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Abstract

Primary sclerosing cholangitis (PSC) is a rare but devastating disease affecting the intra- and extrahepatic bile
ducts, frequently progressing to end-stage liver disease. Patients develop peribiliary inflammation and fibrosis,
leading to multifocal biliary strictures that evolve to biliary cirrhosis. PSC is frequently associated with
inflammatory bowel disease and a high risk of cholangiocarcinoma development. The pathogenesis of this disease
is not completely understood, and currently, there are no effective therapies beyond liver transplantation. The
available experimental models of PSC do not fully reproduce the phenotype of the disease, and this is a major
limitation for unraveling its pathogenic mechanisms and evaluating novel therapies. A recent study by
Lukasova et al. proposed a new hypothesis on the pathogenesis of PSC. The relevance of their work is two-fold: (1)
the authors provide preliminary evidence suggesting that the disruption of tight junctions in mouse biliary
epithelium leads to a PSC-like phenotype; and (2) they provide the research community with a novel transgenic
mouse model of the disease. Follow-up studies on this new mouse model are eagerly awaited.
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PRIMARY SCLEROSING CHOLANGITIS

Primary sclerosing cholangitis (PSC) is a chronic and progressive liver disease characterized by
fibroinflammatory degeneration of the biliary tree, leading to the development of multifocal strictures of the
intra- and extrahepatic bile ducts"’. PSC is classified as a rare condition more commonly diagnosed in males
(70%) and more frequent in the US and Northern Europe, where its incidence seems to be rising®. The
clinical evolution of the disease is rather unpredictable, but it is strongly associated with the presence of
inflammatory bowel disease (ulcerative colitis and Crohn’s disease)”. Upon progression, PSC is
characterized by biliary cirrhosis and end-stage liver disease, and PSC patients are at a high risk of
developing aggressive malignancies, mainly cholangiocarcinoma (CCA) and colorectal cancer, but also
pancreatic and liver tumors'™. After the implementation of liver transplant in individuals progressing to
end-stage biliary cirrhosis, these cancers represent the main cause of death for PSC patients'*.

The liver phenotype of PSC is dominated by inflammatory and fibrotic lesions potentially affecting bile
ducts of any size, generally extending to large bile ducts. The pathognomonic lesion of the disease is the
presence of onion skin-type periductal fibrosis and a strong ductular reaction’. A variety of disease
mechanisms have been put forward, including autoimmune processes supported by genetic studies,
alterations in bile acids (BA) homeostasis and protective mechanisms toward BA toxicity (the so-called
“HCO, umbrella”), or the triggering of innate immunity responses by gut-derived bacterial products™”.
However, PSC pathogenesis is not completely understood, and the lack of efficacy of immunosuppressive
drugs puts into question the autoimmune etiology. In spite of active research in the field, the incomplete
understanding of PSC pathobiology precludes the implementation of effective therapies. Apart from some
emerging approaches””, only liver transplantation and symptomatic therapies are available”. To better
understand the pathogenic mechanisms and to develop new pharmacological therapies that might slow or
reverse the course of the disease, the availability of animal models of PSC is therefore essential.

EXPERIMENTAL MODELS OF PSC

As outlined above, the pathogenic alterations characterizing PSC are complex and the course of the disease
is highly variable'". The ideal animal model would need to reproduce the pathobiology and natural history
of PSC, and therefore encompass the major attributes of the disease, including: (1) the development of
fibrous obliterative cholangitis of the intra- and extrahepatic bile ducts in association with gut
inflammation; (2) the infiltration of the portal tracts by specific inflammatory cells paralleling the
immunological phenotypes observed in patients, in conjunction with biliary cells atrophy; (3) a propensity
to develop CCA; and, ideally; (4) to mimic the male predominancy of PSC observed in humans'®.
Unfortunately, such an animal model still does not exist. The current models fall into three categories: (1)
chemically-induced cholangitis; (2) models induced by the administration of infectious agents; and (3)
spontaneous transgenic mouse models [Figure 1].

Chemically induced cholangitis

Among these models, we find the intracholedochal administration of 2,4,6-trinitrobenzene sulfonic acid
(TNBS) in rats. TNBS acts as a hapten on intestinal epithelial membrane proteins, eliciting gut
inflammation along with increased portal and bile duct inflammation, immune infiltration, fibrosis,
elevations in serum alkaline phosphatase and bilirubin levels and autoantibodies. However, neither
inflammatory bowel disease (IBD) nor CCA develops, and the model has a high mortality rate”””. Feeding
mice with hydrophobic lithocholic acid (LCA) rapidly causes bile duct injury, destructive cholangitis and
periductal fibrosis, mimicking early-stage PSC. However, the toxicity of LCA precludes the evaluation of
biliary injury in the long term"". Oral administration of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)
in mice causes progressive cholestatic liver injury due to the enhanced bile secretion of porphyrins. Key
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Figure 1. Different rodent models of PSC. See text for details. Figure created with BioRender.com. PSC: Primary sclerosing cholangitis.

features of human PSC are observed in this model, including ductular proliferation and pericholangitis
accompanied by onion skin-type periductal fibrosis; however, biliary strictures and dilations of the large
extrahepatic bile ducts are not found".

Infectious agents and bacterial cell wall components

The association between IBD and PSC led to the hypothesis that portal bacteremia, or bacterial products
from the inflamed gut, may lead to inflammation in the biliary tract. Infection of the biliary tract with
Cryptosporidium parvum in immunodeficient severe combined immunodeficient mice leads to severe
cholangitis and biliary fibrosis. Infection of the gastrointestinal tract with Helicobacter species, such as H.
hepaticus, may also result in the colonization of the bile canaliculi, leading to cholangitis and ductular
reaction. However, no liver fibrosis was observed. In general, these models are complex and their

7,8]

phenotypes have not been well characterized'

Transgenic models

The best characterized genetic models of PSC include mice with homozygous point mutations of the
ferrochelatase gene (fch/fch) and mice with a targeted disruption of the Mdr2 (Abcb4) gene, the Mdr2"
knockout mice. Fch/fch mice lack ferrochelatase activity and, therefore, develop protoporphyrin
accumulation in small bile duct lumina, leading to cholangitis, biliary cell injury, severe biliary fibrosis,
ductular proliferation and progression to cirrhosis. DDC administration in these mice enhances the biliary
secretion of porphyrins and accelerates the course of the disease. Nevertheless, the progression of biliary
injury and the underlying mechanisms in this model need to be further characterized". The Mdr2 gene
encodes a phosphatidylcholine (PC) translocase that is essential for phospholipid secretion from
hepatocytes into the bile. Lack of PC in bile results in an increase in non-micellar-bound BAs, which act as
detergents on the cell membrane of biliary epithelial cells, causing the destruction of tight junctions (T7J) and
the base membrane, resulting in bile leakage into the portal tract""*”. These mice spontaneously develop
periductal inflammation, similar to what is found in patients, and onion skin-like fibrosis, which progresses
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step-wise with the age of the animals'™*"

l. Mdr2"" mice have been extensively used as a surrogate model of
PSC for the study of disease mechanisms and also for drug testing”'*'*. However, there are some limitations
to this model that need to be considered, including the fact that tumors developing in aged mice are more
similar to hepatocellular carcinoma (HCC)"™, or to combined HCC-CCAs"”"* rather than CCAs.
Additionally, Mdr2" mice do not show overt colonic inflammation, and although they display constitutively
elevated levels of inflammatory cytokines in colon tissue, these mice do not replicate the IBD phenotype.
This limitation can be circumvented by the oral administration of dextran sulfate sodium (DSS), a

polysaccharide that triggers colonic inflammation and also markedly aggravates the progression of PSC""”.

NEW PSC MOUSE MODELS TO BETTER UNDERSTAND PSC PATHOGENESIS
The rationale behind a new genetic PSC mouse model

Unfortunately, despite numerous efforts, it appears that the mouse models summarized above do not
sufficiently reflect the pathogenesis of PSC. Even in the case of Mdr2"" mice, which may be regarded as the
best PSC model available, the deficit of PC secretion into bile, considered to be the root cause of their
peribiliary injury and inflammation, is not observed in PSC patients”. Nevertheless, a few years ago,
Stremmel and collaborators put forward a new hypothesis suggesting that reduced PC abundance in the
mucosal surface of the biliary epithelium would compromise mucus hydrophobicity, making biliary cells
more susceptible to being injured by BA from the biliary lumen®". The levels of PC in biliary mucus from
PSC patients have not been measured yet; however, these authors noticed that in patients with ulcerative
colitis, which frequently occurs together with PSC, the concentrations of PC in gut luminal mucus are
markedly reduced, favoring bacterial invasion and subsequent inflammation®*?. Previous work from
Stremmel and colleagues delineated a new transport route for PC from circulating lipoproteins through
intercellular spaces within the mucosa and across the T7J barrier, to finally reach the luminal surface. Once
on the luminal surface, PC would bind different types of mucins, reinforcing the hydrophobicity of the
mucus and its barrier function®?!. The relevance of this pathway, and that of its alteration toward the
pathogenesis of ulcerative colitis, was tested in mice with intestine-specific deletion of the genes Kind1 and 2
(Fermt1 and Fermt2), coding for the T] adaptor proteins kindlin-1 and -2, respectively'”. Interestingly,
these mice developed an ulcerative colitis phenotype, characterized by disturbed crypt architecture, reduced
PC concentrations in luminal mucus, and bacterial invasion in the submucosa. Remarkably, this phenotype
was attenuated by oral PC administration to these Kind1 and 2 mutant mice®. These experimental findings,
and the strong clinical association between inflammatory bowel disease and PSC, led the authors to propose
the hypothesis that a similar situation could occur in the biliary epithelium in PSC patients, in which T]
disruption has also been observed”*”” [Figure 2]. To test their hypothesis, Stremmel and collaborators
developed a new genetic mouse model in which Kind2 was deleted in the biliary epithelium in an inducible
manner upon exposure to tamoxifen. Their study, recently published in Metabolism and Target Organ
Damage, provides insightful preliminary observations supporting the authors’ contention.

Major findings, limitations and future directions

Upon establishment of the genetically modified Kind2 mice colony, young male animals were induced
with tamoxifen for 4 and 8 weeks. No differences were observed in serum enzymes (AST, ALT, LDH and
AP) nor in bilirubin levels at any time point between control and Kind2-deleted animals. However,
histological examination of mice livers revealed various degrees of onion skin-type fibrosis around bile
ducts in Kind2-deleted mice. Morphological observations revealed that the shape of biliary epithelial cells
was altered, suggestive of impaired lateral cell contacts and TJ integrity. According to their hypothesis, the
authors propose that reduced PC availability on the biliary mucosa, due to disrupted delivery from
circulation and across TTJs, could underlie the development of fibrosis with PSC-like characteristics.
Interestingly, these histological alterations were not accompanied by serological markers of cholestasis (i.e.,
elevated AP and bilirubin), which may be explained by the still early stages of disease development in these

flox/flox
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The new hypothesis of PSC as a tight junction disease
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Figure 2. A novel hypothesis on the pathogenesis of PSC. In cases of TJ disruption, the availability of PC interacting with mucin-2 and
mucin-3 within the mucus of the biliary channels is reduced. Insufficient PC reduces mucus hydrophobicity and mucus barrier function,
exposing biliary cells to the toxic effects of biliary acids. Figure created with BioRender.com. PSC: Primary sclerosing cholangitis; TJ: tight
junctions; PC: phosphatidylcholine.

animals in which biliary Kind2 expression has been abated only for a few weeks. The findings of
Lukasova et al. are very promising, and the Kind2-deleted mice indeed deserve to be further
characterized”. There are certain aspects that need to be addressed not only to confirm the validity of these
mice as a PSC model but, most importantly, to support the authors” hypothesis regarding human PSC
pathogenesis. These would include the determination of PC levels in the biliary mucosa, and/or the
elucidation of molecular markers informing PC availability in this compartment. The thorough
characterization of TJs in cholangiocyte epithelium and their eventual disruption in PSC also warrants
further studies. It is important to bear in mind that besides serving as an adapter protein for laterally
localized TTJs, kindlin-2 plays multiple roles in cell regulation, and has been involved in the regulation of
epithelial cell plasticity, integrin and growth factor signaling, and cancer progression””. These notions need
to be considered when interpreting the phenotype of Kind2-deleted mice. Additionally, longitudinal studies
on the progression of liver disease, including the nature of inflammatory infiltrates, BA pools and
composition, fibrosis progression, and the eventual development of malignancy, are certainly required.

CONCLUSIONS

The fundamental mechanisms underlying PSC are still not fully understood. Various animal models based
on pathogenic hypotheses about the development of the human disease have been developed; however,
none of them fully recapitulates the different histological, cellular and molecular hallmarks of the disease.
The work of Lukasova et al. paves the way for testing new and exciting hypotheses on the origins of a
devastating disease”. This report will certainly stir the waters and trigger follow-up studies exploring the
mechanistic intricacies of PSC and the testing of innovative therapeutic strategies. Interestingly, the
pathogenic hypothesis suggested in this study pivots on the impairment of PC availability at the mucosal
interface of the biliary channels as a key trigger of liver injury in PSC. PC is a highly abundant phospholipid
in cellular membranes and also an essential component of lipoproteins, required for very low density
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lipoproteins (VLDL) secretion™. Impairment of PC availability has been linked to the development and
progression of chronic liver diseases™*". A paradigmatic case is metabolic dysfunction-associated steatotic
liver disease (MASLD), where reduced PC levels result in defective VLDL synthesis and hepatic lipid
export™!. Importantly, PC also plays additional roles besides the regulation of lipid metabolism, such as the
modulation of inflammatory pathways not only in the liver but also in the gut or in the adipose tissue'***.
Therefore, it is now widely recognized that the availability of PC is fundamental to preserving systemic
homeostasis. As previously mentioned, in PSC patients, the levels of PC in bile, which are mainly
determined by hepatocellular secretion by specialized transporters”™, are apparently unchanged™.
However, as proposed by Lukasova et al., PC availability in the biliary mucosa would depend on a complex
transport mechanism from the circulation to the outer surface of cholangiocytes through TJs"*. Disruption
of TJs, a cornerstone of the authors’ hypothesis on PSC pathogenesis, would lead to PC deficiency in this
compartment. If experimentally proved, this could be another relevant example of a disease condition
associated with impaired PC metabolism. Importantly, this work may also have therapeutic implications.
Indeed, this study supports the clinical evaluation of PC administration for the management of PSC

patients.
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