
© The Author(s) 2017                                                                                                                                 www.oaepublish.com328

Androgen-AR axis in primary and metastatic 
prostate cancer: chasing steroidogenic 
enzymes for therapeutic intervention
Agnese C. Pippione1, Donatella Boschi1, Klaus Pors2, Simonetta Oliaro-Bosso1, Marco L. Lolli1

1Department of Science and Drug Technology, University of Torino, 10125 Torino, Italy.
2Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK.

Correspondence to: Dr. Marco L. Lolli, Department of Science and Drug Technology, University of Torino, Via Pietro Giuria 9, 10125 Torino, Italy. 
E-mail: marco.lolli@unito.it; Dr. Simonetta Oliaro-Bosso, Department of Science and Drug Technology, University of Torino, Via Pietro Giuria 9, 10125 
Torino, Italy. E-mail: simona.oliaro@unito.it

How to cite this article: Pippione AC, Boschi D, Pors K, Oliaro-Bosso S, Lolli ML. Androgen-AR axis in primary and metastatic prostate cancer: 
chasing steroidogenic enzymes for therapeutic intervention. J Cancer Metastasis Treat 2017;3:328-61.

Quick Response Code:

Topic: How does the prostate cancer microenvironment affect the metastatic 
process and/or treatment outcome? Open Access

Pippione et al. J Cancer Metastasis Treat 2017;3:328-61
DOI: 10.20517/2394-4722.2017.44 Journal of 

Cancer Metastasis and Treatment
www.jcmtjournal.com

Androgens play an important role in prostate cancer (PCa) development and progression. 
Although androgen deprivation therapy remains the front-line treatment for advanced 
prostate cancer, patients eventually relapse with the lethal form of the disease. The prostate 
tumor microenvironment is characterised by elevated tissue androgens that are capable of 
activating the androgen receptor (AR). Inhibiting the steroidogenic enzymes that play vital 
roles in the biosynthesis of testosterone (T) and dihydrotestosterone (DHT) seems to be an 
attractive strategy for PCa therapies. Emerging data suggest a role for the enzymes mediating 
pre-receptor control of T and DHT biosynthesis by alternative pathways in controlling 
intratumoral androgen levels, and thereby influencing PCa progression. This supports the 
idea for the development of multi-targeting strategies, involving both dual and multiple 
inhibitors of androgen-metabolising enzymes that are able to affect androgen synthesis and 
signalling at different points in the biosynthesis. In this review, we will focus on CYP17A1, 
AKR1C3, HSD17B3 and SRD5A, as these enzymes play essential roles in all the three 
androgenic pathways. We will review also the AR as an additional target for the design of 
bifunctional drugs. Targeting intracrine androgens and AKR1C3 have potential to overcome 
enzalutamide and abiraterone resistance and improve survival of advanced prostate cancer 
patients. 

Key words: 
AKR1C3, 
HSD17B3, 
CYP17A1, 
SRD5A, 
androgen receptor, 
castration-resistant prostate cancer, 
inhibitors, 
bifunctional molecules

ABSTRACT
Article history:
Received: 21 Jun 2017
First Decision: 16 Aug 2017
Revised: 4 Sep 2017
Accepted: 26 Oct 2017
Published: 12 Dec 2017

INTRODUCTION 

Prostate cancer (PCa) is the most commonly 
diagnosed cancer in men and the second leading 
cause of death[1]. Androgens, which regulate normal 
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prostate growth and function by interacting with 
the androgen receptor (AR), drive PCa growth and 
play a central role in PCa progression[2]. Individuals 
diagnosed with high-risk PCa are typically treated with 
surgery or a combination of radiation and androgen 
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deprivation therapy (ADT) via chronic administration 
of gonadotropin-releasing hormone analogues, anti-
androgens or a combination of these drugs [Table 1]. 
ADT is considered the standard choice of treatment for 
men with de novo or recurrent metastatic disease[3]. 
Initially, ADT provides palliation of symptoms, but 
the therapeutic effects of castration are usually 
short lived, with 70% of patients developing signs 
of disease progression within 2 years despite very 
low levels of circulating testosterone (T)[4,5]. Many 
patients will inevitably relapse and ultimately develop 
castration-resistant prostate cancer (CRPC), which is 
responsible for the vast majority of PCa mortalities. 
Although the mechanisms of resistance are multi-
factorial, the androgen axis still plays a major role[6]. 
Evidence accumulated over the past decade clearly 
indicates that castration-resistant growth, to a large 
extent, is driven by continued AR signalling, despite 
castration resulting in only low levels of T in the serum. 
Emerging literature indicates a complex network of 
molecular players linked in part with amplification or 
mutations in androgen receptors allowing activation by 
progesterone, estrogens and androgen antagonists, 
generation of alternative splicing variants or with 
androgen neo-synthesis within the prostate tumour 
or adrenals[7-10]. Accordingly, both the management 
of PCa patients and complete abolition of androgens 
are difficult to achieve. Direct measurement of 
androgen levels in clinical samples from patients 
with CRPC reveal residual T (0.2-2.94 ng/g) and 
dihydrotestosterone (DHT, 0.36-2.19 ng/g) levels in 
tissue samples, respectively; nonetheless these levels 
are considered more than sufficient to activate the 

AR machinery and support tumour cell growth and 
survival[11]. Additionally, a number of studies have 
indicated several enzymes are able to facilitate the 
intratumoral neo-synthesis or conversion of circulating 
adrenal androgen precursors to the active AR 
ligands[12].

This review is focussed on outlining and discussing the 
key players in the steroidogenic pathway that is tightly 
linked with the AR activation. 

THE STEROIDOGENIC CASCADE INVOLVED 
IN PCA

Under normal physiological conditions about 60% 
of androgens produced in the prostate come from 
circulating T synthesised from cholesterol in the testis. 
The remainder derives from dehydroepiandrosterone 
(DHEA) synthesised in the zona reticularis of 
the adrenal glands [Figure 1]. The prostate itself 
contributes to androgen anabolism by reducing 
testicular T to the more potent AR ligand DHT 
and converting DHEA to T and DHT [Figure 2]. 
The enzymes converting T to DHT are type 1 or 
2 5α-reductase (SRD5A), the type 2 being the 
predominant isoform in prostate. This mechanism of 
production of DHT presumably allows the prostate to 
maintain constitutive levels of AR that are sufficient 
for activity in the luminal epithelium. The adrenal 
DHEA taken up by prostate cells as the sulphate 
derivative is reduced to androstenedione (AD) by a 
3β-hydroxysteroid dehydrogenase type 1 (HSD3B1) 

Table 1: Therapies and approved drugs for PCa treatment according to its progression

PCa progression Therapy Mechanisms Drugs Structure or number in the text 
Localised 
disease

Surgery
Radiation
ADT GnRH agonists and antagonists Buserelin Synthetic peptide

Goserelin Synthetic peptide
Leuprolide Synthetic peptide
Triptorelin Synthetic peptide
Degarelix Synthetic peptide

Advanced PCa ADT AR antagonist Steroidal Cyproterone 50
Non steroidal Flutamide 51

Nilutamide 52
Bicalutamide 53

CRPC ADT AR antagonist Non steroidal Enzalutamide 54
Androgen synthesis  inhibitors (CYP17 
inhibitors)

Abiraterone 2

Chemoterapy Inductors of microtubule 
stabilization

Docetaxel Taxane
Cabazitaxel Taxane

Metabolic radiation Alpharadin Radium-223
Vaccine Sipuleucel-T -
Monoclonal antibody Denosumab -

PCa: prostate cancer; ADT: androgen deprivation therapy; AR: androgen receptor; GnRH: gonadotropin-releasing hormone analogues; 
CRPC: castration-resistant prostate cancer
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expressed in prostate basal epithelialcells. This is 
followed by AD conversion to T by 17β hydroxysteroid 
dehydrogenase type 5 (HSD17B5). This enzyme is a 
member of the aldo-ketoreductase family, also known 
as AKR1C3 (aldo-keto reductase family 1, member 
3), is somewhat different to the 17β reductases that 
are derived from the family of SDRs (short-chain 
dehydrogenase/reductase). By contrast, the synthesis 
of T in the testisis mediated by a SDR enzyme, named 
HSD17B3. In the normal prostate, AKR1C3 has been 
identified in stromal, endothelial and perineural cells, 
where its significance appears to be related to the 
ability to reduce prostaglandin D2 to F2 rather than 
to the synthesis of T, which can be assumed from the 
circulation.

Intracellular levels of DHT are also regulated by phase 
I (reducing) and phase II (conjugating) enzymes that 

mediate DHT catabolism: AKR1C1 and AKR1C2 
(reductive 3α-HSDs) convert DHT to 3α-androstanediol 
and 3β-androstanediol respectively, which are then 
glucuronidated by UDP glycosyltransferase UGT2B15 
or UGT2B17[13]. 3α-androstanediol can be oxidised 
back to DHT by HSB17B6, which is expressed in 
prostatic stromal cells. In PCa patients that have 
received ADT, the presence of low levels of androgens, 
relative to high levels of T and DHT, can be maintained 
by intraprostatic synthesis, which essentially can 
occur through three putative synthetic pathways: 
the principal pathway is the classical or “canonical” 
de novo synthesis that initiates from cholesterol or 
other intermediates and results in T production. The 
two alternative pathways, “5α-dione” pathway and 
the “backdoor” pathway, allow direct synthesis of 
the AR ligand DHT without the requirement of T as 
intermediate. 

Figure 1: The production of androgens is regulated by the hypothalamic-pituitary-gonadal-adrenal axes. AR activation (dimerisation 
and phosphorylation) is regulated by both androgen-dependent (blue arrows) and androgen-independent pathways (red arrows). In the 
androgen-dependent pathway, T and DHT production is catalysed by the steroidogenic enzymes and occurs through the canonical, 
5a-dione and backdoor pathways[24]. The androgen-independent pathway includes: (1) AR gain-function mutations; (2) activation by non-
androgen steroids or androgen antagonists; (3) activation by non-steroid growth factors (receptor tyrosine kinases are activated and 
both AKT and MAPK pathways, producing a ligand-independent AR); and (4) increase of AR co-regulators. A parallel survival pathway, 
involving the anti-apoptotic protein BCL-2, also induces the cancer cell proliferation via bypassing the AR[183,184]. AR: androgen receptor; 
GnRH: gonadotropin-releasing hormone analogues; T: testosterone; DHT: dihydrotestosterone; ARE: androgen response element; DHEA: 
dehydroepiandrosterone; LH: luteinizing hormone; ACTH: adreno-cortico-tropic-hormone
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The canonical pathway
This biosynthetic pathway is similar to that occurring in 
the testes. Androgens are known to be synthesised de 
novo starting from a number of precursor molecules 
absorbed from the circulation, including cholesterol, 
progesterone and adrenal DHEA. Starting from 
cholesterol, the first step is the conversion to C21 
pregnenolone by the cholesterol aliphatic side-chain 
specific metabolic activity of mitochondrial CYP11A1. 
The next steps lead to the synthesis of AD by two 
different pathway branches where the intermediates 
progesterone or DHEA are formed by CYP17A1 
or HSD3B respectively. The subsequent reduction 
of AD to T is catalysed by AKR1C3. T is further 
reduced to DHT by SRD5A enzymes. In patients 
with CRPC, DHEA, derived from the adrenal gland, 
is the predominant T precursor implicated in this 
pathway. The strongest evidence for the action of the 
canonical pathway in the prostate comes from a study 
published by Fankhauser et al.[14] which is focussed 
on the incubation of cultures of prostate samples from 
patients with benign prostatic hyperplasia (BPH), 
androgen-naive and/or hormone-refractory PCa with 
various precursor substrates including cholesterol, 
progesterone, AD, DHEA, and T. The results show the 
prominence of the conversion of AD to T, suggesting 
that the canonical pathway is the most pertinent T/
DHT synthesis pathway in patients with PCa. These 
conclusions are supported by findings that expression 
of the HSD17B isoenzymes, and in particular AKR1C3, 
key enzymes responsible for the conversion of AD 
to T, are upregulated in tumour biopsy samples from 
patients with CRPC[15-17].

The 5α-dione pathway
The 5α-dione pathway allows PCa cells to generate 
the potent signalling androgen DHT without the 
need for T as a substrate. In this pathway, the 
order of reactions is reversed compared to the 
canonical biosynthesis: AD is initially 5α-reduced to 
5α-androstanedione by SRD5A1 and then further 
reduced to DHT by HSD17B3[18,19]. In contrast, in 
the canonical biosynthesis AD is the substrate of 
HSD17B3 that is reduced to T which is then further 
reduced to DHT by SRD5A. The 5α-dione pathway 
was first described in 2011, and as such, fewer studies 
supporting this model are currently available compared 
with the other two models of androgen synthesis, 
although indirect evidence is available and supports 
the clinical relevance of this pathway too[15,17].

The backdoor androgen synthesis pathway
This biosynthetic pathway was originally identified in 
Tammar wallabies in 2003[20]. It was the first report 
to demonstrate that in the prostate the “backdoor” 

pathway was contributing to the synthesis of androgens 
without the need for androgenic precursors. Here, the 
progesterone produced by the same reactions as in 
the canonical pathway, is converted to androsterone 
by CYP17A1, SRD5A, and AKR1C2. These enzymes 
are responsible for converting AD to Tin a similar 
manner to HSD17B3 and AKR1C3 in the canonical 
pathway, resulting in the conversion of androsterone 
to 5α-androstane-3α,17β-diol. The final step of 
the pathway leading to DHT is catalysed by retinol 
dehydrogenase type 5 (RDH5)[21,22]. This enzyme, 
upregulated in mice with castration resistance[17,22], 
mediates a key step in DHT biosynthesis and is one 
of the few steroidogenic enzymes acting at a single 
point in the biosynthetic pathway. Studies in LNCaP 
xenografts indicate that the backdoor pathway might 
be dominant when tumours are treated with inhibitors 
of androgen synthesis, including ketoconazole and 
finasteride, which inhibit CYP17A1, and SRD5A2, 
respectively[23].

All these pathways (“canonical”, “backdoor” and 
“5α-dione” pathways, Figure 2), ultimately aim at 
generating the potent signalling androgen DHT. 
Involving mainly the same enzymes, they differ 
in terms of substrate preference and/or reaction 
sequence. Their occurrence and relative importance 
in the development and progression of PCa remains 
controversial, since the experimental evidence comes 
mainly from preclinical cell culture models, where 
different results are obtained depending on the cell 
lines studied or where more clinically-relevant biopsy 
samples have been used for analysis. The current 
understanding of androgen synthesis and the evidence 
for its role in castration resistance, either supporting 
or rebutting the relevance of each pathway to patients 
with PCa were recently extensively reviewed by 
Stuchbery et al.[24].

Inhibiting these steroidogenic enzymes that play vital 
roles in the biosynthesis of T and DHT seems to be 
an attractive strategy for the development of therapies 
for the treatment of PCa. The existence of alternative 
pathways in PCa leading to the synthesis of T and 
DHT supports the idea for the development of multi-
targeting strategies, involving both dual and multiple 
inhibitors of androgen-metabolising enzymes that 
are able to affect androgen synthesis and signalling 
at different points in the biosynthesis. Therapeutic 
strategies aimed at more efficiently targeting the 
steroidogenic pathway could involve the concomitant 
use of inhibitors targeting two different enzymes or a 
unique dual-targeting inhibitor able to modulate more 
than one enzyme in the steroidogenesis pathway. 
A potential variation of this strategy involves the 
modulation of an androgen-metabolising enzyme 
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and the AR by a bifunctional targeting molecule. In 
the following chapters, we will focus on CYP17A1, 
AKR1C3, HSD17B3 and SRD5A, as these enzymes 
play essential roles in all the three pathways 
mentioned above. In Table 2, their different expression 
level during the progression of PCa is described. 
Finally, we will review the AR as an additional target 
for the design of bifunctional drugs.

CYP17A1
Cytochrome P450 17A1 (CYP17A1, P450c17) plays a 
major role in the steroidogenic pathway that produces 
androgens and estrogens. It is expressed principally 
in the adrenal gland and gonads. In humans, the 
expression of CYP17A1 is driven by a complex 
interaction of different transcription factors (TFs) and, 
differently from rodents[25], it appears not directly 
influenced by epigenetic regulation[26,27]. Indeed, 
CpG islands, the sites of the epigenetic methylation, 
are absent in human CYP17A1 gene[25]. Indirect 

epigenetic control is however suggested by studies 
on the inductive effect of 5aza-dC on TFs required 
for CYP17A1 expression[28]. This membrane-bound 
protein has both 17α-hydroxylase and a 17,20-lyase 
activity. The 17α-hydroxylase activity is important 
for the production of the glucocorticoid cortisol, 
whereas the 17,20-lyase activity leads to androgen 
production[29]. The lyase activity is stimulated in a 
concerted fashion by cytochrome b5 and appears to 
be an allosteric function rather than via conventional 
electron transfer mechanism of this co-enzyme[30]. 
CYP17A1 is required in the three parallel pathways to 
catalyse the hydroxylation of the steroid ring carbon 17 
of pregnenolone to form 17α-hydroxypregnenolone and 
progesterone to form 17α-hydroxyprogesterone (major 
product, Figure 2) and 16α-hydroxyprogesterone 
(minor product).The resulting metabolites undergo the 
17,20-lyase reaction by the same enzyme involving 
the cleavage of the side-chain of the steroid nucleus 
in order to obtain DHEA and AD, respectively. The 
androsterone, precursor of DHT in the backdoor 

Figure 2: The principal and the two alternative androgen biosynthetic pathways: the canonical pathway is shown on white background, 
the backdoor pathway is shown on yellow background and the 5a-dione pathway on light blue background. In the squares, production of T 
and DHT in the development of PCa are shown. PCa: prostate cancer; T: testosterone; DHT: dihydrotestosterone; CYP17A1: cytochrome 
P450 17A1; HSD3B: 3b-hydroxysteroid dehydrogenase; HSD17B2/3/10: 17b-hydroxysteroid dehydrogenase type 2/3/10; SRD5A: steroid 
5a-reductases; AKR1C1/2/3: aldo-keto reductase family 1, member 1/2/3; RDH5: retinol dehydrogenase type 5; AD: androstenedione
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pathway is formed by CYP17A1 via metabolism of 
pregnan-3α-hydroxy-20-one. The need for this enzyme 
in all the metabolic pathways that allow and maintain 
the activation of the AR in the prostatic cells makes 
CYP17A1 one of the most important therapeutic 
targets in the biosynthesis pathway.

To date, there are eight co-crystal structures of 
CYP17A1 complexed with an inhibitor or substrate 
and revealing the characteristic cytochrome P450 
fold[31]. The crystal structure of CYP17A1 bound either 
to abiraterone [Figure 3A] or to galeterone (TOK-001), 
two clinically trailed CYP17A1 inhibitors (2 and 3, 
Figure 4), show that both inhibitors bind the haem iron 
at a 60° angle above the haeme plane while aligning 
their chemical structures against the central helix with 
the 3β-OH interacting with Asn 202 in the F helix[32].

More recently the co-crystal structure of CYP17A1 
mutant Ala105Leu in complex with hydroxylase 
substrates pregnenolone [Figure 3B], progesterone, 
17,20-lyase substrates 17α-hydroxyprogesterone and 
17α-hydroxypregnenolone, showed that the general 
orientation of all physiological substrates in the active 
site is quite similar to the one observed for abiraterone. 
Each substrate is aligned in a position that allows the 
formation of a hydrogen bond with the Asn202 side 
chain. The 17α-hydroxypregnenolone, a substrate of 
lyase activity, could also assume a second pose, that is 
closer to the catalytic iron and further away for Asn202, 
hence preventing the formation of a hydrogen bond 
as observed in the first position[33]. This observation 
could explain the substrate selectivity of the lyase 
reaction and the increased 17,20-lyase activity after 
the allosteric binding of cytochrome b5. NMR studies 
have already established that b5 binds differently 
to CYP17A1 depending on whether the substrate 
is pregnenolone or 17α-hydroxypregnenolone[34]. 
Cytochrome b5 could alter the posit ioning of 

17α-hydroxypregnenolone to the second position, 
thus increasing the rate of the lyase reaction. These 
structural studies provide a rationale to increase our 
understanding of this enzyme’s dual hydroxylase and 
lyase activity and facilitate the design of inhibitors that 
may specifically interact with the androgen-generating 
lyase activity, ultimately leading to novel therapeutics 
with improved efficacy.

Several well-characterised CYP17A1 inhibitors have 
been discovered over the years for the treatment of 
advanced PCa [Figures 4 and 5] and several excellent 
reviews have been published on this topic[35]. Only 
abiraterone (2, Figure 4) has been approved for 
clinical use for the treatment of CRPC. Abiraterone, 
administered as an acetate prodrug, consists of a 
steroidal scaffold with a pyridin-3-yl moiety in position 
17 that inhibits CYP17A1 through coordination to the 
haem iron[32]. This coordination obstructs the binding 
of endogenous substrates, leading to the competitive 
inhibition of CYP17A1. Recently, the steroidal 
CYP17A1 inhibitor galeterone (3, TOK-001)[36], has 
been shown to be three times more potent than 
abiraterone in CYP17 enzyme activity assays[37].

Together, the steroidal scaffold and the aromatic 
nitrogen-containing ring give to abiraterone a 
promiscuous profile with affinity toward steroid 
receptors and other CYP enzymes, which are likely 
to contribute to the undesirable side effects observed 
in patients receiving abiraterone treatment including 
liver dysfunction, characterised by elevated total 
bilirubin, aspartate aminotransferase and alanine 
aminotransferase[38].

Thus, these potential adverse effects of steroidal drugs 
triggered the efforts to develop nonsteroidal CYP17A1 
inhibitors. Combinatorial synthesis programmes 
have been initiated by pharmaceutical companies 
to identify non-steroidal inhibitors to avoid the side 

Table 2: Different expression level of CYP17A1, AKR1C3, HSD17B3 and SRD5A enzymes during progression of PCa

Enzyme Presence Ref.
CYP17A1 Expressed in all PCa and upregulated in CRPC [15]

AKR1C3 Expressed 10-16 fold higher in several PCa cell lines with respect to healthy prostate cells and up to 3 fold 
in androgen responsive and androgen independent PCa cell xenografts upon androgen deprivation

[9]

Upregulated in CRPC, both within the tumor microenvironment  and in soft-tissue metastasis [15-17,52,176,177]

HSD17B3 Expressed almost exclusively in the testis, there are some reports of its over-expression in PCa tissues. 
HSD17B3 mRNA was increased over 30 fold in PCa biopsies and the enzyme has been shown to be 
upregulated 8-fold in LuCaP-23 and LuCAP-35 PCa cell lines, obtained from metastatic tissues of a 
patient resistant to castration therapy

[15,22]

SRD5 A1 During PCa development its expression increases. A 2-4 fold increase of SRD5A1 expression, induced by 
activation of AR, has been observed in three androgen-responsive PCa cell lines

[88,89,178-181]

A2 Predominant isoform expressed in the normal prostate. During PCa development, its expression 
decreases. AR represses SRD5A2 expression

A3 Overexpressed in hormone-refractory PCa tissues [182]

PCa: prostate cancer; AR: androgen receptor; CRPC: castration-resistant prostate cancer
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effects associated with the steroidal scaffold and two 
such compounds, orteronel (4) and seviteronel (5), 
have been developed and are subject to clinical trials. 
Although, orteronel (TAK-700), an oralimidazole based 
inhibitor[39] had a 5-fold selectivity for 17,20-lyase 
activity in comparison with the 17α-hydroxylase activity 
of CYP17A1, it failed to increase overall survival in 
CRPC patients (NCT01193257). 

Sevi teronel  (VT-464),  anoral ly  administered 
nonsteroidal CYP17A1 lyase inhibitor, is at the present 

under clinical development[40]. Similar to galeterone, 
seviteronel works downstream of abiraterone to 
inhibit CYP17A1 lyase and does not cause the same 
degree of mineralocorticoid production. This agent 
can therefore be administered without concomitant 
glucocorticoid administration, resulting in lack of 
associated toxicities (such as muscle wasting, skin 
friability, cushingoid features, and decreased bone 
mineral density).

Recently, Larsen and collaborators identified two 

Figure 3: Structures of (A) CYP17A1 in complex with abiraterone (PDB ID 3RUK) and (B) CYP17A1 mutant A105L with substrate 
pregnenolone (PDB ID 4NKW). Abiraterone is depicted in green, pregnenolone in pink. Carbon atoms of the protein are depicted in grey, 
the haeme prosthetic group is coloured in blue. Nitrogen, oxygen and sulphur atoms are depicted in blue, red and yellow, respectively. 
Relevant water molecules are represented by red points

A

B
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novel non-steroidal and selective CYP17A1 inhibitors 
by virtual screening and reported the structural 
optimisation of one of these inhibitors, identifying 
compound 6 [Figure 4][41].

Compound 6, which like abiraterone also contains 
a pyridin-3-yl moiety, inhibited CYP17A1 with IC50 

values of 230 and 500 nmol/L for the 17α-hydroxylase 
and 17,20-lyase reactions, respectively. The binding 

mode of compound 6 was determined by docking 
experiments, further refined by QM/MM optimisation. 
Compound 6 is a relatively non-polar compound with 
no hydrogen-bonding possibilities and, accordingly, no 
polar enzyme-inhibitor interactions were observed[41].

Subsequently, the combination of a structure-based 
virtual screening approach with density functional 
theory calculations was used to suggest newnon-

Figure 4: Chemical structures of selected CYP17A1 inhibitors
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steroidal compounds selective for CYP17A1[42]. This 
second study afforded the discovery of compound 7. In 
vitro assays in human H295R cells demonstrated that 
compounds 6 and 7 selectively inhibited CYP17A1 
17α-hydroxylase (IC50 values of 830 and 52 nmol/L, 
respectively) and 17,20-lyase (IC50 values of 94 and 
7.4 nmol/L, respectively) activities. Strong coordination 
of compound 7 to the haem iron is likely to be 
responsible for inhibition of both reactions. These 
compounds do not bind selected drug-metabolising 
cytochrome P450 enzymes or the steroidogenic 
CYP21A2, suggesting a reduced risk for undesirable 
side effects, especially on the corticosteroid production, 
consistent with data observed in vitro. Taken together, 
these data recommend compounds 6 and 7 as 
promising tools for the continued development of new 
drugs against PCa[42].

Structural analysis of the reported CYP17A1 inhibitors 
reveals that most of the inhibitors consist of two 
structural features. One is the metal-binding group that 
binds to the haem iron and the second is the scaffold that 
binds to the substrate pocket of CYP17A1. Based on this 
observation, recently Wang et al.[43] conducted a screen 
of compounds from an in-house metalloenzyme 
inhibitor library and identified compound 8 [Figure 5] 
to selectively inhibit rat CYP17A1 lyase with sub 
micromolar activity.

A preliminary modelling study indicated that compound 
8 could fit nicely into the CYP17A1 binding pocket 
and maintain the key interactions with the residues 
of CYP17A1. The nitrogen of the pyridine and the 
tetrahydro-β-carboline core formed a coordination 
bond and hydrophobic interactions with haem group 
(iron atom) and hydrophobic pocket respectively. 
Since authors showed that there was unfilled space 
on the pyridine part in the active site cavity, they 
introduced substituent onto the pyridine ring to occupy 
this space and enhance the potency. These efforts led 
to the design and synthesis of a series of compounds 
bearing different substituted pyridine and pyrimidine 
moieties and evaluated their CYP17A1 activity. Of 

these analogues, the most potent compound was 9 
[Figure 5], showing 1.5 fold greater potency against 
rat and human CYP17A1 protein than abiraterone. In 
NCI-H295R cells, the inhibitory effect of compound 
9 on T production was also more potent than that of 
abiraterone at a concentration of 1 µmol/L. Further, it 
was shown that 9 reduced plasma T level in a dose-
dependent manner in Sprague-Dawley rats and may 
be a lead compound for further preclinical studies. 

AKR1C3
AKR1C3, also named HSD17B5, is a soluble 
enzyme member of the aldo-ketoreductase family, 
highly expressed in testes and extragonadal tissues 
such as basal cells of the prostate, adrenals and 
liver. Principally, it catalyses the NADPH dependent 
reduction of AD to T but is known to be involved 
with 3α-HSD, 20α-HSD, dihydrodiol dehydrogenase 
and prostaglandin synthase activities[44]. Compared 
to other HSD17B isoforms, AKR1C3 was the most 
abundant isoform expressed in several PCa cells 
and its expression is upregulated in CRPC [Table 2]. 
AKR1C3 plays a key role in producing DHT in each of 
the three pathways, since it can lead to the synthesis 
of DHT starting from AD and DHEA in the canonical 
pathway, from 5α-androstanedione in the 5α-dione 
pathway, and from androsterone in the backdoor 
pathway [Figure 2]. Elevated levels of expression of 
AKR1C3 in CPRC provide a mechanism to divert trace 
androgens that remain after ADT to the potent AR 
ligand DHT via these three pathways intratumourally 
and may indirectly also impact on CYP17A1 inhibitor or 
AR antagonist resistance mechanisms[9]. Furthermore, 
AKR1C3 has also been discovered to play a role in 
resistance to radiation therapy[45].

Because of its structural differences with HSD17B3, 
an enzyme belonging to SDR family and catalysing the 
same reaction of AKR1C3 in testis[46], AKR1C3 could 
be a good target for selective inhibition.

At present, there are more than 40 crystal structures 
of AKR1C3 in the 2017 International Union of 
Crystallography Protein Data Bank. The first crystal 

Figure 5: Design strategy of metal-binding inhibitors of CYP17A1
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structure of AKR1C3 was reported by Lovering et al.[47] 

and revealed AKR1C3 as a typical aldo-keto reductase 
structure, with a catalytic pocket consisting mainly 
of loops A (116-143), B (217-238) and C (298-323). 
The ligand-binding pocket of AKR1C3 can be divided 
into five compartments as follows: an oxyanion site, a 
steroidchannel SC and subpockets SP1, SP2 and SP3 
[Figure 6].

The oxyanion site consists of the cofactor NADP+ and 
the catalytic residues Tyr55 and His117, which are 
conserved among all AKR1C enzymes. The steroid 
channel is formed by Tyr24, Leu54, Ser129 and 
Trp227 and is open to solvent, guiding substrates into 
the oxyanion site. The SP1 pocket is located inside the 
ligand-binding pocket and is surrounded by Ser118, 
Asn167, Phe306, Phe311 and Tyr319. In contrast, the 
SP2 pocket is located in a shallow region surrounded 
by Trp86, Leu122, Ser129 and Phe311, while the SP3 
pocket is located near the phosphate moiety of NADP+ 
and is surrounded by Tyr24, Glu192, Ser221 and 
Tyr305[48].

The structure of human AKR1C3 has been determined 
in complex with different substrates and inhibitors, 
which has enabled an excellent basis for the design of 
specific inhibitors. Selectivity is even more necessary 

with respect to AKR1C1 and AKR1C2, enzymes 
that have more than 86% of identity with AKR1C3, 
but inactivate DHT to 3β-androstanediol and to 
3α-androstanediol respectively[49-51], thus decreasing 
the androgenic signalling. Between AKR1C3 inhibitors, 
several nonsteroidal anti-inflammatory drugs have 
been demonstrated to be very potent in inhibiting this 
enzyme. Some of them also exhibited good selectivity 
for the C3 isoform, e.g. indomethacin (10, Figure 7) 
and their binding mode within the ligand pocket has 
been investigated through X-ray crystallography[48].

Discussion as to the use of AKR1C3 inhibitors to treat 
CRPC has been described in excellent reviews in 2011 
and 2013[51,52]. Since that time, several groups have 
reported on the discovery of hit and lead compounds, 
and these will be briefly reviewed here. 

Among natural inhibitors, Skarydova et al. [53] 

investigated the possible inhibitory effect of diverse 
types of isoquinoline alkaloids isolated from plant 
sources against the recombinant form of AKR1C3. 
Nineteen isoquinoline alkaloids were examined for 
their ability to inhibit AKR1C3 and as a result, stylopine 
(11, Figure 7) was demonstrated to be the most potent 
inhibitor among the tested compounds, demonstrating 
moderate selectivity towards AKR1C3.

Figure 6: Close-up view of the AKR1C3 ligand-binding pocket. Illustrating the different compartments (the oxyanion site, the steroid channel 
and subpockets SP1, SP2 and SP3) that can be targeted with small molecules. NADP+ molecule is represented by a yellow square
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Figure 7: Examples of AKR1C3 inhibitors based on different chemical scaffolds
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In an attempt to identify potential AKR1C3 inhibitors 
based on known natural-based pharmacophores, 
Tian et al.[54] studied the blocking mechanism of 
berberine (2,3-methylenedioxy-9,10-dimenthoxyproto-
berberine chloride; 12). This isoquinoline alkaloid 
screened from a traditional Chinese medicine 
monomer library, was shown to prevent AKR1C3-
mediated intratumoral steroidogenesis incastrated nu/
nu mice bearing subcutaneous LNCaP xenografts. 
The authors found that berberine inhibited AKR1C3-
expressing 22Rv1 PCa cel l  prol i ferat ion and 
decreased cellular T formation in a dose-dependent 
manner, provided the experimental basis for the use of 
berberine as the lead compound for the further design, 
research, and development of AKR1C3 inhibitors. 

Baccharin (3-prenyl-4-(dihydrocinnamoyloxy)cinnamic 
acid, 13) is a constituent in the ethanol extract of 
Brazilian propolis[55], which is a natural resinous 
substance collected by honeybees and has been used 
in alternative medicine to treat inflammation, liver 
disorders, and stomach ulcers. Recently Endo et al.[56] 
found that baccharin is a selective and potent inhibitor 
of AKR1C3, correlating with the antiproliferative effect 
of baccharin against human PC3 PCa cells. Baccharin 
was shown to exhibita 900-fold selectivity for AKR1C3 
over the other three AKR1C isoforms. Due to its 
high inhibitory selectivity, baccharin represented a 
promising lead for the development of more potent 
and specific agents targeting AKR1C3. The structure 
activity relationship (SAR) of propolis-derived cinnamic 
acids suggested that the 3-prenyl moiety of baccharin 
is responsible for the selective binding to AKR1C3[56]. 
Endo et al.[46] also reported on the commercially 
available 3,4-dihydroxybenzaldehyde, derivatives 
configured with 3-aliphatic and aryl ethers instead 
of the 3-prenyl moiety. Within the series of aliphatic 
ethers, AKR1C3 inhibition was shown to decrease 
proportionally with increase in the aliphatic chain 
lengths. Compound 14, possessing an n-butyl ether, 
showed the highest inhibitory potency. Within the 
series of aromatic ethers, two benzyl ether derivatives, 
15 and 16, showed an equivalent inhibitory potency to 
baccharin. The molecular docking of 15 in the crystal 
structure of AKR1C3 informed the design of a novel 
baccharin-based inhibitor (16a) with improved potency 
(Ki 6.4 nmol/L), which may be due to the introduction 
of a new interaction between the 3-hydroxyl group of 
the benzyl moiety of 16a and Tyr24 of the enzyme. 
The inhibitory selectivity of 16a for AKR1C3 over other 
human AKR1C isoforms was comparable or superior 
to that of baccharin. Additionally, 16a significantly 
decreased the cellular metabolism by AKR1C3 at 
much lower concentrations than baccharin.

Since carboxylic acids are likely to be transported 
into cells by carrier-mediated processes rather than 
passive diffusion[57], there are potential advantages in 
finding non-carboxylate inhibitors[58,59]. Following this 
rationale, we have applied a scaffold hopping strategy 
replacing the benzoic acid moiety of flufenamic acid 
with an acidic hydroxyazolecarbonylic scaffold[60]. 
In particular, differently N-substituted hydroxylated 
triazoles were designed to simultaneously interact 
with both subpockets 1 and 2 in the active site of 
AKR1C3, larger for AKR1C3 than other AKR1Cs 
isoforms. Through computational design and iterative 
rounds of synthesis and biological evaluation, novel 
compounds were reported, sharing high selectivity (up 
to 230-fold) for AKR1C3 over 1C2 isoform and minimal 
COX1 and COX2 off-target inhibition. A docking study 
of compound 17, the most interesting compound 
of the series, suggested that its methoxybenzyl 
substitution has the ability to fit inside subpocket 2, 
being involved in π-π staking interaction with Trp227 
(partial overlapping) and in a T-shape π-π staking with 
Trp86. This compound was also shown to diminish 
testosterone production in the AKR1C3-expressing 
22RV1 prostate cancer cell line while synergistic 
effect was observed when 17 was administered in 
combination with abiraterone or enzalutamide.

Heinrich et al.[61] also reported on a non-carboxylate 
inhibitor class of phenylpyrrolidin-2-one derivatives, 
obtained modulating 18, an inhibitor deriving from a 
high-throughput screen[62]. This modulation afforded 
compound 19, named later as SN33638, that inhibited 
AKR1C3 without forming a direct interaction with the 
oxyanion hole in the active site. Furthermore, in a 
cell-based assay, 19 was shown to be more potent 
than the carboxylic acid analogue 18 (ratio IC50(enz)/
IC50 (cell) was 0.48 for 18 vs. 8.5 for 19), suggesting 
a pharmacological disadvantage for the acids in 
PCa cells[61]. The authors explored the role of the 
sulphonamide substituent and probed its affinity within 
the enzyme hydrophobic pocket bound by residues 
Met120, Asn167, Tyr216, Phe306, Phe311, Tyr317, 
Pro318 and Tyr319 [Figure 8][61]. SAR studies of potent 
and selective non-carboxylate AKR1C3 inhibitor 19 
showed that while the sulphonamide function was still 
as critical as in 18[62], there was much more tolerance 
for the sulphonamide substituent, with a range of 
monocyclic six-membered ring analogues retaining 
activity and AKR1C selectivity. Crystal structure 
studies show that the 2-pyrrolidinone was located in 
the SP3 pocket but did not bind to the oxyanion site, 
and variations in the position, co-planarity or electronic 
nature of the pyrrolidinone ring abolished or severely 
diminished activity. The effectiveness of compounds at 
inhibiting AKR1C3 activity in cells broadly correlated 



                                    Journal of Cancer Metastasis and Treatment ¦ Volume 3 ¦ December 12, 2017

Pippione et al.                                                                                                                                                             Steroidogenic enzymes in prostate cancer

340

morpholino(phenylpiperazin-1-yl)methanone 20 
[Figure 7], which was identified as a novel potent (IC50 
= 100 nmol/L on isolated enzyme) AKR1C3-selective 
inhibitor without carboxylic function[65]. SAR studies 
of the new class of morpholino(phenylpiperazin-1-
yl)methanone AKR1C3 inhibitors derived from 20 
showed that these compounds bind selectively to 
AKR1C3 via the carbonyl oxygen of the central urea 
linker. This activity is favoured by lipophilic electron-
withdrawing substituents on the phenyl ring (e.g. 
compounds 21-23) that probe specific regions of 
the SP1 pocket and H-bond acceptors on the other 
terminal ring and this was also supported by a QSAR 
study. Furthermore in the crystal structure of 20 bound 
to AKR1C3, the morpholine oxygen is within hydrogen 
bonding distance to a structured water molecule 
(HOH556), which is part of a network located in the 
SP3 pocket. The importance of it was examined via 
studying a series of derivatives in which the authors 
modulated the morpholine ring bound to urea. In this 
second series the complete inactivity of compounds 
bearing cyclohexane or phenylic ring suggested 
that there is a requirement for a secondary aliphatic 
nitrogen (i.e. a urea moiety) and an H-bond acceptor. 
It is possible also to replace the morpholine ring with 
larger substituents; e.g. compounds 24 and 25 derived 
from 20 were found active within this second series.

The discovery of AKR1C3 inhibitors with clinical 
potential has also been pursued by the pharmaceutical 

with their enzyme inhibitory activity[61].

Equipped by this powerful compound SN33638, 
Yin et al.[63] treated a panel of CRPC and ER-positive 
breast cancer cell lines, in the presence of hormone 
or prostaglandin precursors, prior to evaluation of 
cell proliferation and levels of 11β-prostaglandin F2α 
(11β-PGF2α), T production and PSA expression. 
Although SN33638 was shown to inhibit 11β-PGF2α 
formation, its ability to prevent T and 17β-estradiol 
production and their roles in CRPC and ER-positive 
breast cancer progression was l imited due to 
AKR1C3-independent steroid hormone production. 
This is except in LAPC4 AKR1C3 cells, where the 
majority of T production was AKR1C3-dependent. 
These results suggested that inhibition of AKR1C3 is 
unlikely to produce therapeutic benefit in CRPC and 
ER-positive breast cancer patients, except possibly 
in the small subpopulation of CRPC patients with 
tumours that have upregulated AKR1C3 expression 
and are dependent on AKR1C3 to produce T required 
for growth. The study by Yin et al.[63] provided a 
valuable framework for future preclinical or clinical 
studies aimed at verifying this hypothesis that AKR1C3 
inhibition suppresses tumour formation only in a 
selected population of CRPC patients expressing high 
levels of AKR1C3[64].

From the same high- throughput  screen that 
enabled the discovery of SN33638 also came 

Figure 8: Structure of AKR1C3 in complex with SN33638 (19, PDB ID 4H7C). Carbon atoms of 19 are colored in blue, carbon atoms of 
cofactor NADP+ in green, carbon atoms of the protein are grey. Nitrogen, oxygen, sulphur and phosphorous atoms are depicted in blue, 
red, yellow and orange respectively. Relevant water molecules are represented by red points
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sector, including Astellas Pharmaceuticals and GTx-
therapeutics. Both companies designed in vivo active 
compounds, namely ASP9521 (26, Figure 9) and GTx-
560 (27), respectively[66,67]. However, only ASP9521 
has so far been the subject of clinical evaluation. In 
a multi-centre phase I/II study, the compound was 
found to be orally bioavailable and well tolerated, but 
disappointingly without efficacy[68]. It is noteworthy, 
however, that 6/13 mCRPC patients discontinued 
treatment before the end-trial and patients were not 
preselected for AKR1C3 status. Also, none of the 
patients in the study had received prior treatment with 
abiraterone, so AKR1C3 expression may have been 
insufficient to observe significant inhibitory effects by 
ASP9521 in these patients. 

ASP9521 remains the first and only rationalised 
AKR1C3-spec i f i c  inh ib i to r  to  reach c l in ica l 
evaluation. In addition, the non-selective AKR1C3 
inhibitor indomethacin (10, Figure 7) has been 
used in combination with both enzalutamide[69] and 
abiraterone[70] in two different phase II clinical trials 
(NCT02935205 and NCT02849990, respectively).

The catalytic capacity of AKR1C3 has also been 
exploited in prodrug design and some work has 
focussed on the clinically evaluated bioreductive 
prodrug PR-104 (28, Figure 9)[71]. This prodrug that 

was originally designed to be bioreduced under 
hypoxic conditions to generate a DNA alkylating 
agent, has also been shown to be bioactivated by 
AKR1C3 in a hypoxia-independent manner to active 
species PR-104H and PR-104M. It is possible that a 
sub-population of patients with AKR1C3-expressing 
tumours could benefit by PR-104 treatment and hence 
expand the CRPC armamentarium of drugs[72].

HSD17B3
17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3 
or HSD17B3) is a microsomal enzyme member of the 
group of the NAD(P)(H) dependent oxidoreductases 
that catalyse the redox of hydroxyl/keto groups at 
position C17 of androgens and estrogens and in this 
manner regulate intracellular availability of steroid 
hormone ligands to their nuclear receptors. The 
17β-hydroxysteroid dehydrogenases (HSD17Bs) 
belong to the short-chain dehydrogenase/reductase 
(SDR) superfamily, with the exception of HSD17B5 
(AKR1C3), which is part of the aldo/ketoreductase 
family as already discussed. 

Though HSD17B3 is expressed almost exclusively in 
the testis, there have been some reports of its over-
expression in PCa tissues [Table 2]. In the testes,this 
enzyme catalyses the last step in the biosynthesis 
of T, by stereoselectively reducing the C17 ketone 

Figure 9: Examples of chemical structures of AKR1C3 inhibitors
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a pharmacophore and identified a potent compound 
STX2171 [32, IC50∼200 nmol/L in the whole-cell 
293-EBNA(HSD3) assay], that had only negligible 
activity against 17β-HSD2 (the enzyme that catalyses 
the reverse reaction) and was inactive against 
17β-HSD1[83].

STX2171 and 31 (later named STX1383) were also 
tested in a hormone-dependent PCa LNCaP(HSD3) 
xenografts, which were established in castrated male 
mice and using AD to stimulate tumour proliferation[83]. 
Both compounds were able to inhibit the proliferation 
of androgen-dependent prostate tumours (when 
stimulated by AD) and to reduce but not completely 
inhibit plasma T levels. An explanation of the 
incomplete abolition of plasma T levels can be found 
in the fact that also AKR1C3, prevalently expressed in 
the prostate, performs the conversion of AD to T. 

In 2010, high-throughput screening led to the 
identification of 4-methylumbelliferone (4-MU, 33) as 
an inhibitor of HSD17B3[84]. The authors studied new 
7-hydroxycoumarin derivatives of 4-MU and observed 
the most potent compounds carried substituents in 
the 4-position. Structures 34 and 35 exhibited low 
nanomolar inhibitory activity in HeLa cells expressing 
human 17b-HDS3 and selectivity versus other 
HSD17B isoenzymes and nuclear receptors. 

Schuster et al.[81] rationalised the potential therapeutic 
opportunity of the concomitant inhibition of HSD17B3 
and HSD17B5 because of their partly overlapping 
functions. They developed pharmacophore models for 
HSD17B types 3 and 5 and found interesting HSD17B 
3/5 dual-targeting inhibitors with different selectivity 
profiles, although some of them were affected by 
weaker off-target activity against other HSD17B 
enzymes. For example, structure 36 [Figure 10] was 
able to reduce HSD17B3 and HSD17B5 activity by 
56% and 58% at 2 µmol/L, respectively. Unfortunately, 
this compound was shown to also inhibit HSD17B1 
by 20% at the same concentration. Although research 
for a dual inhibitor of HSD17B 3/5 enzymes needs 
deeper exploration, this approach could yield better 
compounds with clinical potential. 

In 2012, Harada et al.[85] developed a phosphate 
ester prodrug 37 as an orally bioavailable HSD17B3 
inhibitor. The potency of the active molecule (IC50 = 
12 nmol/L in HeLa cells expressing human HSD17B3) 
rendered 37 capable of reducing plasma LHRH-
induced T levels in a dose-dependent manner when 
administered orally to male Sprague-Dawley rats. 

Interestingly, some environmental chemicals like 

of AD using NADPH as cofactor. In PCa, HSD17B3 
may operate like AKR1C3 and participate in all the 
three putative biosynthetic pathways [Figure 2]. In 
the canonical pathway, in addition to the reduction of 
AD to T, it could also reduce DHEA to androstenediol, 
while in the 5α-dione and the backdoor pathways 
i t could also lead directly to DHT by reducing 
5α-androstanedione or androsterone respectively 
[Figure 2][24]. A better understanding of what governs 
HSD17B3 and AKR1C3 in the PCa microenvironment 
could improve efforts to more effectively target 
these key enzymes in the steroidogenic biosynthetic 
pathway.

Due to the exclusive expression of HSD17B3 in the 
testes, selective inhibitors exerting effects equivalent to 
chemical castration may have potential as therapeutics 
for the treatment of PCa, and may be superior to the 
existing endocrine therapies based on a potential 
reduction in off-target effects. In addition, combination 
with an AKR1C3-selective inhibitor could possibly lead 
to more effective inhibition of the biosynthetic pathway 
and subsequent AR binding. Due to HSD17B3 being 
a membrane-bound protein, a crystal structure of 
HSD17B3 is not yet available. Nonetheless, as a 
member of the SDR family, HSD17B3 could share 
some highly conserved structural features, including 
the Rossmann fold, the cofactor binding site and the 
wide and easily accessible catalytic active site already 
demonstrated for the other six members of this family.  

Several research groups have reported potent 
selective steroidal and nonsteroidal inhibitors as 
promising leads[73-76]. Recently, a review describing 
HSD17B3 as a target in hormone-dependent PCa 
therapy has been published[77], which described the 
main structure, function and reporting only a few 
examples of steroidal and non-steroidal inhibitors of 
HSD17B3. Here we provide a discussion of the most 
active nonsteroidal inhibitors developed to-date. 

To aid structure-based drug design, some homology 
models of HSD17B3 have been developed[78-81]. A 
series of compounds based on the dibenzazepine 
scaffold was discovered in 2006 and compound 29 
[Figure 10] was initially identified as promising hit 
compound and used as a lead to discover compound 
30, which exerted picomolar activity in enzymatic as 
well as cellular (stably expressing 17β-HSD3 MDA-
MB453 cells) assays[78]. This compound was very 
useful in helping the design of the subsequently 
discovered 17β-HSD3 inhibitors. In fact, Vicker et al.[79] 
built a homology model of 17β-HSD3 and used 30, 
as well as some structures described in Schering-
Plough patents[82] (e.g, 31, Figure 10), to construct 
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benzophenone-1[80], tributyltin chloride and triphenyltin 
chloride [86] have been identif ied as HSD17B3 
inhibitors, but their use is considered harmful to normal 
sexual development, since this enzyme plays an 
essential role in that process.

In the last decade, several steroidal and non-steroidal 

inhibitors of HSD17B3 have been designed and 
developed, but none of them has reached the 
clinic. One reason for this might be the difficulty in 
identifying an appropriate species to conduct the 
functional assays. Due to little sequence homology 
between human and other species isoforms, very 
potent inhibitors of the human enzyme show little 

Figure 10: Structures of some nonsteroidal 17b-HSD3 inhibitors
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the distribution of SRD5A1-3 in different human 
tissues is tabulated in the review of Azzouni et al.[88], 
which extensively examines the basic biology of the 
SRD5A isoenzyme family. The different expression 
levels of SRD5A isoenzymes may confer response 
or resistance to 5a-reductase inhibitors and thus may 
have importance in PCa prevention. The mechanisms 
underlying androgen regulation of expression of the 
three different SRD5A isoenzymes in human prostate 
cells has been investigated by Li et al.[89]. The authors 
found that androgens regulate the mRNA levels of 
SRD5A isoenzymes in a cell type-specific manner, 
with regulation occuring at the transcriptional level 
and dependent on the AR. In addition, AR seems be 
recruited to a negative androgen response element 
(nARE) at the promoter of SRD5A3 in vivo and directly 
binds to the nARE in vitro.

Due to the unstable nature of these enzymes during 
purification, the crystal structures of both SRD5A1 
and SRD5A2 are still unresolved. Despite this, a large 
number of molecules has been developed as SRD5A 
inhibitors over the past 40 years. Finasteride (38, Figure 
11) and dutasteride (39) are the only two clinically 
used drugs, having been approved by the FDA for the 
treatment of BPH in 1992 and 2002, respectively[90,91]. 
Finasteride is a potent inhibitor of SRD5A2 with only 
weak in vitro activity versus SRD5A1 having IC50 
value of 9.4 and 410 nmol/L on the isolated enzyme, 
respectively[92,93]. Dutasteride on the other hand, is a 
dual inhibitor of both SRD5A1 and SRD5A2 isozymes, 
with IC50 of 2.4 and 0.5 nmol/L respectively[94]. Both 
drugs are time-dependent competitive inhibitors and 
belong to the 4-azasteroids class of steroidal SRD5A 
inhibitors. 

A detailed review of each category of inhibitors 
synthesised was published in 2010[93], and aids 
understanding of the structural features required 
for SRD5A inhibitory activity. The review discussed 
the need for more potent and less toxic inhibitors of 
SRD5A and suggested the use of molecules outside 
the steroidal template, as they can decrease the 
potential interaction with an additional enzyme or 
receptor of the steroidal endocrine system. Since 2010, 
only a few molecules have emerged as nonsteroidal 
SRD5A inhibitors[95]. In 2011, a hybrid molecule 
(40) was derived by merging structural features of 
finasteride and epristeride (41) as an inhibitor of 
SRD5A2. As epristeride behaves as an uncompetitive 
inhibitor[93,95,96], a hybrid compound from these two 
molecules could have propensity for exploiting both 
mechanisms. However, the relative potency of 40 
was only 0.49 (compared with finasteride), and the 
authors concluded, from observing docking poses of 

activity toward HSD17Bs of other species, especially 
rodents[73,75,77]. Moreover, as AKR1C3, predominantly 
expressed in the prostate, performs the same 
biochemical conversions of HSD17B3, the in vivo 
HSD17B3 inhibition alone is not sufficient to completely 
abolish T levels in plasma. Additionally, the complexity 
and versatility of the steroidogenic pathways could 
bypass HSD17B3 inhibition in vivo, rendering these 
inhibitors not sufficiently efficacious in blocking tumour 
progression when tested alone. 

SRD5A
Steroid 5α-reductases (SRD5A) are membrane-
associated (microsomal) enzymes thatcatalyse the 
5α-reduction of 3-oxo (3-keto), Δ4,5 C19/C21 steroids. 
The reaction involves a stereospecific, irreversible 
breakage of the double bond between carbons 4 and 
5 with the aid of cofactor NADPH and the insertion of a 
hydride anion to the α face at carbon C-5 and a proton 
to the β face at position C-4. Examples of substrates 
are T, progesterone, AD, epitestosterone, cortisol, 
aldosterone and deoxycorticosterone.

Three isoenzymes of SRD5A, which are encoded by 
different genes (SRD5A1, SRD5A2, and SRD5A3), 
have been identified. All are involved in the conversion 
of T into DHT in the canonical pathway. In addition, 
SRD5A enzymes are also involved in the reduction 
of AD and progesterone or 17α-hydroxyprogesterone 
respectively to 5α-androstanedione and pregnan-3,20-
dione or pregnan-3α,17α-dihydroxy-20-one. Therefore, 
these reductases appear to be key enzymes for the 
activation of both 5α-dione and backdoor pathways 
[Figure 2].

Even though these three isozymes are intrinsic 
membrane-bound proteins that catalyse the same 
reaction, they only share a l imited degree of 
homology in protein sequence and possess distinctive 
biochemical properties. SRD5A1 is expressed in low 
levels in the prostate, and is relatively insensitive 
to finasteride, a 4-azasteroid enzyme inhibitor (38, 
Figure 11). SRD5A2 is expressed in high levels in the 
prostate and in many other androgen-sensitive tissues 
and is sensitive to finasteride. Instead, it remains 
controversial whether SRD5A3 enzyme activity is 
inhibited by finasteride or dutasteride, the latter a 
4-azasteroid derivative effective at inhibiting both 
SRD5A1 and SRD5A2[87].

The inter- and intra-individual variability, the type and 
stages of progression of PCa and the methods used 
could explain the differences in the expression of the 
3 isoenzymes observed in numerous reports [Table 2]. 
A summary of many studies that have discussed 
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40 in the AKR1D1 active site, a surrogate of SRD5A2, 
that its inhibitory mechanism was the same as that of 
finasteride[97].

Aggarwal et al.[98] studied similar steroidal molecules 
(structures 42-44) able to inhibit the type II enzyme 
in the same range of concentration as finasteride. 

The carboxylic group at position-3 provided selective 
inhibition ofSRD5A2, as all the compounds of this 
series showed minimal inhibition against the type I 
enzyme.4-azasteroid-2-oximes (structures 45-47) were 
reported to be active against the SRD5A enzymes 
present on rat ventral prostate extract (both type 1 and 
the type 2 isozymes were present)[99].

Figure 11: Structures of some 5a-reductase inhibitors
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ligand-activated nuclear transcription factors, it consists 
of four distinct functional domains, a poorly conserved 
N-terminal domain (NTD) with transcriptional activation 
function; a highly conserved deoxyribonucleic acid 
(DNA)-binding domain (DBD); and a moderately 
conserved ligand-binding domain (LBD). A short amino 
acid sequence called the “hinge region” separates 
the LBD from the DBD and also contains a part of 
a bipartite ligand-dependent nuclear localisation 
signal (NLS) for AR nuclear transport [Figure 12][105]. 
NTD contains a transactivation AF-1 region, with two 
transcription activation units (TAU1 and TAU5) and 
two motifs involved in protein-protein interactions and 
AR N/C interactions[6]. NTD contains a co-regulator 
binding surface, the disruption of which reduces the 
androgen-dependent proliferation and migration of 
PCa cells[106]. The LBD contains an activation AF-2 
region, which is responsible for agonist-induced 
activity and androgen binding to induce conformational 
changes, which facilitates intra-and intermolecular 
interactions between the N-terminal and C-terminal 
domains and subsequently AR homo-dimerisation 
and nuclear translocation [Figure 12][107,108]. In the 
nucleus, ligand bound AR binds to specific recognition 
sequences known as “androgen response elements” 
(AREs) in the promoter and enhancer regions of target 
genes and recruits co-activators and co-repressors, 
which then modulate transcription of androgen-
dependent proteins[109]. Under physiological conditions, 
both T and DHT can bind to and activate AR signalling 
[Figure 1][110,111]. Deregulated AR signaling is common 
during PCa development and CRPC progression. The 

Recently, Al-Mohizea et al.[100] prepared and performed 
pharmacological screening, including SRD5A inhibitory 
activities and antitumour properties (e.g. in LNCaP 
and PC-3 PC cell lines), of several steroids with a 
cyanopyridone heterocycle fused with its D-ring. The 
authors reported that these compounds had potent 
SRD5A inhibitory properties ( in vivo assay with 
Sprague-Dawley rats). The best results were observed 
for the cyanopyridone structures with an oxygen bound 
to C3 (compounds 48-49, IC50 = 210 and 270 nmol/L, 
respectively when measured against rat SRD5A)[95,100].

Finasteride and dutasteride[90,91] have additionally been 
discussed in context of PCa prevention. Two clinical 
trials performed in the early 2000s in men at risk of 
developing PCa showed that the PCa incidence was 
significantly decreased in the treatment group, but the 
patients treated who were diagnosed with PCa had 
higher-grade tumors[101]. A retrospective study rejected 
the results of these clinical trials on PCa prevention 
and hence these drugs have not been FDA-approved 
yet for the prevention of PCa[102]. Subsequently, 
two clinical trials, (in phase II and IV, respectively) 
showed dutasteride to decrease the incidence of 
histopathological progression in patients with low-
grade PCa and delay biochemical progression in 
patients who underwent radical prostatectomy or 
radiation therapy for localised PCa, respectively[103,104].

Androgen receptor
The AR is crucial for normal functioning of the prostate. 
As a member of the steroid hormone receptor family of 

Figure 12: Domain organisation of full length AR (FL-AR) and some AR splice variants (AR-Vs). The four functional domains are indicated 
as follows: the N-terminal domain (NTD, green rectangles), the DNA-binding domain (DBD, red circles); ligand-binding domain (LBD, blue 
rectangles) and the “hinge region”, separating the LBD from the DBD (black lines). For AR-Vs lacking the LBD and/or the hinge region, the 
amino acids outside the previously described domains are listed. AR: androgen receptor
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ARs in tumour cells exposed to ADT undergo selective 
alterations that result in aberrant AR reactivation, 
which ultimately allows the AR pathway to remain 
active despite the shortage of androgenic ligands. AR 
amplification leads to AR overexpression, which is 
present in approximately 30% of CRPCs. Mutations in 
the AR gene occur in approximately 20% of CRPCs. 
Most significant AR mutations occur in the LBD, which 
increase the sensitivity and decrease the specificity of 
ligand binding[112]. Constitutively active splice variants 
(AR-Vs) are detected in PCa cell lines (e.g. LNCaP95, 
VCaP and 22Rv1) and in CRPC tissues. More than 
20 AR-Vs have been reported, but only ARv567 
and AR-V7 are considered to be clinically relevant 
because their levels of expression are correlated 
with CRPC and poor survival rates [Figure 12][6]. AR-
V7, like other AR variants lacks an LBD, and via its 
nuclear localisation binds DNA independently, without 
androgen activation, regulating a unique set of target 
genes that facilitate mitosis in addition to the regular 
androgen-dependent genes that are activated by full-
length ARs that promote disease progression[113].

As other steroid hormone receptors, also AR appear 
to be regulated by epigenetic mechanisms[27]. The first 
evidence of epigenetic regulation of AR came from 
comparing the hypermethylation of AR promoters in 
AR-deficient and AR-expressing cell lines (hyper- and 
hypomethylated, respectively)[114]. In human prostate 
cancer, a significant role of hypermethylation of AR 
genes has been suggested: AR hypermethylation 
was observed both in primary cell lines from PCa 
patients (20%) and in hormone-refractory prostate 
cancers (28%)[115]. Also other epigenetic mechanisms, 
such as histone acethylation/deacethylation, seem to 
participate in the regulation of AR-driven genes[116].

The literature is abundant with research articles and 
reviews concerning the development of AR-based 
therapy for PCa. The AR is a validated therapeutic 
target for PCa and five molecules have already 
been approved by the FDA (cyproterone acetate 
50, flutamide 51, nilutamide 52, bicalutamide 53, 
enzalutamide 54, Figure 13)[117] while several others 
are currently under preclinical/clinical development. 
Among papers of considerable interest on AR, we 
recommend the following for further reading: the 
report of Lu et al.[118] that describes the mechanism of 
function of AR and its targetable domains, the review 
by Imamura and Sadar[6], which focuses on AR-
related mechanisms of resistance and AR antagonist 
therapeutic agents undergoing clinical trials, and 
finally the review by Martinez-Ariza and Hulme[117], that 
encompasses non-ligand-binding protein modulators 
of the AR. 

Unfortunately, most CRPC patients treated with AR-
antagonist therapy will eventually develop resistance 
and succumb to the disease. Mechanisms of 
resistance to these drugs include modification of the 
AR, AR gain-of-function point mutations, truncated AR 
isoforms and constitutively-active AR splice variants[6].
Accordingly, new agents to target these alternative 
ARs through novel mechanisms of action should lead 
to intensified research in the PCa community and lead 
to new drugs with clinical potential. 

AR-antagonists can be classified based on their ability 
to interact with different domains of the AR. Approved 
drugs and similar structures under development show 
affinity for the LBD. These molecules, also named 
traditional AR antagonists, compete with androgens 
in binding the AR and prevent formation of the AF-2 
(activation function-2) hydrophobic groove inside the 
LBD and its interaction with co-regulators. However, 
in some cases, the AR can still dimerise and become 
nuclear, as observed with enzalutamide using confocal 
micrographs[119]. Apalutamide (55, Figure 13) and 
darolutamide (56, OMD-201) are two molecules under 
evaluation in phase 3 clinical trials in patients with non-
metastatic CRPC (NCT01946204 and NCT02200614, 
respectively). Apalutamide shows high structural 
similarity to enzalutamide, but achieves the same 
therapeutic response as enzalutamide at a lower dose 
in a LNCaP xenograft mouse model and does not 
induce AR nuclear translocation or DNA binding[120]. 
Darolutamide is characterised by a different chemical 
scaffold from its cognate antagonists, and is able to 
antagonise AR mutants F876L, W741L and T877A[121].

Seviteronel (5, Figure 4), a non-steroidal CYP17A1 
inhibitor with 17,20-lyase selectivity (see above), has 
been found to show AR-antagonist activity independent 
of CYP17A1 enzyme inhibition, with evidence of direct 
binding to the AR LBD[40]. Similarly, also galeterone 
(3, Figure 4) is a competitive AR antagonist mediated 
by binding of the drug to the steroid-binding pocket 
of AR and concomitantly inhibiting T biosynthesis 
through inhibition of CYP17A1 lyase activity[36]. In 
addition, galeterone targets the LBP of mutated T878A 
AR. The authors also reported on PSA reduction in 
LNCaP and VCaP cell lines, an effect that was partially 
reversed upon addition of DHT in a dose-dependent 
manner[122,123].

The SAR for AF-2 targeting have been extensively 
studied [124-126], and X-ray structures of AR-LBD 
in complex with T (PDB: 2AM9), R-bicalutamide 
(PDB codes:  1Z95 and 4OJB, Figure 14) or 
hydroxyflutamide (PDB: 2AX6) and other ligands have 
been resolved[127]. Essentially, the compounds consist 
of three structural parts: the first part is usually an 
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studies. Putative binding modes of compound 57 
[Figure 15], the most active of the series (IC50 = 0.93 in 
22Rv1 cells), within the antagonistic AR-LBD showed 
hydrogen bond interactions with key amino acids 
Arg752, Gln711 (with the lactone carbonyl group), 
Thr877 (with the terminal carbonyl group) and Asn705 
(with the methylene group). Another interesting 
example of an innovative structureis represented 
by the molecule synthesised by Johnson et al.[129] 
(compound 58), though only the PSA luciferase assay 
was conducted to evaluate biological activity. BMS-
641988 (59) is a non-steroidal compound disclosed in 
2015 with high binding affinity for the AR (Ki = 1.7 nmol/L), 
efficacious in a CWR22-BMSLD1 PCa xenograft 
model with superior efficacy to bicalutamide. Due to its 
acceptable preclinical safety profile both in vitro and 

aromatic ring substituted with a nitrile and an electron 
withdrawn group interacting with Arg752, Phe764, 
and Gln711 [Figure 14], the second part is a nitrogen-
containing moiety such as an amide function or a 
heterocyclic ring, and the third part, often connected to 
the second through a short linker, is different in nature 
in various antagonists but nonetheless important in 
suppressing the agonistic effect[118].

Most of these agents are derivatives of already 
approved non-steroidal AR antagonists, but there is 
a need to discover broader chemotypes, distinct from 
known scaffolds to avoid cross-resistance with these 
compounds. In this regard, Kandil et al.[128] synthesised 
umbelliferone derivatives merging two independent 
in silico pharmacophores based on virtual screening 

Figure 13: Androgen receptor ligand-binding protein antagonists approved by FDA or in clinical trials
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in vivo, it was selected for clinical development and 
the outcomes of two Phase I studies in patients with 
CRPC (NCT00644488 and NCT00326586) have been 
published[130].

Recently, new derivatives[131] of DIMN (60), a potent 
and well characterised AR antagonist interacting with 
the LBD were designed and synthesised[132]. Some 
of these derivatives exhibited higher AR antagonistic 
activity than DIMN itself and bicalutamide, even with 
DHT co-treatment, and higher inhibitory effects on 
LNCaP cells proliferation. Compounds 61 and 62 
bear long, linear and hydrophobic side chains on 
the tetrahydroisoquinoline moiety, while 63 carries 
an additional bulky group such as a phenyl ring 
[Figure 15]. Their potency in inhibiting LNCaP cells (IC50 
range: 0.35-1.01 µmol/L) was shown to be superior 
to DIMN (IC50 = 4.46 µmol/L); this indicates that the 
occupation of a cone-shaped cavity, located near 
Thr877 (interacting with ethereal oxygen from docking 
studies proposed by the authors) increases bioactivity 
of the series.

Recently, a new class of AR modulators bearing the 
triazole core has been proposed, which are able to 
exert antiproliferative effects on LNCaP-AR cells and 
on CW22Rv1 cells, which constitutively expresses high 

levels of AR-V7. Compound 64 was the most effective 
compound of this series and was also evaluated 
in vivo using CW22Rv1 xenografts, demonstrating 
superior activity to enzalutamide in this model[133].

BF-3 is another targetable binding domain located at 
the surface of the AR, where it controls the allosteric 
modulation of AF-2 [134].  Notably, the mutation 
which occurred in the AF-2of LBD will not alter or 
weaken the binding of antagonists in the BF-3 site. 
Interestingly, flufenamic acid (65, Figure 16), that has 
also the ability to inhibit AKR1C3, can bind BF-3 with 
moderate affinity (range of activity: 10-50 µmol/L)[135]. 
Among small molecules inhibiting this domain and 
described in recent reviews[117,118,125,126], compound 
66 displays excel lent anti-androgen potency, 
antiproliferative activity against androgen-sensitive 
(LNCaP) and enzalutamide-resistant (MR49F) 
PCa cell lines, and effective inhibition of tumour 
growth in vivo, in both LNCaP and MR49F xenograft 
models[136]. The data are very promising in highlighting 
the therapeutic relevance of the BF-3 groove in 
AR function. Recently, Zhang et al.[137] designed a 
conjugate of thiosalicylamide and the BF-3 binding 
small molecule tolfenamic acid. This molecule, named 
YZ03 (67), enhanced acetylation of endogenous AR at 
Lys720 residue, critical for protein-protein interaction 
with the FXXLF coactivator peptide binding.

Figure 14: Crystal structure of Trp741Leu AR-LBD in complex with R-bicalutamide (PDB ID 4OJB). Carbon atoms of R-bicalutamide 
are coloured in blue, the AR is grey. Nitrogen, oxygen, sulphur, atoms are depicted in blue, red and yellow respectively. Relevant water 
molecules are represented by red points. AR: androgen receptor; LBD: ligand-binding domain
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translocation. Importantly, also constitutively-
active AR splice variants lacking LBD are inhibited 
by EPI analogues where traditional AR antagonists 
are ineffective [138]. EPI-001 (68), discovered by 
Andersen et al.[139] by functional assay screening of 
marine sponge extracts, is shown in Figure 17; its 
stereoisomers EPI-002-EPI-005 have also been 
isolated and evaluated later. The potential therapeutic 
benefits of EPI have been demonstrated using 

The AR NTD contains amino acids 1-558 and is an 
intrinsically disordered region. Activation function-1 
(AF-1) is a protein binding domain known to 
bind different co-regulators and its low sequence 
identity with other nuclear receptors renders it 
an appealing target for selective small molecule 
inhibitors[117]. The most studied AR NTD modulators 
are EPI compounds that have been shown to be 
bound covalently to AF-1 and to inhibit AR nuclear 

Figure 15: Selected competitive hormone antagonists under development

Figure 16: Selected examples of BF-3 site modulators
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different human PCa cell lines and xenograft models in 
castrated male mice[140]; a small molecule belonging to 
this class (EPI-506, a prodrug analogue of EPI-002[141]) 
is now under clinical evaluation in a phase I/II study 
in men with mCRPC that have disease progression 
after enzalutamide and/or abiraterone treatment 
(NCT02606123). 

The DBD is responsible for mediating interactions with 
AREs. Encouragingly, the 3D crystal structure of the 
rat AR DNA-binding domain has been obtained (PDB: 
1R4I)[142]. Some structures able to interact with this 
domain and prevent its interaction with DNA and are 
shown in Figure 17. Pyrvinium (69), an antihelmintic 
(and its hydrogenated analogue 1,2,3,4-tetrahydropyrv
inium[143]), was able to bind at the interface of the DBD 
dimer (inhibiting also AR splice variants lacking the 
LBD) and inhibit cell lines derived from both bone and 
prostate[144]. Although the results are promising, some 
doubts have been expressed about the binding site on 
the DBD involved in the AR inhibition by 69[117,145].

Insights into AR DBD inhibition were provided by 
Li et al.[145] through the study of two molecules (70 and 
71) identified through a virtual screening campaign 
and subsequent medicinal chemistry investigations. 
Both compounds exhibited nanomolar potency 
against the AR and effectively inhibited the growth of 
enzalutamide-resistant cells. Their binding modes were 
corroborated by mutagenesis experiments, confirming 
interaction of these inhibitors with residues Gln592 and 
Tyr594 of AR DBD. Compound 71 was also evaluated 
in LNCaP xenografts in mice, causing comparable 
reductions in tumour volume to enzalutamide[146].

In summary, much effort has gone into AR-targeted 
drug design and in particular the LBD has been 
pursued as a target. However, mutated forms of AR, 
especially constitutively active AR variants, need to 
be considered as an aspect of AR-related resistance 
mechanisms and, for this reason, targeted with novel 
inhibitors. Accordingly, we look with particular interest 
to molecules targeting co-regulator binding regions 
and include AF-2 and BF-3 pockets (still within LBD, 
but their inhibition is able to overcome gain-of-function 
point mutations induced by AF-2 inhibitors), the NTD 
and the DND, or molecules able to inhibit AR through 
an indirect mechanism. 

Degradation of all forms of ARs are emerging as an 
advantageous therapeutic paradigm for the more 
effective treatment of PCa in the context of AR 
mutations that confer resistance to second-generation 
AR antagonists. The compounds able to degrade the 

AR are classified as Selective Androgen Receptor 
Degraders (SARD). A first-in-class non-steroidal 
SARD, AZD3514 (72, AstraZeneca, Macclesfield, 
UK, Figure 17) was developed and was shown to 
downregulate the AR[147]. AZD3514, which binds 
the AR LBD and prevents its ligand-driven nuclear 
translocation, promotes down-regulation of AR levels. 
It has been clinically evaluated, but disappointingly only 
moderate anti-tumour activity in patients with advanced 
CRPC was observed; it was also shown to be poorly 
tolerated, with nausea and vomiting being the main 
toxicities[148]. In the 2012, Yamashita et al.[149] identified 
that ASC-J9 (73), also named as dimethylcurcumin, 
functioned as an AR degradation enhancer for full 
length AR and AR splicing variants. ASC-J9 is the 
first anti-AR compound discovered that selectively 
degrades AR in selective cells[150].

Niclosamide (74), an anthelmintic drug, has been 
foundable to inhibit AR-V7 transcription activity and 
downregulate its protein expression. Both in vitro 
and in vivo PCa tumour growth were reduced upon 
treatment with 74 and it has been suggested that it acts 
by promoting AR-V7 degradation via a proteasome-
dependent pathway[151]. Furthermore, the combination 
of niclosamide and enzalutamide resulted in significant 
inhibition of enzalutamide-resistant tumour growth, 
suggesting that niclosamide enhances enzalutamide 
therapy and overcomes enzalutamide resistance in 
CRPC cells[151]. A phase I study of niclosamide in 
combination with enzalutamide in men with CRPC is 
currently under investigation (NCT02532114).

Also galaterone (3, Figure 4), a known CYP17 
inhibitor and AR antagonist, promotes the proteasomal 
degradation of both AR and its ligand-independent 
variants AR-V7 and Arv567es[152,153].

Hydrophobic tagging technology has also been 
employed to degrade the AR. Bradbury et al.[154] 

showed that molecules containing hydrophobic 
regions linked to small-molecule AR ligands induce 
AR degradation, reduce expression of AR target 
genes and inhibit proliferation in androgen-dependent 
PCa cell lines. By appending the alkylfluoryl chain of 
fulvestrant onto DHT, a selective SARD compound 
was discovered. As a parallel strategy to the rational 
design of a SARD, Gustafson et al.[155] appended an 
adamantyl moiety to the AR agonist RU59063 (75) via 
a short PEG linker to create SARD279 and SARD033 
(76 and 77, Figure 17). They found that this addition 
switched the agonist into a pure antagonist capable 
of degrading AR protein (half-maximal degradation at 
1 μmol/L; maximal degradation of 95%). Moreover, 
this SARD was also able to inhibit proliferation of a 
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tumour strategy in the context of AR mutations 
that confer resistance to second-generation AR 
antagonists[156].

model castration-resistant PCa cell line resistant to 
enzalutamide. These results suggest that selective AR 
degradation may be an effective therapeutic prostate 

A

B

C

D

Figure 17: Selected compounds that act as: (A) NTD modulators; (B) DBD inhibitors; (C) indirect inhibitors of AR and AR variants; and 
(D) selective androgen receptor downregulator (SARD) compounds. AR: androgen receptor; DBD: DNA-binding domain; NTD: N-terminal 
domain
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CO-ADMINISTRATION OF INHIBITORS AND 
ANTAGONISTS TARGETING THE AR AXIS

Androgen biosynthesis prevention and AR signalling 
inhibition, should in principle produce blockade of 
the AR axis. As these pathways are implicated in the 
progression of CRPC, these concurrent therapeutic 
actions should both reduce the incidence of resistance 
and increase therapeutic efficacy. Such a potential 
powerful combination strategy could replace the 
current PCa treatment paradigm of sequentially adding 
agents at the time of disease progression. Many drug 
combinations targeting the AR axis are described 
in literature. Unfortunately, the use of dutasteride in 
combination with bicalutamide for advanced PCa has 
not been as successful. Dutasteride plus bicalutamide 
in patients with progressive non-metastatic PCa 
did not delay further progression compared to only 
bicalutamide[157] while dutasteride in combination with 
abiraterone as well as enzalutamide is currently in a 
phase II clinical trial where the outcome is pending at 
the time of writing[158]. Recently Liu et al.[159] showed 
overexpression of AKR1C3 to confer resistance 
to enzalutamide. Furthermore, the combination of 
indomethacin, an AKR1C3 inhibitor, and enzalutamide 
resulted in significant inhibition of enzalutamide-
resistant tumour growth. These results suggested 
that AKR1C3 activation is a critical resistance 
mechanism associated with enzalutamide resistance. 
Accordingly, the dual targeting of intracrine androgens 
and AKR1C3 promises to overcome enzalutamide 
resistance and improve survival of advanced PCa 
patients. Subsequently, the same research group 
reported that treatment of abiraterone-resistant 
cells with indomethacin overcomes resistance and 
enhances abiraterone therapy both in vitro and in vivo 
by reducing the levels of intracrine androgens and 
diminishing AR transcriptional activity[160]. Furthermore, 
these studies provide preclinical proof-of-principle for 
starting clinical trials focussed on investigating the 
combination of using indomethacin with enzalutamide, 
or with abiraterone for advanced PCa[69,161].

BIFUNCTIONAL INHIBITORS AND 
ANTAGONISTS TARGETING THE AR AXIS

Despite the highly significant therapeutic relevance 
of combination therapies, potential advantages of a 
targeted therapy based on a single drug that modulates 
the activity of multiple targets over combination 
therapy are: (1) a more predictable pharmacokinetic 
profile; (2) a lower probability of developing target-
based resistance[162]; (3) a superior safety profile; and 
(4) a minimised risk of adverse effects[162,163].

One of the first bifunctional non-steroidal small 
molecules studied by Chen et al.[164] as therapeutic 
leads for CRPC was an N-(aryl)amino-benzoate 
inhibitor (77, Figure 18). The authors exploited the 
observation that some flufenamic acid analogues 
with AKR1C3 inhibitory activity also acted as AR 
antagonists[165] and subsequently synthesised a 
second generation of AKR1C3 inhibitors in which 
the key features were the inclusion of an additional 
r ing on the phenylamino r ing. The derivat ive 
3-[(4-nitronaphthalen-1-yl)amino] benzoic acid 
(77, Figure 18A) retained nanomolar potency and 
selective inhibition of AKR1C3 but also acted as an 
AR antagonist. It inhibited 5a-dihydrotestosterone-
stimulated AR reporter gene activity with an IC50 = 
4.7 µmol/L and produced a concentration-dependent 
reduction in AR levels in PCa cells. The in vitro 
and cell-based effects of compound 77 makes it a 
promising lead for the development of dual acting 
agent for CRPC. 

As ment ioned above, the CYP17A1 inhibi tor 
galeterone not only inhibits the enzyme but is also a 
competitive AR antagonist and causes degradation of 
the AR and its variants AR-V7 and Arv567es[153,166-168]. 
Furthermore, galeterone also impaired AR binding 
to DNA and selectively up-regulated degradation of 
the mutated T878A AR protein[122,123]. For its multi-
funtional activity, three different clinical studies have 
been initiated with galeterone. A phase I clinical trial 
has been completed, while a phase II clinical trial 
(ARMOR2) is still ongoing in CRPCa patients. A phase 
III clinical trial (ARMOR3-V7) has started recruiting 
CRPCa patients that specifically express AR-V7. 
Unfortunately ARMOR3-SV was terminated as it failed 
to meet its primary endpoint of demonstrating an 
improvement in radiographic progression-free survival 
(rPFS) for galeterone versus enzalutamide in AR-V7 
positive mCRPC[169].

Another interesting polyfunctional drug is D4A, 
a metabolite of abiraterone. Li et al.[170] recently 
showed that abiraterone is converted to D4A in mice 
and patients with PCa [Figure 18B]. D4A inhibits 
CYP17A1, HSD3B and SRD5A, which are required 
for DHT synthesis. In particular, D4A is approximately 
10-fold more potent than abiraterone at blocking the 
conversion of [3H]DHEA to AD by 3β-HSD in LNCaP 
and VCaP cells.

D4A and abiraterone similarly block conversion of [3H]
pregnenolone to DHEA by CYP17A1, as shown by a 
study in cells expressing CYP17A1[170]. To determine 
the effect of D4A on endogenously expressed SRD5A, 
LAPC4 cells, which exhibit robust SRD5A enzymatic 
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studies, but although able to extend overall survival 
rates, it rarely has curative power. The lack of long-
lasting therapeutic effects of abiraterone and ADT may 
in part be linked with androgen-independent pathways 
and crosstalk to signal transduction pathways and in 
part to mutations to the AR[172]. An ever-increasing 
number of studies over the past decade have 
provided insight into prostate cancer biology and it is 
becoming apparent that new chemotypes and new 
drug combination strategies are required to target 
the heterogeneous prostate microenvironment more 
effectively. Accordingly, future drug discovery should be 
focussed on multi-targeting agents that inhibit several 
steps in the biosynthetic steroidogenic pathway, or 
degrader drugs that eradicate the AR (normal or 
mutated) to prevent it fuelling PCa growth. Whereas 
the former requires multifactorial drug design and 
appropriate multifunctional in vitro models, the latter 
may be a strategy to be implemented in the clinic within 
a shorter timeframe. In parallel efforts, an attractive 
route to better therapeutic outcomes is to conduct 
clinical trials that explore the possibility of using certain 
types of drugs at a much earlier disease state. Indeed, 
this is the thinking behind the STAMPEDE trial, which 
tests a number of additional therapies, given alongside 
first-line ADT and is discussed by Malcolm Mason 
in another review “Getting better at treating prostate 
cancer: what clinicians should want from scientists” 
in this themed prostate cancer issue. PCa patients 
who have suffered relapse with bone metastasis 
currently have poor overall survival rates, with only 
bisphosphonates available for palliative treatment. 
Obstacles in obtaining bone biopsies have halted our 
understanding of how we can effectively treat PCa 
patients suffering from bone metastases. Generally, the 
PCa microenvironment is known to be under oxidative 
stress and indeed this might have a significant impact 
on how steroidogenic enzymes respond within the 
bone microenvironment. Evidence points to the intra-
tumoural synthesis of T and DHT is minimal, yet high 

activity [18], were treated with D4A, abiraterone 
or enzalutamide respectively and cultured in the 
presence of [3H]AD (the preferred natural substrate 
of SRD5A1)[18]. D4A (10 mmol/L) almost completely 
blocked conversion of AD to 5α-androstanedione and 
other 5a-reduced androgens, whereas abiraterone 
and enzalutamide had no detectable effect, even at a 
concentration of 100 mmol/L. Abiraterone has been 
reported to have modest affinity for AR, particularly 
in the presence of mutations in the ligand-binding 
domain [171]. To determine how conversion from 
abiraterone to the 3-keto structure of D4A affects drug 
affinity for AR, Li et al.[170] performed a competition 
assay. The affinity of D4A for mutant (expressed in 
LNCaP) and wild- type (expressed in LAPC4) AR is 
greater than that of abiraterone and comparable to 
that of enzalutamide, and greater than bicalutamide. 
D4A also has more potent anti-tumour activity against 
xenograft tumours than abiraterone. These findings 
suggest that direct treatment with D4A potentially could 
be more clinically effective than abiraterone treatment.

CONCLUSION

Inter-patient heterogeneity and distinct patterns of 
abnormal expression and regulation of steroidogenic 
enzymes contribute to PCa patient relapse. As 
discussed in this review, the many enzymes involved 
in the steroidogenic pathway provide obstacles and 
opportunities for researchers engaged in developing 
better drugs. Currently, hormone therapy remains 
first choice for patients with advanced PCa, either as 
alone or in combination with chemotherapy. Androgen-
dependent and independent production is central to 
fuelling PCa growth, and the biosynthetic steroidogenic 
pathway plays a vital role in the former. Great progress 
in PCa biology and drug design have enabled effective 
therapies to be used clinically, while several promising 
preclinical strategies are underway. Newer drugs such 
as abiraterone have performed well in several clinical 
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Figure 18: (A) Compound 77, analogue of flufenamic acid; (B) metabolism of abiraterone to D4A[170]
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expression levels of certain steroidogenic enzymes 
(SRD5A1, AKR1C2, AKR1C3, and HSD17B10) have 
been detected in a smaller number of bone metastases 
when compared to non-malignant prostate and primary 
prostate tumor tissue[173]. Furthermore, in a recent 
study AR amplification was not observed in bone 
metastases from previously untreated PC patients, 
but was detected in about half of metastatic samples 
from patients with CRPC. This AR amplification was 
associated with increased AR and AR-V7 expression 
and a particularly poor prognosis[174].

Steroidogenic enzymes are dependent on NAD/
NADH co-factor activity and hence better knowledge 
of the Warburg effect in the bone microenvironment 
might also be important. Additionally, enhanced 
understanding of how other cytochrome P450 or 
aldehyde dehydrogenase isoforms exist and cooperate 
in retinoic acid production, stem cell maintenance 
or in inflammatory response may also help to 
understand significant differences between localised 
and metastasised PCa. As osteoblasts regulate 
the intratumoral steroidogenesis of CRPC in bone, 
targeting osteoblasts may therefore be important in the 
development of new therapeutic approaches[175]. To 
improve on our strategies for therapeutic intervention, 
we need better models for evaluating new compounds, 
including co-culture systems, multicellular spheroids, 
patient-derived xenografts and organoids. Discovery 
of highly selective chemical probes to investigate 
steroidogenic/metabolic pathways should yield new 
drugs that more effectively target the AR axis, which 
can be employed in combination with other drugs 
employed in PCa management.
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