findings represent an important step toward discovering more effective therapies for HCC 
and offer new insights for precision medicine in HCC treatment.

Chronic inflammatory stimulation of HCC patients may cause their immune microenvironment to develop 
into a state resistant to immunotherapy. In fact, most HCC patients exhibit resistance or relapse after ICB, 
which is related to the transformation of the tumor immune microenvironment into an immunosuppressive 
one[55-58]. This transformation is related to the dysfunction of innate immunity and adaptive immunity. 
Therefore, reshaping the immune microenvironment has become a promising therapeutic strategy for 
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advanced HCC patients. However, the specific mechanisms by which different cells regulate the tumor 
immune microenvironment to induce resistance to immunotherapy remain unclear[59-61]. Using single-cell 
sequencing technology (scRNA-seq), comparative analysis, and experimental verification, researchers found 
that neutrophils are associated with immunotherapy resistance in HCC. Specifically, a subpopulation of 
CD10+ALPL+ neutrophils in HCC patients is associated with resistance to PD-1 therapy[62]. They further 
found that tumor cells reprogram CD10+ALPL+ neutrophils via the NAMPT-NTRK1 signaling pathway. 
These findings reveal the mechanism through which CD10+ALPL+ neutrophils contribute to resistance to 
anti-PD-1 therapy. Tumor cells reprogram CD10 + ALPL + neutrophils to maintain an immature state, 
preventing their maturation and activation, while these neutrophils drive T cells into an irreversible state of 
depletion, ultimately leading to drug resistance in patients. These results also provide valuable insights into 
potential new immunotherapy targets and possible synergistic treatment approaches.

The emergence of scRNA-seq technology has demonstrated its powerful ability to explore cell diversity and 
tumor heterogeneity[63]. The study revealed intertumor and intratumoral transcriptome heterogeneity in 
HCC and identified molecular signatures associated with TME reprogramming. Rna-seq can classify 
malignant and non-malignant cells based on aneuploid copy number profiles and identify clonal 
substructures in different subclusters[64]. It enables the analysis of tissue heterogeneity at the single-cell level 
and provides insight into the contribution of different cell subclusters to biological function and 
pathogenesis. In one study, the TME landscape of HCC was described using RNA-SEQ data and six 
prognostic-related subclusters were identified[65]. The authors then developed five transcriptome subtypes by 
unsupervised clustering of subcluster-specific markers (SSMs) in the training cohort. These molecular 
subtypes exhibit different clinical outcomes, including variations in genomic variation, and immune-
infiltrating microenvironments. They investigated the therapeutic responses of HCC patients with different 
molecular subtypes to ICB, TACE, and targeted therapy using a publicly available clinical treatment cohort 
and a Xiangya HCC cohort. The characteristics of TME were further validated by RNA-SEQ, single-cell T 
cell receptor /B cell receptor sequencing, mass spectrometry flow cytometry (CyTOF), and multiple 
immunofluorescence techniques. The integration of the scRNA-seq data with the overall RNA-seq cohort 
enabled the authors to generate molecular subtypes with clinical efficacy, providing a theoretical basis for 
the development of personalized treatment options for HCC patients.

DISCUSSION
The integration of multi-omics technologies into HCC research and clinical practice has opened new 
avenues for understanding the disease’s complexity and developing targeted therapies. However, the 
journey toward precision medicine is paved with both known and emerging challenges.

Challenges in multi-omics applications in HCC
The technical challenges in multi-omics data analysis are manifold. First, the data generated are often high-
dimensional, with many more features than samples, leading to the “curse of dimensionality”. This can 
result in overfitting of models and reduced generalizability. Second, the data are noisy and may contain 
outliers, which can distort the analysis. Third, the integration of data from different platforms (e.g., 
genomics, proteomics) requires harmonization of the data, which can be technically challenging due to 
differences in measurement scales and data types. Lastly, the validation of multi-omics findings in 
independent cohorts is crucial but often limited by the availability of well-annotated samples.

The theoretical gaps in our understanding of HCC are substantial. For instance, while driver mutations in 
HCC have been identified, the functional consequences of these mutations and how they interact with each 
other and with the TME are not well understood. Additionally, the role of non-coding RNAs, epigenetic 
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modifications, and the microbiome in HCC is still being elucidated. Understanding these complex 
interactions is essential for developing effective therapies[66].

The heterogeneity of HCC is a significant challenge for precision medicine. This heterogeneity is not only 
molecular but also extends to the clinical presentation of the disease. For example, patients with the same 
stage of HCC can have vastly different outcomes, suggesting that current staging systems may not fully 
capture the complexity of the disease[67]. Moreover, the TME, which includes immune cells, fibroblasts, and 
vascular cells, can also vary significantly between patients and influence treatment response.

AI in multi-omics of HCC
Artificial intelligence (AI) has the potential to transform the analysis and application of multiomics data in 
HCC. AI is being utilized to analyze complex datasets generated from multiomics platforms.

AI in biomarker discovery for HCC
Atezolizumab is an immunotherapy that works by blocking a protein called PD-L1, which helps tumors 
hide from the immune system; bevacizumab is an antibody that inhibits a protein necessary for the growth 
of blood vessels that feed tumors (antiangiogenic therapy). This study used a retrospective multicenter 
approach to develop a predictive model, called ABRS Prediction (ABRS-P), for estimating the atezolizumab-
bevacizumab response signature (ABRS) in patients with HCC[68]. ABRS is a biomarker associated with 
progression-free survival (PFS) in patients treated with atezolizumab and bevacizumab[66]. The ABRS-P 
model was developed using a previously established machine learning pipeline called clustering-constrained 
attention multiple instance learning (CLAM). The pipeline may be designed to address the complexity of 
histological sections and identify patterns that predict ABRS expression. The model was trained on a 
multicenter dataset of the Cancer Genome Atlas (TCGA), which included samples of patients who 
underwent surgical resection (n = 336). The study shows that the application of AI to analyze digital slices of 
HCC can be used as a biomarker for PFS in patients treated with the combination of atezolizumab and 
bevacizumab. This is a new application of AI in precision medicine, where computational models can help 
predict a patient’s individual response to treatment. Compared to traditional biomarker discovery methods, 
AI-based biomarkers can be developed quickly and at a relatively low cost. This is particularly important in 
the field of oncology, where timely and cost-effective diagnostics can have a significant impact on treatment 
decisions and patient outcomes. By using AI to analyze histological slides and spatial transcriptomic data, 
the study improves the understanding of how different treatments work at the molecular level. This deeper 
insight could lead to better treatment strategies, the identification of new drug targets, and the development 
of adjunctive diagnostics.

AI in HCC classification and early detection
Many other studies show that machine learning algorithms can identify patterns and correlations in large 
datasets that might be missed by traditional analysis methods[68]. For instance, AI has been employed to 
classify HCC subtypes based on gene expression profiles, predict patient outcomes, and identify potential 
therapeutic targets. As AI algorithms become more sophisticated and data sets grow larger and more 
diverse, the potential for AI in HCC research and treatment is vast. Future applications may include real-
time analysis of patient data to guide personalized treatment strategies and the development of dynamic 
models that can predict disease progression and response to therapy. AI could also play a role in the early 
detection of HCC by analyzing multi-omics data to identify individuals at high risk of developing the 
disease. A liquid biopsy technique called DELFI used whole-genome cell-free DNA fragment analysis to 
evaluate 724 individuals, including HCC patients or individuals at average or high risk for liver cancer, from 
the United States, the European Union, and Hong Kong, China[69]. Among these 724 plasma samples, 501 
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were collected in the United States and the European Union, including samples from 75 HCC patients, to 
train and validate machine learning models, which are powered by AI and use data and algorithms to 
improve accuracy. To further verify the results, 223 plasma samples from individuals in Hong Kong were 
analyzed, including 90 HCC patients, 66 patients with hepatitis B virus (HBV), 35 patients with HBV-
related cirrhosis, and 32 samples from individuals without potential risk factors. The DELFI technology 
demonstrated the ability to detect liver cancer at its early stages with an overall sensitivity or accuracy of 
88% and a specificity of 98%, indicating a very low likelihood of false-positive results in average-risk 
populations. For high-risk individuals, the test achieved a sensitivity of 85% and a specificity of 80%, further 
emphasizing its potential as a reliable tool for early detection in these groups.

Future trends in HCC precision medicine
Integrative approaches
The future of HCC precision medicine lies in the integration of multi-omics data with clinical information 
to create a comprehensive view of each patient’s disease. This will enable the development of personalized 
treatment plans that take into account the unique molecular characteristics of each patient’s tumor. For 
example, integrating genomic data with clinical outcomes can help identify patients who are likely to 
respond to specific targeted therapies.

Therapeutic personalization
As our understanding of the molecular basis of HCC improves, so too will our ability to develop targeted 
therapies. This will lead to a shift from a one-size-fits-all approach to treatment to one that is tailored to the 
specific molecular profile of each patient’s tumor. Personalized medicine will also involve the use of 
pharmacogenomics to predict how individual patients will respond to specific drugs, allowing for the 
optimization of treatment regimens.

Early detection and prevention
Multi-omics technologies have the potential to improve early detection of HCC, which is critical for 
improving patient outcomes. By identifying individuals at high risk of developing HCC, we can implement 
preventive measures and early interventions. This could involve the use of liquid biopsies to detect ctDNA 
or tumor-educated platelets, which can serve as early indicators of HCC development.

Immunotherapy and combination therapies
The success of immunotherapy in other cancers has sparked interest in its potential for HCC. Multi-omics 
analysis can help identify patients who are likely to respond to immunotherapy and may also reveal 
synergistic effects when combined with other treatments. For example, the identification of specific immune 
cell populations within the TME could inform combination therapies that enhance immune responses.

CONCLUSION
HCC is a globally significant health burden, with multi-omics technologies playing a pivotal role in 
advancing our understanding and treatment of the disease. Our review synthesizes the current landscape, 
highlighting the impact of genomics, epigenomics, transcriptomics, proteomics, metabolomics, and 
microbiome studies on HCC. Multi-omics has been transformative for HCC, providing a rich dataset for 
diagnosis, prognosis, and therapy. As we move toward personalized medicine, the challenge lies in 
harnessing this wealth of information to develop more effective treatments and improve patient outcomes. 
The future is poised to see a reduction in HCC’s global impact through the continued integration of multi-
omics data into clinical practice.
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