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Abstract
In this study, the robust fault-tolerant control problem for T-S fuzzy chaotic systems is studied with the use of a pro-
portional integral observer. Particularly, to accurately consider the real-world scenario, the chaotic system model
incorporates the parameter uncertainties, input delay and external disruptions. Furthermore, a fuzzy-based observer
is put forward based on analyzed system output with the intent of estimating the states of undertaken chaotic sys-
tems. Herein, the system output is susceptible to randomly occurring deception attacks and adheres to the Bernoulli
distribution. Precisely, the consideration of deception attacks in the output channel allows for more secure state
estimation in a networked setting. Subsequently, we develop a proportional integral observer-based fault-tolerant
control that allows for the attainment of goals despite faults and delays in the input channel. Moreover, by setting up
the Lyapunov-Krasovskii functional and blending it with Wirtinger’s integral inequalities, we put together adequate
conditions that ensure the asymptotic stability of the closed-loop systems by establishing conditions in the form of
linear matrix inequalities. In the follow-up, based on the established matrix inequalities, the exact procedure for com-
puting the gain matrices is outlined. As a last step, we put forward numerical simulation outcomes that exhibit the
viability of the theoretical findings.
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1. INTRODUCTION
Chaos is an inherent nonlinear behavior with significant avenues in various real-world uses, including en-
crypted communication, processing data, identifying patterns, and chemical processes [1,2]. As a result, there
has been a heightened focus on chaos-associated nonlinear behavior in the fields of science and technology.
Chaotic systems exhibit unexpected and inconsistent characteristics attributed to initial-value sensitivities,
topological temporary nature, pseudo-randomness and the absence of periodicity which can potentially re-
sult in functionality degradation or system instability [3–5]. Consequently, chaos control has emerged as an
important topic across numerous domains. Numerous intriguing control methodologies have been developed
to examine chaotic systems to date, such as feedback control [6], sliding mode control [7], finite-time control [8],
and so on. Given these developments and their impact on chaotic systems, this topic has gained our attention.

Additionally, various causes, including unforeseen alterations in operational circumstances, dynamicmodifica-
tions in system boundaries and behavioral shifts in physical components, might render the nonlinear character-
istics of chaotic systems prevalent. Furthermore, when the system is subjected to the nonlinear phenomenon,
the control mechanism that was designed for chaotic systems is incapable of producing favorable dynamic
outcomes for chaotic systems. For the purpose of resolving the problem discussed above, the concept of fuzzy
logic [9] is utilized in this investigation in order to effectively address the nonlinear characteristics of the chaotic
system. In detail, the Takagi-Sugeno (T-S) fuzzy model captured growing attention from researchers owing
to its outstanding ability to represent intricate dynamical processes. In detail, the T-S fuzzy model employs a
collection of fuzzy IF-THEN constraints to depict local linear input-output relationships within a nonlinear
system. Upon account of this attribute, the T-S fuzzy model is advantageous for chaotic system analysis and
controller design [10]. Moreover, it has been disclosed that many chaotic systems, including Rosler system,
Lorenz system and Chua’s system, can be precisely represented by T-S fuzzy models [11–14]. Owing to these ad-
vantageous attributes, fuzzy model-based control has been extensively utilized in chaotic systems, prompting
us to undertake this research.

Besides, control systems are prone to actuator failures, which could substantially affect system operations and,
in extreme cases, can cause system instability [15]. Consequently, to preserve the ideal stability and proper
operation, it is crucial to take the adverse outcomes of actuator flaws into account while crafting control sys-
tems [16]. This premise lends conception to a fault-tolerant control framework for dynamical systems [17]. To
put it another way, fault-tolerant control deals with the failed actuators and restores system performance for
ensuring the system runs consistently. The beneficial features of fault-tolerant control have prompted sub-
stantial research efforts [18,19]. In addition to the actuator fault, if the signal transmission times between the
actuator and sensor are prolonged then the control input channel could experience delay and result in unex-
pected degradation in performance, leading to system instability [20–22]. Consequently, while creating a control
protocol, it is relevant and even necessary to consider the input delay [23,24]. Similarly, when there is a discrep-
ancy between the real system and its mathematical model, the performance of the system is likely to suffer [25].
Because of this, embracing uncertainty in system design is important from a theoretical and practical stand-
point [26,27]. Furthermore, as a result of unpredictable variables, the external disruptions are pervasive [28,29].
In order to mitigate these impacts, the extended dissipativity concept is used, which reduces the impact of the
disturbance in the systemmodel [30–32]. Thus, it is theoretically and practically significant to include parameter
uncertainties, actuator faults, external disturbances and input delay in T-S fuzzy chaotic systems.

Meanwhile, estimating the system state in practice gets extremely hard. To address this pressing issue, the
researchers have proposed an observer-based state estimation method [33]. It should be noted that the mathe-
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matical model of the system being studied determines the structure of the observer. The accuracy of the state
estimate is therefore dependent on the mathematical model used and the characteristics of the data that are
used. To that end, the proportional integral observer (PIO) has garnered a lot of interest in many real-world
systems, since the application of PIO is involved in manufacturing, power circuits, and network communica-
tions [34]. The PIO improves the estimate of the system states and boosts the system resiliency which is done
by including the proportional and integral feedback term with regard to the output estimation error. As a
consequence, the PIO technique has gained a lot of traction among academics [35–37]. It should be noted that
the PIO is set up using the system’s output signal but in a networked environment, it might be impacted by
cyberattacks. Consequently, the observer design should take into account aftermath impacts of cyber attacks
in order to obtain a secure estimate of the system states [38,39]. As a consequence of this notion, numerous
intriguing findings on secure state estimation for various dynamical systems have been reported in the liter-
ature [40–49]. Notwithstanding these many initiatives, the analysis of T-S fuzzy chaotic systems in networked
conditions subject to cyber attack scenarios remains an uncharted area and needs exploration.

Driven by above-discussed factors and findings, this study delves into the topic of PIO-based fault-tolerant
control for T-S fuzzy chaotic systems that are susceptible to various factors. Additionally, the following is a
summary of the research achievements presented in this article:

• A PIO-based fault-tolerant control law is configured for the T-S fuzzy chaotic systems in the case of external
disturbances, actuator faults, deception attacks and input delays.

• In detail, with the intent of reconstructing the states of the undertaken model, a PIO is developed with
the fuzzy technique. Additionally, to strengthen the model’s information security, deception attacks are
considered.

• Subsequently, bymaking use of the estimation information procured from the designed observer along with
the feedback control technique, a PIO-based control law is developed, in which actuator faults and input
delays are considered to precisely mimic the actual situations.

• By configuring the suitable Lyapunov-Krasovskii functional candidate, a set of adequate constraints is es-
tablished in the frame of linear matrix inequalities (LMIs) which ensures the asymptotic stability of the
investigated system.

At the end of this study, numerical examples accompanied by the simulation findings are offered which sub-
stantiate the effectiveness and applicability of the offered control mechanism and the established theoretical
findings.

The subsequent sections of this paper are organized as follows: Section 2 outlines the mathematical modeling
of the undertaken model and control design and offers the preliminaries. Section 3 presents the adequate
constraints that ensure the primary intent of this study. The potential of the proposed findings is summarized
in Section 4 through a simulation example. Finally, Section 5 provides a conclusion of our study, presenting
insights and emphasizing the significant findings obtained from our investigation.

2. PROBLEM FORMULATION
2.1. Chaotic system description
Consider a class of T-S fuzzy chaotic fuzzy systems subject to multiple vulnerable factors as follows:
rule for the undertaken plant 𝑖: IF 𝜙1(𝑡) is Φ𝑖

1 and . . . and 𝜙ℎ (𝑡) is Φ𝑖
ℎ, THEN{

¤𝑥(𝑡) = (A𝑖 + ΔA𝑖 (𝑡))𝑥(𝑡) + B𝑖𝑢
𝑓 (𝑡 − ℘(𝑡)) + D𝑖𝑤(𝑡), 𝑖 ∈ 𝜔 = {1, 2, 3, . . . , 𝑙}

𝑦(𝑡) = C𝑖𝑥(𝑡),
(1)

where 𝜙1(𝑡), 𝜙2(𝑡), . . . , 𝜙ℎ (𝑡) are the premise variables, and Φ𝑖
1, Φ

𝑖
2, Φ

𝑖
3,. . .,Φ

𝑖
ℎ are the fuzzy sets; 𝑙 is the num-

ber of fuzzy rules; 𝑥(𝑡) ∈ R𝑛 represents the state vector; 𝑢 𝑓 (𝑡) ∈ R𝑚 signifies the control input; 𝑦(𝑡) ∈ R𝑞
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denotes the measured output vector of the system; ℘(𝑡) indicates the time-varying delay that occurs in the
control channel which satisfies 0 ≤ ℘(𝑡) ≤ ℘̄ and ¤℘(𝑡) ≤ 𝜚, where 𝜚 < 1; 𝑤(𝑡) ∈ R𝑤 indicates the external
disturbance;A𝑖 , B𝑖 , D𝑖 , C𝑖 are the known constant matrices. Moreover, ΔA𝑖 (𝑡) signifies the parameter uncer-
tainty which has the following layout ΔA𝑖 (𝑡) = 𝔅𝑖𝔉𝑖 (𝑡)𝔑𝑖 , and 𝔉𝑇

𝑖 (𝑡)𝔉𝑖 (𝑡) ≤ 𝐼 is a time-varying matrix that
is unknown.

Through the utilization of fuzzy blending techniques, we can attain the underneath the fuzzy chaotic system
(1) as 

¤𝑥(𝑡) =
𝑙∑

𝑖=1
𝒷𝑖 (𝜙(𝑡))

(
(A𝑖 + ΔA𝑖 (𝑡))𝑥(𝑡) + B𝑖𝑢

𝑓 (𝑡 − ℘(𝑡)) + D𝑖𝑤(𝑡)
)

𝑦(𝑡) =
𝑙∑

𝑖=1
𝒷𝑖 (𝜙(𝑡)) (C𝑖𝑥(𝑡)),

(2)

where 𝜙(𝑡) = [𝜙1(𝑡), 𝜙2(𝑡), . . . , 𝜙ℎ (𝑡)], 𝒷𝑖 (𝜙(𝑡)) represents the normalized membership function satisfying:

𝒷𝑖 (𝜙(𝑡)) =

ℎ∏
𝑗=1

Φ𝑖
𝑗 (𝜙 𝑗 (𝑡))

𝑙∑
𝑖=1

ℎ∏
𝑗=1

Φ𝑖
𝑗 (𝜙 𝑗 (𝑡))

≥ 0,
𝑙∑

𝑖=1
𝒷𝑖 (𝜙(𝑡)) = 1,

and Φ𝑖
𝑗 (𝜙 𝑗 (𝑡)) indicates the grade of membership of 𝜙 𝑗 (𝑡) in Φ𝑖

𝑗 .

2.2. Deception attack model
In the current investigation, the deception attack is taken into account in the measurement output channel.
The mathematical configuration of the deception attack is laid out below:

𝑦𝑑 (𝑡) = (1 − 𝜃 (𝑡))𝑦(𝑡) + 𝜃 (𝑡)𝜁 (𝑦(𝑡)), (3)

where 𝜃 (𝑡) ∈ {0, 1} indicates the occurring probability of deception attacks, and 𝜁 (𝑦(𝑡)) illustrates the de-
ceptive signal sent out by the attacker. Further, 𝜃 (𝑡) follows the Bernoulli distribution and it has ensuing
probability constraints: 𝑃𝑟{𝜃 (𝑡) = 1} = E{𝜃 (𝑡)} = 𝑣̄, 𝑃𝑟{𝜃 (𝑡) = 0} = 1 − E{𝜃 (𝑡)} = 1 − 𝑣̄, 𝑣̄ ∈ [0, 1] is
pre-defined scalar.

2.3. Description of PIO system
In practice, directly measuring the system state (2) is not an easy task. In order to address this issue, a PIO
system is developed to estimate the states of the model. Moreover, the observer system is articulated as follows:

¤̂𝑥(𝑡) =
𝑙∑

𝑖=1
𝒷𝑖 (𝜙(𝑡))

(
A𝑖𝑥(𝑡) + B𝑖𝑢

𝑓 (𝑡 − ℘(𝑡)) + L𝑖 (𝑦𝑑 (𝑡) − 𝑦̂(𝑡)) + B𝑖𝑥𝑝 (𝑡)
)
,

𝑦̂(𝑡) =
𝑙∑

𝑖=1
𝒷𝑖 (𝜙(𝑡)) (C𝑖𝑥(𝑡)),

¤𝑥𝑝 (𝑡) = −𝑥𝑝 (𝑡) + L𝑝𝑖 (𝑦𝑑 (𝑡) − 𝑦̂(𝑡))

(4)

where 𝑥(𝑡) ∈ R𝑛 signifies the estimated states of 𝑥(𝑡) and 𝑦̂(𝑡) ∈ R𝑞 epitomize the estimated output of 𝑦(𝑡); 𝐿𝑖

andL𝑝𝑖 indicates the proportional and integral gain matrices of the designed observer, which will be reckoned
in the later portion of this investigation.

2.4. PIO-based control scheme configuration with delay
Rule for the designed control law 𝑗 : IF 𝜙1(𝑡) is Φ 𝑗

1 and . . . and 𝜙ℎ (𝑡) is Φ 𝑗
ℎ, THEN

By leveraging the estimation data obtained from the established observer configuration and the feedbackmech-
anism, a control rule is provided which includes input delay to align closer with the real-world circumstances.
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The dynamic configuration of the control law is given below:

𝑢(𝑡 − ℘(𝑡)) =
ℎ∑
𝑗=1

𝒷 𝑗 (𝜙(𝑡))K 𝑗 𝑥(τ − ℘(𝑡)), (5)

where K 𝑗 is the gain matrices of the controller, which will be determined later.

Apart from this, we consider the controller with faulty actuator model which is defined by 𝑢 𝑓 (𝑡) = 𝔊 𝑓 𝑢(𝑡). In
detail, 𝔊 𝑓 = diag{g1,g2, . . . ,g𝑚}, g𝑠 (𝑠 = 1, 2, . . . , 𝑚) is the fault factor of the 𝑠𝑡ℎ actuator that is assumed
to lie in the interval [g

𝑠
,g𝑠] with 0 < g𝑠 ≤ g𝑠 ≤ g𝑠 ≤ 1. Furthermore, the fault matrix 𝔊 𝑓 is represented as

𝔊 𝑓 = 𝔊0 +𝔊1Σ, where 𝔊0 =
𝔊+𝔊

2 , 𝔊1 =
𝔊−𝔊

2 with 𝔊 𝑓 = diag{g1,g2, . . . ,g𝑚}, 𝔊 𝑓 = diag{g
1
,g

2
, . . . ,g

𝑚
}

and 0 < Σ = diag{𝜋1, 𝜋2, . . . , 𝜋𝑚} ≤ 𝐼 . Then, in accordance with (5), the control set-up with the actuator fault
model can be written as follows:

𝑢 𝑓 (𝑡 − ℘(𝑡)) =
ℎ∑
𝑗=1

𝒷 𝑗 (𝜙(𝑡)) (𝔊0 +𝔊1Σ)K 𝑗 𝑥(τ − ℘(𝑡)). (6)

Further, by defining the error system 𝔢(𝑡) as 𝔢(𝑡) = 𝑥(𝑡)−𝑥(𝑡) andmaking use of relations (3)-(6), the following
set-up of a closed-loop system can be obtained.

¤𝑥(𝑡) =
𝑙∑

𝑖=1

ℎ∑
𝑗=1

𝒷 𝑗 (𝜙(𝑡))
(
(A𝑖 + ΔA𝑖 (𝑡))𝑥(𝑡) + B𝑖 (𝔊0 +𝔊1Σ)K 𝑗 𝑥(τ − ℘(𝑡)) + D𝑖𝑤(𝑡)

)
, (7)

𝔢(𝑡) =
𝑗∑

𝑖=1
𝒷𝑖 (𝜙(𝑡))

(
A𝑖𝔢(𝑡) + ΔA𝑖 (𝑡)𝑥(𝑡) − L𝑖C𝑖𝔢(𝑡) + 𝜃 (𝑡)L𝑖C𝑖𝑥(𝑡) − 𝜃 (𝑡)L𝑖𝜁 (𝑦(𝑡)) + D𝑖𝑤(𝑡)) − B𝑖𝑥𝑝 (𝑡),

¤𝑥𝑝 (𝑡) =
𝑙∑

𝑖=1
𝒷𝑖 (𝜙(𝑡))

(
− 𝑥𝑝 (𝑡) + L𝑝𝑖C𝑖𝔢(𝑡) − 𝜃 (𝑡)L𝑝𝑖C𝑖𝑥(𝑡) + 𝜃 (𝑡)L𝑝𝑖 𝑓 (𝑦(𝑡))

)
. (8)

Assumption 1 For the given real symmetric matrices 𝜅1, 𝜅2, 𝜅3 and 𝜅4, the following constraints are satisfied:
1)𝜅1 ≤ 0, 𝜅3 > 0 and 𝜅4 ≥ 0;
2)(‖𝜅1‖ + ‖𝜅2‖)𝜅4 = 0.

Assumption 2 The nonlinear function 𝑓 (𝑦(𝑡)) satisfies the following constraint

| | 𝑓 (𝑦(𝑡)) | |2 ≤ |H 𝑦(𝑡) |2

whereH is the constant matrix that denotes the upper bound of nonlinear function.

Definition 1 [28] For the given matrices 𝜅1, 𝜅2, 𝜅3 and 𝜅4 with Assumption 1, the undertaken system (1) with the
controller (6) is extended dissipative if the following inequality holds for 𝑇 𝑓 ≥ 0:

E

{∫ 𝑇 𝑓

0
𝜁 (𝑡)𝑑𝑡

}
− sup

0≤𝑡≤𝑇 𝑓

E
{
𝑦𝑇 (𝑡)𝜅4𝑦(𝑡)

}
≥ 𝛾, (9)

where 𝜁 (𝑡) = 𝑦𝑇 (𝑡)𝜅1𝑦(𝑡) + 𝑦𝑇 (𝑡)𝜅2𝑤(𝑡) + 𝑤𝑇 (𝑡)𝜅3𝑤(𝑡).

Lemma 1 [50] For any positive definite matrixZ, given scalars 𝑢 and 𝑣 satisfying 𝑢 < 𝑣, the condition given below
is satisfied for all continuously differentiable function 𝜉 : [𝑢, 𝑣] → R𝛼 :

(𝑢 − 𝑣)
𝑣∫

𝑢

𝜉𝑇 (s)Z𝜉 (s)𝑑s ≥



𝑣∫
𝑢

𝜉 (𝑘)𝑑𝑘
𝑣∫
𝑢

𝑑𝑘
𝑠∫

𝑢

𝜉 (𝑠)𝑑𝑠
𝑣∫
𝑢

𝑑𝑘
𝑠∫

𝑢

𝑑𝑠
𝑟∫
𝑢

𝜉 (𝑟)𝑑𝑟



𝑇 
9Z − 36

𝑢−𝑣Z
60

(𝑢−𝑣)2 Z
∗ 192

(𝑢−𝑣)2 Z − 360
(𝑢−𝑣)3 Z

∗ ∗ 720
(𝑢−𝑣)4 Z




𝑣∫
𝑢

𝜉 (𝑘)𝑑𝑘
𝑣∫
𝑢

𝑑𝑘
𝑠∫

𝑢

𝜉 (𝑠)𝑑𝑠
𝑣∫
𝑢

𝑑𝑘
𝑠∫

𝑢

𝑑𝑠
𝑟∫
𝑢

𝜉 (𝑟)𝑑𝑟


.
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3. MAIN RESULTS
In this section, we focus on deriving sufficient conditions for ascertaining the asymptotic stability of the con-
sidered system by configuring Lyapunov-Krasovskii functional and blending it with the extended Wirtinger’s
integral inequality.

Theorem 1 For given positive scalars ℘̄, 𝑣̄, 𝜚, actuator fault matrix 𝔊 𝑓 and controller gain matrices K 𝑗 , L𝑖 ,
L𝑝𝑖 , system (7) is asymptotically stable, if there exist apt dimension matrices U𝑖 > 0, (𝑖 = 1, 2, 3), W𝑔 > 0
(𝑔 = 1, 2, 3, 4), W̌1 and W̌2 > 0, such that the following condition is satisfied:

𝑙∑
𝑖=1

ℎ∑
𝑗=1

[
Λ𝑖 𝑗

]
15×15 < 0, (10)

where Λ1,1 = 𝑠𝑦𝑚(U1𝑖A𝑖) +W1 +W2 + ℘̄2W̌1 + C𝑇H𝑇HC, Λ1,2 = (𝑣̄U2𝑖L𝑖C𝑖)𝑇 , Λ1,3 = 𝑣̄C𝑇
𝑖 L𝑇

𝑝𝑖U𝑇
3𝑖 , Λ1,5 =

U1𝑖B𝑖𝔊 𝑓K 𝑗 , Λ1,7 = −U1𝑖B𝑖𝔊 𝑓K 𝑗 , Λ1,9 = U1𝑖𝐷𝑖 , Λ2,2 = 𝑠𝑦𝑚(U2𝑖A𝑖 − L𝑖C𝑖) +W3 +W4 + ℘̄2W̌2, Λ2,3 =
−U2𝑖B𝑖+C𝑇

𝑖 L𝑇
𝑝𝑖U𝑇

3𝑖 , Λ2,8 = −𝑣̄U2𝑖L𝑖 , Λ2,9 = U2𝑖𝐷𝑖 , Λ3,3 = −𝑠𝑦𝑚(U3𝑖), Λ3,8 = 𝑣̄U3𝑖L𝑝𝑖 ,Λ4,4 = −W1, Λ5,5 =

−(1−𝜚)W2, Λ6,6 = −W3, Λ7,7 = −(1−𝜚)W4, Λ8,8 = −𝐼, Λ9,9 = −𝐼, Λ10,10 = −9W̌1, Λ10,11 = 36
℘̄ W̌1, Λ10,12 =

− 60
℘̄2 W̌1, Λ11,11 − 192

℘̄2 W̌1, Λ11,12 = 360
℘̄3 W̌1, Λ12,12 = − 720

℘̄3 W̌1, Λ13,13 = −9W̌2, Λ13,14 = 36
℘̄ W̌2, Λ13,15 =

− 60
℘̄2 W̌2, Λ14,14 − 192

℘̄2 W̌2, Λ14,15 = 360
℘̄3 W̌2 and Λ15,15 = − 720

℘̄3 W̌2.

Proof 1 Let us construct the Lyapunov-Krasovskii functional for systems (7)-(8) in the following structure:

V(𝑡) =
3∑

𝑎=1
V𝑎 (𝑡), (11)

where

V1(𝑡) =𝑥𝑇 (𝑡)U1𝑖𝑥(𝑡) + 𝔢𝑇 (𝑡)U2𝑖𝔢(𝑡) + 𝑥𝑇𝑝 (𝑡)U3𝑖𝑥𝑝 (𝑡),

V2(𝑡) =
τ∫

τ−℘̄

𝑥𝑇 (m)W1𝑥(m)𝑑m +
τ∫

τ−℘(𝑡)

𝑥𝑇 (s)W2𝑥(s)𝑑s +
τ∫

τ−℘̄

𝔢𝑇 (m)W3𝔢(m)𝑑m +
τ∫

τ−℘(𝑡)

𝔢𝑇 (s)W4𝔢(s)𝑑s,

V3(𝑡) =℘̄
τ∫

τ−℘̄

τ∫
𝑠

𝑥𝑇 (v)W̌1𝑥(v)𝑑v𝑑s + ℘̄

τ∫
τ−℘̄

τ∫
𝑠

𝔢𝑇 (v)W̌2𝔢(v)𝑑v𝑑s.

Then, by taking the derivative of (11) and applying mathematical expectation along with the solutions from
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(7)-(8), we get

E{ ¤V1(𝑡)} =𝑥𝑇 (𝑡)U1𝑖 ¤𝑥(𝑡) + ¤𝑥𝑇 (𝑡)U1𝑖𝑥(𝑡) + 𝔢𝑇 (𝑡)U2𝑖 ¤𝔢(𝑡) + ¤𝔢𝑇 (𝑡)U2𝑖𝔢(𝑡) + 𝑥𝑇𝑝 (𝑡)U3𝑖 ¤𝑥𝑝 (𝑡) + ¤𝑥𝑇𝑝 (𝑡)U3𝑖𝑥𝑝 (𝑡)

=2𝑥𝑇 (𝑡)U𝑖


𝑙∑

𝑖=1

ℎ∑
𝑗=1

𝒷 𝑗 (𝜙(𝑡))
(
A𝑖𝑥(𝑡) + B𝑖𝔊 𝑓K 𝑗 𝑥(τ − ℘(𝑡)) + D𝑖𝑤(𝑡)

)
+ 2𝔢𝑇 (𝑡)U2𝑖

[
𝑗∑

𝑖=1
𝒷𝑖 (𝜙(𝑡))

(
A𝑖𝔢(𝑡) − L𝑖C𝑖𝔢(𝑡) + 𝜃 (𝑡)L𝑖C𝑖𝑥(𝑡) − 𝜃 (𝑡)L𝑖𝜁 (𝑦(𝑡)) + D𝑖𝑤(𝑡)) − B𝑖𝑥𝑝 (𝑡)

]
+ 2𝑥𝑇𝑝U3𝑖

[
𝑙∑

𝑖=1
𝒷𝑖 (𝜙(𝑡))

(
− 𝑥𝑝 (𝑡) + L𝑝𝑖C𝑖𝔢(𝑡) − 𝜃 (𝑡)L𝑝𝑖C𝑖𝑥(𝑡) + 𝜃 (𝑡)L𝑝𝑖𝜁 (𝑦(𝑡))

) ]
(12)

E{ ¤V2(𝑡)} =𝑥𝑇 (𝑡)W1𝑥(𝑡) − 𝑥𝑇 (τ − ℘̄)W1𝑥(τ − ℘̄) + 𝑥𝑇 (𝑡)W2𝑥(𝑡) − (1 − 𝜚)𝑥𝑇 (τ − ℘(𝑡))W2𝑥(τ − ℘(𝑡))
+ 𝔢𝑇 (𝑡)W3𝔢(𝑡) − 𝔢𝑇 (τ − ℘̄)W3𝔢(τ − ℘̄) + 𝔢𝑇 (𝑡)W4𝔢(𝑡) − (1 − 𝜚)𝔢𝑇 (τ − ℘(𝑡))W4𝔢(τ − ℘(𝑡)),

(13)

E{ ¤V3(𝑡)} =℘̄2𝑥𝑇 (𝑡)W̆1𝑥(𝑡) + ℘̄2𝔢𝑇 (𝑡)W̆2𝔢(𝑡) − ℘̄

τ∫
τ−℘̄

𝑥𝑇 (s)W̆1𝑥(s)𝑑s − ℘̄

τ∫
τ−℘̄

𝔢𝑇 (s)W̆2𝔢(s)𝑑s. (14)

Now, redrafting the integral term in inequality (14) by making use of Lemma 1, we get

−℘̄
τ∫

τ−℘̄

𝑥𝑇 (𝑡)W̌1𝑥(𝑡)𝑑 (𝑡) ≤ Ψ𝑇 (𝑡)

−9W̌1

36
℘̄ W̌1 − 60

℘̄2 W̌1

∗ − 192
℘̄2 W̌1

360
℘̄3 W̌1

∗ ∗ − 720
℘̄3 W̌1

 Ψ(𝑡), (15)

−℘̄
τ∫

τ−℘̄

𝔢𝑇 (𝑡)W̌2𝔢(𝑡)𝑑 (𝑡) ≤ Ψ̂𝑇 (𝑡)

−9W̌2

36
℘̄ W̌2 − 60

℘̄2 W̌2

∗ − 192
℘̄2 W̌2

360
℘̄3 W̌2

∗ ∗ − 720
℘̄3 W̌2

 Ψ̂(𝑡), (16)

Ψ𝑇 (𝑡) =
[

τ∫
τ−℘̄

𝑥𝑇 (𝑠)𝑑𝑠
τ∫

τ−℘̄
𝑑𝑠

𝑠∫
τ−℘̄

𝑥𝑇 (𝑣)𝑑𝑣
τ∫

τ−℘̄
𝑑𝑠

𝑠∫
τ−℘̄

𝑑𝑣
𝑣∫

τ−℘̄
𝑥𝑇 (𝑢)𝑑𝑢

]
and

Ψ̂𝑇 (𝑡) =
[

τ∫
τ−℘̄

𝔢𝑇 (𝑠)𝑑𝑠
τ∫

τ−℘̄
𝑑𝑠

𝑠∫
τ−℘̄

𝔢𝑇 (𝑣)𝑑𝑣
τ∫

τ−℘̄
𝑑𝑠

𝑠∫
τ−℘̄

𝑑𝑣
𝑣∫

τ−℘̄
𝔢𝑇 (𝑢)𝑑𝑢

]
.

Moreover, in light of the presumption on deception attack function 𝜁 (𝑦(𝑡)) on (3), the ensuing inequality is
attained:

𝑥𝑇 (𝑡)C𝑇H𝑇HC𝑥(𝑡) − 𝜁𝑇 (𝑦(𝑡))𝜁 (𝑦(𝑡)) ≥ 0. (17)

Further, by combining (12)-(17), we end up with the hereunder relation:

E{ ¤V(𝑡) − 𝑤𝑇 (𝑡)𝑤(𝑡)} ≤ 𝜋𝑇 (𝑡)
[ 𝑙∑
𝑖=1

ℎ∑
𝑗=1

𝒷 𝑗 (𝜙(𝑡))Λ𝑖, 𝑗

]
𝜋(𝑡) (18)

where 𝜋𝑇 (𝑡) =
[
𝑥𝑇 (𝑡) 𝔢𝑇 (𝑡) 𝑥𝑇𝑝 (𝑡) 𝑥𝑇 (τ−℘̄) 𝑥𝑇 (τ−℘(𝑡)) 𝔢𝑇 (τ−℘̄) 𝔢𝑇 (τ−℘(𝑡)) 𝜁𝑇 (𝑦(𝑡)) 𝑤𝑇 (𝑡) Ψ𝑇 (𝑡) Ψ̂𝑇 (𝑡)

]
and Λ𝑖, 𝑗 is defined in statement of theorem. Thereafter, if the constraint (10) holds, then in light of the theory
of Lyapunov’s stability, it is obvious that the closed-loop system (7)-(8) is asymptotically stable. This completes
the proof of the theorem.

Next, in the following theorem, the delay-dependent conditions are derived for the uncertain chaotic system
given in (1) under the known actuator fault (6) and unknown gain. Added to this, adequate conditions are
configured in the form of matrix inequalities with the extended dissipativity theory.
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Theorem 2 Let ℘̄, 𝑣, 𝜚, 𝜀, 𝛾 be positive scalars and system (1) with known actuator fault (6) is asymptotically
stable with extended dissipativity, if there exist scalars 𝜇, 𝜗1, 𝜗2 and positive definite matrices 𝔛𝑚𝑖 > 0, (𝑚 =

1, 2, 3), Ŵ𝑔 > 0 (𝑔 = 1, 2, 3, 4), ˆ̌W1 and ˆ̌W2 > 0 such that the following conditions are met:[
−𝜇𝐼 C𝑖𝔛2𝑖 − 𝔛̄2𝑖C𝑖
∗ −𝐼

]
< 0, (19)

Θ𝑖 𝑗 =



Π𝑖 𝑗15×15 ג Ξ1 𝜀Ξ𝑇
2 Ξ3 𝜀Ξ𝑇

4 Ξ𝑇
5

∗ −𝐼 0 0 0 0 0
∗ ∗ −𝜀𝐼 0 0 0 0
∗ ∗ ∗ −𝜀𝐼 0 0 0
∗ ∗ ∗ ∗ −𝜀𝐼 0 0
∗ ∗ ∗ ∗ ∗ −𝜀𝐼 0
∗ ∗ ∗ ∗ ∗ 0 −𝐼


< 0, (20)

where Π1,1 = 𝑠𝑦𝑚(A𝑖X1𝑖) + Ŵ1 + Ŵ2 + ℘̄2 ˆ̌W1, Π1,2 = 𝑣̄C𝑇
𝑖 L𝑇

𝑜𝑖 , Π1,3 = 𝑣̄C𝑇
𝑖 L𝑇

𝑝𝑖 , Π1,4 = B𝑖𝔊 𝑓Y𝑗 , Π1,6 =

−𝛿1B𝑖𝔊 𝑓Y𝑗 , Π1,9 = 𝐷𝑖 − 𝜅2C𝑇
𝑖 , Π2,2 = 𝛿1𝑠𝑦𝑚(A𝑖X2𝑖) − 𝛿1L𝑜𝑖C𝑖 + Ŵ3 + Ŵ4 + ℘̄2 ˆ̌W2, Π2,3 = −𝛿2B𝑖X2𝑖 +

𝛿1C𝑇
𝑖 L𝑇

𝑠𝑖 , Π2,8 = 𝑣̄ 𝐼, Π2,9 = D𝑖 , Π3,3 = 𝛿2𝑠𝑦𝑚(M𝑝X3𝑖),Π3,8 = 𝑣̄ 𝐼, Π4,4 = −Ŵ1, Π5,5 = −(1 − 𝜚)Ŵ2, Π6,6 =

−Ŵ3, Π7,7 = −(1−𝜚)Ŵ4, Π8,8 = −𝐼, Π9,9 = −𝜅3𝐼, Π10,10 = −9 ˆ̌W1, Π10,11 = 36
℘̄

ˆ̌W1, Π10,12 = − 60
℘̄2

ˆ̌W1, Π11,11−
192
℘̄2

ˆ̌W1, Π11,12 = 360
℘̄3

ˆ̌W1, Π12,12 = − 720
℘̄3

ˆ̌W1, Π13,13 = −9 ˆ̌W2, Π13,14 = 36
℘̄

ˆ̌W2, Π13,15 = − 60
℘̄2

ˆ̌W2, Π14,14 −

192
℘̄2

ˆ̌W2, Π14,15 = 360
℘̄3

ˆ̌W2 and Π15,15 = − 720
℘̄3

ˆ̌W2. ג =

[
X1𝑖H𝑇

𝑖 C𝑇
𝑖 0 · · · 0︸︷︷︸

14 𝑡𝑖𝑚𝑒𝑠

]𝑇
, Ξ1 =

[
𝔅𝑇

𝑖 𝔅𝑇
𝑖 0 · · · 0︸︷︷︸

13 𝑡𝑖𝑚𝑒𝑠

]𝑇
,

Ξ2 =

[
𝔑𝑖X1𝑖 0 · · · 0︸︷︷︸

14 𝑡𝑖𝑚𝑒𝑠

]
, Ξ3 =

[
X1𝑖𝔅𝑇

𝑖 0 · · · 0︸︷︷︸
14 𝑡𝑖𝑚𝑒𝑠

]𝑇
, Ξ4 =

[
𝔑𝑇

𝑖 X1𝑖 0 · · · 0︸︷︷︸
14 𝑡𝑖𝑚𝑒𝑠

]
,

Ξ5 =

[
(X1𝑖C𝑇

𝑖 𝜅1)𝑇 0 · · · 0︸︷︷︸
14 𝑡𝑖𝑚𝑒𝑠

]𝑇
. In addition, if the above-offered constraints have a workable solution, then the

gain matrices can be computed by using the ensuing connection: L𝑖 = L𝑜𝑖𝔛̄−1
2𝑖 , L𝑝𝑖 = L𝑠𝑖𝔛̄−1

2𝑖 andK 𝑗 = Y𝑗𝔛−1
1𝑖 .

Proof 2 The proof of this theorem follows from the results (10) obtained in Theorem 1 along with system uncer-
tainty and extended dissipative theory. To proceed ahead, let us impose the conditions U−1

1𝑖 = 𝔛1𝑖 , U−1
2𝑖 = 𝔛2𝑖 ,

U−1
3𝑖 = 𝔛3𝑖 , 𝔛1𝑖W1𝔛1𝑖 = Ŵ1, 𝔛1𝑖W2𝔛1𝑖 = Ŵ2, 𝔛2𝑖W3𝔛2𝑖 = Ŵ3, 𝔛2𝑖W4𝔛2𝑖 = Ŵ4, C𝑖𝔛2 = 𝔛̄2C𝑖 , 𝔛1𝑖W̆1𝔛1𝑖 =
ˆ̆W1,𝔛2𝑖W̆2𝔛1𝑖 =

ˆ̆W2, alongwith pre- and post-multiplication by {U−1
1𝑖 ,U−1

2𝑖 ,U−1
3𝑖 ,U−1

1𝑖 ,U−1
1𝑖 ,U−1

2𝑖 ,U−1
2𝑖 ,U−1

2𝑖 ,

𝐼,U−1
1𝑖 ,U−1

1𝑖 ,U−1
1𝑖 ,U−1

2𝑖 ,U−1
2𝑖 ,U−1

2𝑖 } of the matrix Λ𝑖, 𝑗 in the previous theorem. As a result of this presumption
and by making use of Schur complement, we arrive at the matrix Θ𝑖 𝑗 defined in the theorem statement.

Further by tracing the similar fashion of Theorem 1, we can attain E{ ¤V(𝑡)} ≺ 0. Then, with the extended
dissipative criterion 𝜁 (𝑡), we can obtain the following relation:

E{ ¤V(𝑡)} − 𝜁 (𝑡) ≤ 0.

Moreover, by integrating the above inequality from 0 to τ, we obtain

E{V(𝑡)} ≤ E{
τ∫

0

𝜁 (𝑠)𝑑𝑠}. (21)

On the basis of Definition 1, we have

E

{∫ 𝑇 𝑓

0
𝜁 (𝑡)𝑑𝑡

}
− sup

0≤𝑡≤𝑇 𝑓

E
{
𝑦𝑇 (𝑡)𝜅4𝑦(𝑡)

}
≥ 𝛾. (22)
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Subsequently, we need to establish that the above constraint obeys for any matrices 𝜅1, 𝜅2, 𝜅3 and 𝜅4 under the
setting of Assumption 1. In this regard, we can characterize the parameter 𝜅4 into two types.

First, if ‖𝜅4‖ = 0, then the inequality (22) implies for any 𝑇 𝑓 ≥ 0 that

𝑇 𝑓∫
0

𝜁 (𝑠)𝑑𝑠 ≥ 𝛾. (23)

If ‖𝜅4‖ ≠ 0, we can have from Assumption 1 that the associated matrices are 𝜅1 = 0, 𝜅2 = 0, 𝜅3 > 0, thus for any
𝑇 𝑓 ≥ 𝑡 ≥ 0, we have

𝑇 𝑓∫
0

𝜁 (𝑠)𝑑𝑠 ≥
𝑡∫

0

𝜁 (𝑠)𝑑𝑠 ≥ 𝛾. (24)

Suppose there exists a scalar 0 < 𝜂 < 1 such that

𝑇 𝑓∫
0

𝜁 (𝑠)𝑑𝑠 ≥ 𝜂𝑥𝑇 (𝑡)U1𝑖𝑥(𝑡) + 𝛾. (25)

By letting C𝑇
𝑖 𝜅4C𝑖 < 𝜂U1𝑖 , then we have

𝑦𝑇 (𝑡)𝜅4𝑦(𝑡) = 𝑥𝑇 (𝑡)C𝑇
𝑖 𝜅4C𝑖𝑥(𝑡) < 𝜂𝑥𝑇 (𝑡)𝑥(𝑡). (26)

It is clear from (25) and (26) that

𝑇 𝑓∫
0

𝜁 (𝑠)𝑑𝑠 ≥ 𝑦𝑇 (𝑡)𝜅4𝑦(𝑡) + 𝛾. (27)

Thus, the inequality (9) holds for 𝑇 𝑓 ≥ 0. Further, if conditions (19)-(20) hold, then we conclude that addressed
system (1) is asymptotically stable with the extended dissipative which concludes the proof of this theorem.

At the end of this portion, we prove that the fuzzy chaotic system (1) is asymptotically stable with extended
dissipative thorough the designed fault-tolerant controller (6) under the unknown actuator faults.

Theorem 3 Let ℘̄, 𝑣, 𝜚, 𝜀, 𝛾 be given positive scalars. Then, system (1) with the unknown fault controller (6) is
asymptotically stable with the extended dissipative, if there exist positive scalars 𝜇, 𝜗1, 𝜗2 and matrices 𝔛𝑚𝑖 > 0,
(𝑚 = 1, 2, 3), Ŵ𝑔 > 0 (𝑔 = 1, 2, 3, 4), ˆ̌W1 and ˆ̌W2 > 0 such that the ensuing LMIs hold:[

−𝜇𝐼 C𝑖𝔛2𝑖 − 𝔛̄2𝑖C𝑖
∗ −𝐼

]
< 0, (28)


Θ𝑖 𝑗 𝜀𝔖𝑇

1 𝔖2 𝔖𝑇
3

∗ −𝜀𝐼 0 0
∗ ∗ −𝜀𝐼 0
∗ ∗ ∗ −𝜀𝐼

 < 0, (29)
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where𝔖1 =

[
B𝑇
𝑖 𝔊

𝑇
1 0 · · · 0︸︷︷︸

20 𝑡𝑖𝑚𝑒𝑠

]
,𝔖2 =

[
0 0 0 Y𝑇

𝑗 0 Y𝑇
𝑗 0 · · · 0︸︷︷︸

15 𝑡𝑖𝑚𝑒𝑠

]𝑇
,𝔖3 =

[
0 · · · 0︸︷︷︸
15 𝑡𝑖𝑚𝑒𝑠

B𝑇
𝑖 𝔊1 0 · · · 0︸︷︷︸

5 𝑡𝑖𝑚𝑒𝑠

]
.

Furthermore, the gain matrices of offered controller and observer are obtained by solving the ensuing connection
L𝑖 = L𝑜𝑖𝔛̄−1

2𝑖 , L𝑝𝑖 = L𝑠𝑖𝔛̄−1
2𝑖 andK 𝑗 = Y𝑗𝔛−1

1𝑖 .

Proof 3 The proof of this theorem can be straightforwardly obtained by replacing the actuator fault matrix 𝔊 𝑓

with𝔊0 +𝔊1Σ in the previous theorem. Thus, the proof is omitted here.

Remark 1 It should be mentioned that the Lyapunov-Krasovskii functional is specifically designed to handle sys-
tems with delays. It accounts for the past states of the system, making it suitable for systems where delay affects
stability, which traditional Lyapunov functionals may not address adequately. Further, it allows for a more com-
prehensive analysis of stability, as it includes integral terms that capture the system’s history over a time interval.
This inclusion can result in less conservative stability criteria compared to conventional Lyapunov functionals. On
the other hand, extendedWirtinger inequality plays a significant role in maximizing the feasible region of stability
criteria and obtaining maximum delay bounds of time delays for guaranteeing system stability in a given con-
straint. Thus, based on these considerations, in our work, Lyapunov-Krasovskii functional with double-integral
term is considered. Subsequently, the LMI conditions are derived based on the constructed Lyapunov-Krasovskii
functional by properly applying the extended Wirtinger inequality.

4. SIMULATION VERIFICATION
This section includes an illustrative example demonstrating the effectiveness and superiority of the proposed
criterion. Notably, we leverage MATLAB software to aid in the acquisition of simulation results. For this
purpose, we consider a chaotic Rossler’s system [51] and its dynamics are laid out below:


¤𝑥1(𝑡) = −𝑥2(𝑡) − 𝑥3(𝑡),
¤𝑥2(𝑡) = 𝑥1(𝑡) + 𝔞𝑥2(𝑡),
¤𝑥3(𝑡) = 𝔟𝑥1(𝑡) − (𝔠 − 𝑥1(𝑡))𝑥3(𝑡) + 𝑢(𝑡),

(30)

where 𝑥1(𝑡) ∈ [𝔠 − 𝔡 𝔠 + 𝔡], by using fuzzy modeling method as in [51], we get the system matrices as A1 =
0 −1 −1
1 𝔞 0
𝔟 0 −𝔡

 , A2 =


0 −1 −1
1 𝔞 0
𝔟 0 𝔡

 , B1 = B2 =


0
0
1

 , D1 = D2 =


0.2 0.3 0.1
0.1 0.2 0.3
0.1 0.7 0.4

 ,
C1 = C2 =


1 0 0
0 1 0
0 0 1

 ,𝔅1 =


0.12 0.15 0
0.22 0 0.3
0.31 0.2 0.2

 ,𝔅2 =


0.12 0.1 0
0.32 0 0.4
0.3 0.2 0.3

 ,𝔑1 = 𝔑2 =


0.1 0.4 0
0.3 0 0.5
0.2 0.3 0.1

 .
Further, we have taken the parameters involved in the simulation as 𝔞 = 0.3, 𝔟 = 0.5, 𝔠 = 5, 𝔡 = 10, 𝑣̄ = 0.3,
℘̄ = 0.5, 𝛼 = 0.6, 𝛿1 = 1.2, 𝛿2 = 1.5, 𝛾 = 0.01, 𝜅1 = 5, 𝜅2 = 0.2, 𝜅3 = 0.7, 𝜀 = 0.9, and 𝜚 = 1. The fuzzy mem-
bership function to this network transmission is taken as 𝒷1(𝜙(𝑡)) = 𝔠+𝔡−𝑥1 (𝑡)

2𝔡 and 𝒷2(𝜙(𝑡)) = 1 − 𝒷1(𝜙(𝑡)).
Moreover, the actuator fault𝔊 𝑓 is assumed within the interval (0.2, 0.8) and the time-varying delay is selected
as ℘(𝑡) = 0.3 + 0.6(0.9 + 0.5𝑠𝑖𝑛(0.3τ)). Specifically, the chaotic behavior of the considered system model is
supplied in Figure 1.

Moreover, by inputting the aforementioned parameters in Theorem 3 and solving it via standard software, the
controller and observer gains are obtained as follows:
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Figure 1. Chaotic behavior of considered system under these parameters.

K1 =
[

0.3703 0.0422 −0.0448
]
, K2 =

[
0.3674 0.1812 0.0209

]
,

L1 =


8.3546 −1.0633 −1.6445
−1.0633 12.0220 −0.1654
−1.6445 −0.1654 4.5937

 , L2 =


24.5503 −7.0704 −2.3350
−7.0704 51.0683 0.7260
−2.3350 0.7260 33.8401

 ,
L𝑝1 =


1.7967 −0.1956 0.0187
−0.1956 1.3038 0.0149
0.0187 0.0149 0.9877

 , L𝑝2 =


3.9617 0.1771 −0.2038
0.1771 2.5764 −0.0264
−0.2038 −0.0264 0.0819

 .
For simulation purposes, the external disturbance signal and nonlinear deception attack function are consid-
ered as

𝑤(𝑡) =
[

0.1 sin(0.4𝜋τ) 0.2 sin(0.4𝜋τ) 0.3 sin(0.4𝜋τ)
]𝑇

and
𝑓 (𝑦(𝑡)) =

[
0.01 tanh(0.2𝑥1(𝑡)) 0.03 tanh(0.5𝑥2(𝑡))) 0.04 tanh(0.2𝑥3(𝑡))

]
.𝑇

In the follow-up, by utilizing the gain matrices and the parameters put forward above, the simulation task is
carried out under random initial conditions. Specifically, in Figure 2, the response of the state trajectories in
the presence and absence of the control is presented. It can be seen that the system trajectories diverge when
the controller is absent, whereas, under the developed controller, the intended performance of the system is ac-
complished. In other words, the system trajectories converge to the equilibrium point, even in the presence of
several deteriorating factors. From these figures, the inherent potential of the developed control is straightfor-
wardly exhibited. Furthermore, the significance of the developed observer is demonstrated in Figure 3. Herein,
the observer trajectories precisely estimate the system trajectories, showcasing the viability of the observer.

Subsequently, to showcase the impact of actuator faults, Figures 4-6 are provided. Specifically, the trajectories
of the system output with and without fault are presented in Figure 4. Likewise, the response of state and
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Figure 2. Time evolution of states of the undertaken system. (A) Open loop system; (B) Closed loop system.

Figure 3. Response of system and its corresponding observer trajectories. (A) 𝑥1 (𝑡 ) 𝑎𝑛𝑑 𝑥̂1 (𝑡 ); (B) 𝑥2 (𝑡 ) 𝑎𝑛𝑑 𝑥̂2 (𝑡 ); (C) 𝑥3 (𝑡 ) 𝑎𝑛𝑑 𝑥̂3 (𝑡 ).

its respective observer response in the situation where the actuator is functioning normally without the fault
are presented in Figure 5. It is evidently visible that the estimation performance is better when compared
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Figure 4. Progression of output trajectories. (A) With actuator faults; (B) Without actuator faults.

Figure 5. Time profile of system and its corresponding observer without actuator faults. (A) 𝑥1 (𝑡 ) 𝑎𝑛𝑑 𝑥̂1 (𝑡 ); (B) 𝑥2 (𝑡 ) 𝑎𝑛𝑑 𝑥̂2 (𝑡 );
(C)𝑥3 (𝑡 ) 𝑎𝑛𝑑 𝑥̂3 (𝑡 ).

with Figure 3. Eventually, the pictorial representation of the developed control protocol under the same two
scenarios is laid out in Figure 6. Overall, from these figures, the impact of actuator faults of the considered

http://dx.doi.org/10.20517/ces.2024.67
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Figure 6. Response of control trajectories. (A) With actuator faults; (B) Without actuator faults.

Figure 7. Response of state estimation error. (A) Under PIO; (B) Under Luenberger observer.

system and the observer is clearly exhibited.

Ultimately, to highlight the potential of the configured PIOover the conventional Luenberger observer, Figure 7
is depicted. Specifically, in this figure, the state estimation trajectories for these two observers are offered. It is
seen that the estimation error is reduced significantly. In sum, the results of this simulation study indicate that
the suggested control mechanism assists the assayed systems in attaining asymptotic stability despite parameter
uncertainties, input delay, deception attacks, and external disturbances.

5. CONCLUSION
Over this research endeavor, we have tackled the robust fault-tolerant control issue for the T-S fuzzy chaotic
system in the midst of parameter uncertainties, input delay, deception assaults, and external disturbances.
To begin, the system states have been estimated by means of configuring fuzzy-based observer and therein,
the output measurement of the system model considers deception attacks in the output channel to ensure
secure estimation. Therein, it is presupposed that the deception attacks occur at random which considers the
Bernoulli distribution. Secondly, the robust fault-tolerant control has been developed by incorporating the
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actuator faults and input delays. Here, the system is driven to achieve its goals by substantially mitigating the
actuator faults. Thirdly, adequate stability criteria are formed with the assistance of Lyapunov stability theory
and the LMI approach and the gain matrices have been emitted based on the derived conditions. In the end,
the numerical results are provided to show off the envisaged use of the set-up control technique.
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