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Abstract
Excess body weight impacts kidney function in individuals with severe obesity, primarily through metabolic 
alterations in adipocytes, especially in visceral adipose tissue. The relationship between persistent sterile 
inflammation associated with obesity and the progression of obesity-related kidney disease to chronic kidney 
disease (CKD) is an area of growing interest. The beneficial effects of weight loss on the prevention of kidney 
disease and the improvement of kidney function in individuals with obesity have been well documented. Currently, 
the most effective weight loss strategy is metabolic bariatric surgery (MBS), which has been proven to not only 
prevent the progression of CKD but also reverse it. However, awareness and understanding of the impact of 
obesity on the kidney should also extend to the severely obese population with clinically normal renal function. The 
purpose of this review is to outline the current knowledge on the pathophysiology of obesity-induced kidney 
damage, the effects of MBS on renal function in severely obese individuals with or without CKD, and provide the 
current evidence on perioperative management strategies for CKD patients, including diet and nutrition.

Keywords: Kidney function, severe obesity, metabolic bariatric surgery, chronic kidney disease, albuminuria, 
proteinuria, obesity-related kidney disease, obesity-related glomerulopathy

INTRODUCTION
Obesity is a global issue that is ever more discussed with its rise in incidence. According to the World 
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Obesity Atlas 2023, approximately 24% of the global population is projected to have severe obesity [body 
mass index (BMI) ≥ 30 kg/m²] by 2035, which represents an alarming increase from the reported rate of 14% 
in 2020[1]. We are now living in an era where obesity is responsible for more deaths than underweight 
conditions[2]. Severe obesity is associated with an increased risk of hypertension, type 2 diabetes mellitus 
(T2DM), dyslipidemia, metabolic dysfunction-associated fatty liver disease (MAFLD), osteoarthritis, sleep 
apnea, and various cancers. These conditions contribute to higher morbidity and mortality rates within this 
population, and the detrimental effects of obesity on metabolic dysfunction are the focus of ongoing 
research[3,4]. The mechanistic links between chronic kidney disease (CKD) and concurrent MAFLD in the 
severely obese have been consistently reported over the years[5-7]. These findings indicate the interconnected 
pathogenesis of end-organ damage resulting from severe obesity in the presence of metabolic dysfunction. 
There has been an increasing interest in understanding the differences between severely obese patients who 
are metabolically healthy and those who have metabolic dysfunction. Understanding the effects of excess 
body weight and severe obesity on the function of the kidney and the development of CKD is a relevant 
subject to distinguish and prevent irreversible damage to end organs.

Severe obesity is associated with a chronic inflammatory state and its impact on metabolism and overall 
health can be traced back to the adipocyte. Adipocytes are now recognized not only as energy storage cells 
but also as endocrine organs that influence systemic homeostasis[8]. The relentless inflammatory state of the 
adipocytes of the visceral adipose tissue (VAT) in the obese produces proinflammatory cytokines that 
increase insulin resistance while activating the renin-angiotensin-aldosterone system (RAAS). This 
eventually leads to renal inflammation and hyperfiltration, which may persist in certain patients with high 
levels of proinflammatory cytokines [Il-1 β and tumor necrosis factor α (TNF-α)] despite weight loss after 
metabolic bariatric surgery (MBS)[9-11]. Impairment of renal function in super-obese patients can manifest as 
albuminuria, proteinuria, hyperfiltration, and tubular sodium reabsorption. The steady low degree of 
inflammation at the cellular level, oxidative stress, and eventual fibrosis contribute to the surprisingly high 
incidence of stage III to V CKD in the severely obese at 10.6%. This number is higher than that in the 
patient population with T2DM. In a study by Serra et al., 77% of the 95 patients with severe obesity and 
clinically normal renal functions exhibited glomerular lesions[12].

Although the intricacies of severe obesity, innate and adaptive immune system, and kidney function are not 
completely understood, weight loss has been shown to directly improve systemic inflammation and 
glomerular hyperfiltration, resulting in improved renal function[13]. MBS has become known as the most 
effective preventive and treatment method for severely obese patients with CKD[13,14]. However, our goal 
should be not only to prevent and improve renal function in severely obese patients with CKD but also to 
raise awareness of obesity-induced kidney damage and help prevent the progression of irreversible damage 
in severely obese patients with clinically normal renal function[15,16].

The purpose of this review was to describe the current knowledge on the pathophysiology of obesity-
induced kidney damage, the effect of MBS on renal function in the severely obese with or without CKD and 
also provide the current evidence on perioperative management strategies for patients with CKD, including 
diet and nutrition.

The effect of obesity on the kidney
Severe obesity impacts the kidney through both metabolic and hemodynamic (mechanical) mechanisms. 
The reduced afferent vascular resistance of the glomerulus and increased glomerular flow result in 
glomerular hypertension. The obesogenic changes in the adipocytes contribute to the pathophysiology 
starting from defects in glomerular permeability. With increased metabolic dysfunction due to lipotoxicity 
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(even from the perirenal fat, “fatty kidney”), glomerular hypertension and hyperfiltration develop, leading 
to renal inflammation[9,17]. With persistent stress, glomerulomegaly occurs, which is considered the marker 
for increased risk for the eventual development of obesity-related kidney diseases such as obesity-related 
glomerulonephropathy (ORG) with or without focal and segmental glomerulosclerosis (FSGS) [Figure 1][18].

Increased glomerular pressure
The initial assault on the kidney starts with the activation of the RAAS and sympathetic system along with 
insulin resistance, which induces hyperfiltration, the most important pathogenic factor of obesity-related 
kidney disease, directly and indirectly[15]. The overactive RAAS increases the levels of aldosterone, which 
induces vasoconstriction of the efferent arteriole. This results in an increased transcapillary pressure 
difference, which leads to hyperfiltration[19]. The change in the adipocyte of the severely obese promotes the 
secretion of proinflammatory cytokines (adipocytokines) such as TNF-α, leptin, and interleukins that are 
known to induce insulin resistance[20]. Insulin resistance itself also contributes to the increased glomerular 
pressure through vasoconstriction[21]. Because the insulin receptor is expressed on renal tubular cells and 
podocytes, insulin has a direct effect on the tubular function and viability of the podocytes. Insulin normally 
activates the phosphatidylinositol 3-kinase pathway, increasing the production of nitric oxide, which results 
in vasodilation. This pathway is impaired with insulin resistance, causing vasoconstriction and contributing 
to hyperfiltration. In addition to the vasoconstriction caused by the adipocytokines and insulin resistance, 
the increased levels of leptin further activate the sympathetic nervous system by promoting the secretion of 
renin in the kidney, which increases oxidative stress and the secretion of proinflammatory cytokines[19,22].

The tubuloglomerular feedback contributes to the pathophysiology of obesity-related kidney disease by 
increasing sodium reabsorption in response to an increased sodium filtration rate due to glomerular 
hypertension[23]. This, in turn, decreases the delivery of solute to the macula densa, which promotes the 
dilation of the afferent arteriole and further enhances hyperfiltration. Additionally, the activated RAAS 
stimulates sodium reabsorption at the proximal and distal tubules by activating epithelial Na+ channels and 
binding to the mineralocorticoid receptors[24,25]. Thus, the RAAS blockers have been found to reduce the 
degree of hyperfiltration and thus improve albuminuria[26]. Research has demonstrated that individuals with 
severe obesity are more sensitive to the nephroprotective effects of RAAS blockers than non-obese 
individuals[17].

The sodium-glucose cotransporter 2 (SGLT2) is activated by hyperglycemia, which results from insulin 
resistance due to the proinflammatory adipocytokines. The activated SGLT2 induces sodium reabsorption 
in the proximal tubule and reinforces the tubuloglomerular feedback[27]. These findings contribute to our 
understanding of the nephroprotective effects of SGLT2 inhibitors, which, in turn, help mitigate 
hyperfiltration[28]. A systematic review of SGLT2 inhibitors has reported reduced risk of dialysis, 
transplantation, and death[29]. The nephroprotective properties of SGLT2 inhibitors, irrespective of baseline 
albuminuria with RAAS blockade, are shifting the paradigm in the prevention and treatment of obesity-
related kidney disease[18].

Hyperfiltration is also promoted by the excess adipose tissue. The renal blood flow has been known to be 
increased in the severely obese due to higher intra-abdominal pressure and increased extracellular fluid 
volume. The overactive sympathetic system increases the cardiac output and heart rate as these mechanical 
mechanisms further aggravate the degree of hyperfiltration[24,25].

Consequences of mechanical stress on the glomerulus
Hyperfiltration and sodium reabsorption surmount to induce the hypertrophy of glomerular basement 
membrane (GBM) and podocytes by an enhanced tensile strength of the capillaries[30]. The combination of 
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Figure 1. Pathogenesis of obesity-related kidney disease. ↑: increase in; ↓: decrease in. TNF: Tumor necrosis factor; TGF: transforming 
growth factor; IL: interleukin; SGLT2: sodium-glucose cotransporter 2; RAAS: renin-angiotensin-aldosterone system.

proinflammatory adipocytokines and increased aldosterone additionally promotes the production of type 
IV collagen, resulting in glomerular hypertrophy or glomerulomegaly[23]. High levels of leptin, low levels of 
adiponectin, insulin resistance, and oxidative stress further cause endothelial dysfunction and deformed 
podocytes[26]. Podocytes are unable to divide; instead, they can only stretch to cover the expanded GBM, 
which can lead to discrepancies in the areas they cover[30]. Because the podocyte becomes thinned and 
bulges into the urinary space, the pressure from hyperfiltration leads to the detachment of the podocyte 
from the GBM. These changes result in a compromised glomerular filtration barrier, which precipitates 
proteinuria that already exists due to hyperfiltration itself[31].

In early stages without evidence of glomerular dysfunction, the increased renal flow shortens the contact 
time between protein (amino acids and albumin) and the proximal tubular epithelium. This reduces the 
reabsorption of albumin, resulting in albuminuria levels ranging from 30 to 300 mg/day[32]. With time, the 
increased delivery of proteins promotes their reabsorption, including cytokines and growth factors at the 
proximal tubule, leading to inflammation and tubulointerstitial fibrosis[33]. These changes precede tubular 
atrophy, which leads to a more advanced stage of obesity-related kidney disease, namely CKD[34].

Glomerulomegaly with or without FSGS is a pathologic finding of ORG[25]. Typically, ORG patients do not 
exhibit nephrotic-range proteinuria, which occurs only in approximately 30% of cases[35,36]. Instead, most 
patients (52%-90%) present with a subnephrotic state characterized by proteinuria, glomerulopathy, and 
decreased renal function, without accompanying hypoalbuminemia or edema. This phenomenon is thought 
to be due to the compensatory mechanisms during the indolent progression of the underlying etiology[17]. 
Moreover, the presence of FSGS in patients with ORG increases the risk of further renal dysfunction[17].
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Assessment of renal function in patients before and after MBS
Renal function is typically estimated using glomerular filtration rate (eGFR) or serum creatinine in clinical 
settings. However, the limitations of these parameters have come to light, particularly in the severely obese 
patients. The measurement of creatinine clearance for estimation of GFR often leads to significant 
overestimation, while the adjusted eGFR by body surface area (BSA) tends to underestimate the renal 
function in overweight individuals[37]. This discrepancy arises because the BSA and muscle mass in severely 
obese patients are naturally higher than those in lean subjects, resulting in elevated creatinine levels. 
Additionally, significant weight loss after MBS is associated with muscle mass loss and a subsequent 
decrease in creatinine generation, which contributes to the overestimation of GFR[38]. Using BSA for GFR 
correction is inaccurate and not recommended because the number of nephrons does not increase with 
obesity[17]. In contrast, methods to measure GFR (mGFR) using iohexol plasma clearance have been shown 
to be more strongly correlated with serum cystatin C than with serum creatinine[39]. Minor weight loss 
induced by anti-obesity medications (AOMs) does not significantly affect serum creatinine levels, allowing 
for the continued use of conventional creatinine-based equations to estimate GFR[40]. However, it is 
important to consider the limitations of estimating or measuring GFR with creatinine-based equations, 
especially following substantial weight reductions due to MBS.

Other techniques utilizing inulin or transdermal measurements have been suggested but have not been 
implied due to impracticality and the need for further evidence. The presence of albuminuria or proteinuria 
can help detect obesity-induced kidney disease, but some patients with histologically proven ORG did not 
present with albuminuria. Therefore, new biomarkers such as urinary kidney injury molecule-1 (KIM-1), 
urinary cystatin-C, urinary N-acetyl-beta D glucosaminidase (NAG), and urinary neutrophil gelatinase-
associated lipocalin (NGAL) are being researched with promising potential[38]. The accumulation of ectopic 
lipids in the kidney is also being considered as a biomarker for ORG. Therefore, imaging techniques such as 
ultrasonography, ultrasound elastography, computed tomography (CR), and magnetic resonance imaging 
(MRI) are being evaluated as tools to diagnose the progression of ORG[41].

Perioperative management of patients with renal impairment
There are limited data and consensus on the perioperative management of obesity in patients with CKD. 
Given the growing population of severely obese individuals who are at an increased risk for CKD, a 
collaborative approach involving nephrologists is urgently needed[42]. Awareness of the indolent clinical 
course of obesity-related kidney disease is important when managing the severely obese and after MBS. The 
perioperative risk has been known to be increased in the severely obese with CKD. However, the general 
consensus has become that MBS is a safe procedure in this population and that the risks outweigh the 
benefits[43]. Selection criteria should be based on the degree of obesity, treatment goals, and patient 
preferences with a clear understanding of the risks[9].

The patient with renal impairment undergoing MBS is at further risk of exacerbation of renal insufficiency 
during pneumoperitoneum. Minimal insufflation and adequate hydration should be applied. Increased 
intraabdominal pressure at 15 mmHg has been associated with oliguria without change in serum creatinine 
levels and a low-pressure pneumoperitoneum of 12 mmHg has been shown to not influence kidney injury 
biomarkers[44,45]. Although there are no specific guidelines, it is generally recommended to maintain minimal 
insufflation within the accepted clinical range of 12 to 15 mmHg[46]. Postoperative nausea and vomiting 
(PONV) may put the patient at risk for acute kidney injury (AKI). Prophylactic management of PONV with 
a multimodal approach is advised[47].
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AKI after MBS can become a serious complication, with an incidence ranging from 5.8% to 8.5%[48,49]. The 
risk is especially higher within the postoperative 30 days in relation to dehydration, male sex, venous 
thromboembolism, hypertension, limited ambulation, and Roux-en-Y gastric bypass (RYGB). The 
incidence of AKI has shown a correlation with higher rates of complications, readmissions, and 
reoperations[48]. Any medications that may worsen the volume depletion, such as angiotensin-converting 
enzyme inhibitors or angiotensin receptor blockers, should be considered a potential cause and prescribed 
with discretion[50].

Nephrolithiasis or oxalate nephropathy are common reasons for readmission or visits to the emergency 
department after MBS. Primary MBS procedures were all shown to increase the risk of nephrolithiasis by 
six-fold and the recognized risk factors were advanced age, more than two obesity-related comorbidities, 
and a history of nephrolithiasis[51]. This may lead to AKI and require prompt clinical management or may 
further contribute to the progression of CKD. The increased risk is thought to be due to the high-oxalate 
diet and changed gastrointestinal functions, especially after RYGB[52,53]. Hydration is the main preventive 
measure[38].

Renal function in patients after MBS
As obesity-related kidney disease is caused by excess body fat with metabolic alterations, weight reduction is 
a key component in preventing the progression of renal impairment[37]. Obesity is a multifactorial disease 
significantly influenced by genetic factors, as well as by behavioral, psychological, and cultural aspects. 
Management of obesity should be done in a holistic manner with an understanding of the available 
treatment modalities, including anti-obesity medication and MBS, with rigorous education on nutrition, 
eating behavior, and physical activity[20]. The sustained and most effective weight loss provided by MBS 
reverses many of the obesity-related metabolic dysfunctions by improving insulin sensitivity and glomerular 
hyperfiltration while reducing perirenal fat, leptin, adipokines, proinflammatory factors, RAAS activity, 
etc.[37,54,55]. Thus, MBS can be considered a treatment option for obesity-related kidney disease[56].

It is clear that MBS significantly improves albuminuria and proteinuria in severely obese patients with or 
without CKD[11,14]. Patients with CKD who undergo MBS were shown to have a 58% lower risk of a decline 
in eGFR of more than 30%[57]. The decrease in VAT contributes to improving the proinflammatory state and 
reduces reactive oxygen species production by attenuating mitochondrial damage, while weight loss 
counteracts the previously unregulated RAAS[58]. These, in turn, are understood to decrease hyperfiltration, 
thus improving renal function in severely obese patients after MBS[59]. The improvement in GFR has been 
reported to peak between 6 to 12 months postoperatively, and serum creatinine levels show the most 
significant decrease after 3 to 5 years, which were inconsistent with the weight loss trajectories. This finding 
indicates that the nephroprotective effect of MBS arises not only from weight loss but also from the 
remodeling of the metabolic system[60]. The specific relationships and long-term effects on renal function 
remain to be defined, and comparisons based on the type of procedure are yet to be determined.

The albuminuria in patients with preoperative normal kidney functions who had undergone MBS was 
shown to decrease significantly[61,62]. However, this change has been repeatedly observed only in diabetic 
patients[61,62]. Such findings suggest that the improved insulin resistance in the diabetic group due to weight 
loss has a significant nephroprotective effect. On the other hand, the proven tubular damage in obesity-
related kidney disease has been shown to be reversed only in non-diabetic, severely obese patients. These 
results together indicate that there may be different etiologies in diabetic and non-diabetic, severely obese 
patients when it comes to kidney function[63].
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Proteinuria has been shown to improve in 99% of severely obese diabetic patients after RYGB[64]. In the 
randomized-controlled STAMPEDE trial conducted by Schauer et al., the results showed that the eGFR in 
the MBS group improved compared to the intensive medical therapy group among diabetics with preserved 
GFR and mostly without albuminuria, after a 5-year follow-up. However, there were no significant changes 
in the rates of albuminuria in both groups[65].

Postoperative weight loss, glycemic control, and blood pressure have been known to be independent 
parameters in predicting the improvement of CKD. With a 7-year follow-up of CKD patients after MBS in 
the Longitudinal Assessment of Bariatric Surgery (LABS)-2, an improvement was observed in 53% of the 
moderate CKD risk group, 56% in the high CKD risk group, and 23% in the very high CKD group based on 
the Kidney Disease: Improving Global Outcomes (KDIGO) CKD classification[66].

Among the most commonly performed procedures currently, sleeve gastrectomy (SG) and RYGB have been 
the most extensively investigated. SG has been shown to effectively improve insulin resistance, enhance lipid 
metabolism, and reduce proinflammatory responses[67,68]. The eGFR improvement was different among the 
CKD patients depending on their stage. It was more significant in patients with stages II, IIIa, and IIIb CKD 
compared to those with stages I and IV. Additionally, only patients in CKD stages IIIa and IIIb were more 
likely to experience downstaging after MBS than those in CKD stage IV[69]. This is surprising as one may 
suspect that the improvement would be more profound in earlier stages of CKD. On the other hand, RYGB 
seems to be more effective in increasing long-term survival in patients with CKD. This may be related to the 
reported superior improvement of blood pressure control after RYGB compared to that of SG, as well as the 
significantly improved insulin resistance and glucose imbalance[70]. The stabilization of eGFR after RYGB 
has consistently been reported to be associated with improved regulation of leptins and proinflammatory 
cytokines. Another advantage of the RYGB would be the well-established improvement of gastroesophageal 
reflux (GERD) and typically better weight loss outcomes with a lower standard deviation[43]. Although it is 
too early to determine the optimal procedure, the nephroprotective properties of MBS have been proven to 
last up to 9 years in patients without impaired renal function[71].

The evidence on renal outcome in CKD stage IV and V patients after MBS is sparse and has only been 
reported with a small group of patients[72]. A recent study by Billeter et al. reported an achievement of the 
treatment goal (improvement of organ function and gaining access to kidney transplantation) in more than 
50% of 27 patients with stage IV and V CKD after MBS[73]. Although the perioperative risks in the CKD 
group were higher compared to those of patients without renal impairment, dependence on dialysis did not 
have an impact on the outcomes[43]. There have been reports on the improved 5-year mortality of patients 
on hemodialysis by 35% compared to nonsurgical patients[74]. The MBS group from this study had a higher 
kidney transplantation rate of 30%, compared to 20% in the control group. These findings suggest that MBS 
was beneficial in increasing access to kidney transplantation for severely obese patients on hemodialysis. 
Although it is clear that patients with stage III and IV CKD are the ones to recover their renal function, 
MBS can be an option for more advanced-stage CKD patients who are interested in considering the benefits 
of gaining eligibility for transplantation and stabilizing or improving organ function[75].

Kidney transplantation before and after MBS is another subject of interest in the management of patients 
with CKD. MBS is being further established as a safe bridge to easier surgical access for transplantation. It 
has also been suggested as a powerful tool to prevent the weight gain that may be expected after kidney 
transplantation[76]. The SG has been considered more favorable due to immunosuppressant 
pharmacokinetics compared to that of other malabsorptive procedures and may be considered for kidney 
recipients with severe obesity[77].
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Dietary and nutritional management in patients with CKD before and after MBS
Severely obese patients with CKD should be carefully evaluated for metabolic dysfunctions and nutritional 
assessment, including their preoperative eating habits[78]. Serum levels of cholesterol, protein, albumin, and 
prealbumin should be assessed for diagnosis of protein-energy deficit[78].

The KDIGO guidelines are helpful in assisting the dietary management of patients with CKD[22]. However, 
there are no available specific dietary recommendations or guidelines to this date. The principle would be to 
correct any nutritional deficiencies and implement a low-calorie diet with a caloric deficit of 500 to 1,000 
kcal for a preoperative weight loss of 10%, as for all patients undergoing MBS. The patient is expected to 
lose about 0.5 to 1 kg weekly with the low-calorie diet[78]. The efficacy and benefits of a very low-calorie 
ketogenic diet in patients with mild kidney failure (an eGFR between 60 to 89 mL/min/1.73m2) have been 
mentioned in current literature. The observed average weight loss was nearly 20% of the initial weight, with 
no significant change in liver and kidney functions[79]. However, the design of the diet should always be 
individualized, and a multidisciplinary approach, including consultation with a nephrologist, is 
recommended[80,81]. Any mineral or vitamin deficiencies should be identified and corrected depending on 
each patient and the status of dialysis[82].

The postoperative diet for severely obese patients with CKD on dialysis may require a higher caloric intake 
than that of a typical patient undergoing MBS. Generally, caloric intake starts at 400 kcal/day during the 
first week, increases to 800 kcal/day by the end of the first month, and eventually reaches 1,200 to 1,500 
kcal/day within a few months[83].

The generally recommended postoperative daily fluid intake is more than 1.5 L[84]. This guideline can be 
applied to CKD patients who are on conservative management or have undergone kidney transplantation. 
However, CKD patients on dialysis have the risk of edema and require fluid restriction to ensure weight 
gain is limited to less than 2 to 2.5 kg between sessions. The recommended daily fluid intake for these CKD 
patients on dialysis is 500 to 750 mL/day in addition to the daily urine output. Food with a high water 
content such as yogurt, fruit, and vegetables should not be considered a part of the fluid restriction[85]. 
However, daily sodium consumption should be restricted to 6g to reduce water retention in all stages of 
CKD[86].

Protein consumption is crucial in maintaining nitrogen balance and preventing nitrogen catabolism. The 
recommended daily protein intake in the acute postoperative period for patients with CKD who are not on 
dialysis is 1.1 to 1.5 g/kg ideal body weight (IBW) to promote healing after MBS. The impaired renal 
function of the patient with CKD undergoing renal replacement therapy should be taken into consideration. 
In the acute postoperative period, the recommended daily protein intake for CKD patients undergoing renal 
replacement therapy is 1 to 1.5 g/kg IBM when on dialysis and 1 to 1.2 g/kg IBW after kidney 
transplantations[87]. However, the recommended protein intake for the long term differs in each subset of 
patients. A low-protein diet of 0.6 to 0.8 g/kg/day should be implemented in the long term for those with 
CKD stages III, IV, and V who are not on dialysis to prevent hyperfiltration[82,86]. The long-term 
recommended protein intake for the CKD patient is 0.6 to 0.8 g/kg/day of IBW when not on renal 
replacement therapy and 1.0 to 1.2 g/kg/day when on dialysis.

The supplementation or restriction of phosphate, calcium, potassium, sodium, magnesium, iron, folic acid, 
and vitamins should be done based on evidence-based guidelines and recent laboratory test results. A 
summary of the current evidence is shown in Table 1[78,82,87]. Inadequate absorption of nutrients leads to 
dysfunction of the autonomic system and can affect renal function in the long run. For instance, iron 
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Table 1. Recommendations for nutrient supplementation or restriction for patients with CKD

Nutrient Recommended daily intake Additional information

Iron At least 200 mg/day Do not take supplements with foods high in fiber or coffee or tea 
Absorption may be improved with 250 mg of Vitamin C 
Intravenous supplementation in the form of low-dose ferrous bisglycinate chelate 
supplementation may be required as needed

Calcium 1,200-1,500 mg Calcium absorption may be reduced due to decreased capacity to convert inactive vitamin D 
to active form 
800-1,000 mg in moderate to advanced CKD

Phosphate 800-100 mg/day Adjustments should be made based on lab results

Potassium ≤ 4,700 mg/day for stage III 
without hyperkalemia  
≤ 3,000 mg/day from stage IV 
adjusted to hyperkalemia

Constipation may contribute to hyperkalemia 
Patients should be educated about food high in potassium (avocado, potatoes, broccoli, 
celery, banana, etc.)

Magnesium 420 mg/day in male  
320 mg/day in female

Adjustments should be made based on lab results (may fluctuate depending on dialysate or 
immunosuppressants)

Folic acid 400-800 μg/day 800 and 1,000 μg in female patients planning on pregnancy or when pregnant 
In cases of deficiency, 1 mg/day 

Vitamin A 5,000-10,000 IU/day 70% of patients develop a deficiency within 4 years 

Vitamin B1 
(thiamine)

50-100 mg/day In cases of deficiency, an oral dose of 100 mg bid or tid or an intravenous 200 mg tid for 3 to 
5 days, followed by 250 mg/day for 3 to 5 days or until symptoms resolve

Vitamin 
B12 

Only when deficient Signs of deficiency include megaloblastic anemia, peripheral neuropathy, and 
neuropsychiatric symptoms 
In cases of deficiency, an oral dose of 350-500 μg/day or an intramuscular injection of 1 mg 
monthly or 3 mg every 3 months

Vitamin D 3,000 IU/day of cholecalciferol Measurement of calcium and phosphate should be done to diagnose fluctuations due to 
excess or deficiencies 
A level of more than 30 ng/mL should be achieved 
In cases of deficiency, an oral dose of 50,000 IU 3 times per week or 3,000 to 6,000 IU/day

Vitamin E 15 mg/day Screening is recommended

Vitamin K 90-120 μg/day Screening is recommended

CKD: Chronic kidney disease.

deficiency in RYGB patients is associated with a greater risk of renal function deterioration. This is due to 
the crucial role of iron as an anti-inflammatory agent in the mitochondrial function[59,88]. Therefore, vigilant 
patient care and education are crucial to avoid long-term complications arising from preventable nutritional 
deficiencies in patients with CKD.

CONCLUSION
As the prevalence of severe obesity continues to grow, there is an urgent need for a collaborative approach 
among researchers from various fields to understand the pathophysiology of obesity-related kidney disease. 
This understanding is crucial not only for preventing and reversing the progression of obesity-related 
kidney disease in patients with clinically normal renal function but also for determining perioperative 
management strategies for those considering MBS. MBS is a powerful preventive and therapeutic tool for 
achieving sustained significant weight loss. Future research focusing on renal outcomes following massive 
weight loss from MBS, particularly concerning the preoperative stage of disease, would enhance our 
understanding of how excess body weight affects kidney function in relation to metabolic dysfunction.
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