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Abstract
Scanning electron microscopy (SEM) has been widely utilized in the field of materials science due to its significant 
advantages, such as large depth of field, wide field of view, and excellent stereoscopic imaging. However, at high 
magnification, the limited imaging range in SEM cannot cover all the possible inhomogeneous microstructures. In 
this research, we propose a novel approach for generating high-resolution SEM images across multiple scales, 
enabling a single image to capture physical dimensions at the centimeter level while preserving submicron-level 
details. We adopted the SEM imaging on the AlCoCrFeNi2.1 eutectic high entropy alloy as an example. SEM videos 
and image stitching are combined to fulfill this goal, and the video-extracted low-definition images are clarified by a 
well-trained denoising model. Furthermore, we segment the macroscopic image of the eutectic high entropy alloy, 
and the area of various microstructures is distinguished. By combining the segmentation results and hardness 
experiments, we found that the hardness is positively correlated with the content of the body-centered cubic phase 
and negatively correlated with the lamella width. The whole procedure is also applied to a thermoelectric gradient 
material (PbSe-SrSe). Our work provides a feasible solution to generate macroscopic images based on SEM for 
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further analysis of the correlations between the microstructures and spatial distribution, and can be widely applied 
to other types of microscopes.

Keywords: Cross-scale imaging, imaging denoising, imaging stitching, material microstructures

INTRODUCTION
Microstructure of a material refers to its local composition, grains, phases, and other structural features at a 
microscopic scale. It plays a crucial role in determining the material’s properties, such as mechanical 
strength, electrical conductivity, thermal conductivity, corrosion resistance, and more. One classical 
example is material strengthening through manipulation of structural heterogeneity at various scales such as 
impurity atoms, dislocations, twinning, grain boundary, precipitation/dispersion phases, composites, etc. 
Therefore, researchers have devoted considerable effort over an extended period to the characterization and 
design of microstructures that are intricately tied to the manufacturing process. Significant progress has 
been made in the fabrication of metals with various microstructures using different compositions, 
manufacturing methods and parameters, and optimum microstructures could be determined by comparing 
the corresponding properties[1-3]. On the other hand, gradient materials were intentionally designed to 
establish the local microstructure-property correlation to screen the microstructure that exhibits the desired 
properties[4,5]. Regardless of the approach taken, it is crucial to accurately determine the relationship between 
the local microstructural characteristics and its properties throughout the entire sample. Even in the first 
approach, microstructural gradient or structural non-uniformity can exist within a single ingot due to local 
variations in parameters during fabrications[6,7]. This phenomenon of structural non-uniformity and 
anisotropy is more common in materials prepared by additive manufacturing, which builds parts by adding 
material one layer at a time and involves complex cyclic thermal history[8,9]. Therefore, characterizing the 
structure of micro-regions to understand the performance of the entire sample may be inaccurate and far 
from sufficient. High-throughput characterization method to reveal the microstructures over large length 
scales is indispensable to illustrate the structural heterogeneity within the ingot, understand the local 
microstructure-property correlation, and screen the superior microstructure in a rapid way.

We take the common material characterization technique, scanning electron microscopy (SEM), as an 
example. SEM plays an extremely significant role in the characterization of microstructures, providing 
detailed imaging and analysis of surface morphology, grain boundaries, phase distribution with high-
definition (HD)[10] and magnification. Definition refers to the clarity of an image and its capacity to present 
fine details; HD images feature a high signal-to-noise ratio while low-definition (LD) images have a low 
ratio. However, obtaining cross-scale images through SEM is often an impossible task due to limitations in 
resolution and working distance. Higher-resolution imaging often requires shorter working distances, 
limiting the field of view and the ability to image large areas. Therefore, it poses a challenge in 
simultaneously optimizing imaging resolution, field of view, and imaging speed. One possible solution is 
super-resolution methods[11-16] based on deep learning, which have shown tremendous potential in 
enhancing image resolution. These methods utilize deep neural networks to learn the mapping between 
low-resolution (LR) and high-resolution (HR) images, thereby generating HR images from LR inputs. The 
super-resolution convolutional neural network (SRCNN) developed by Dong et al. is considered the 
seminal work in image super-resolution reconstruction based on deep learning[17]. The very deep super 
resolution (VDSR) method presented by Kim et al. introduced residual learning[18]. Ledig et al. utilized 
generative adversarial networks for super-resolution[19]. Zhang et al. enhanced feature learning with channel 
attention and proposed the residual in residual structure[20]. Liang et al. utilized Swin Transformer for image 
super-resolution, combining Transformer with convolutional neural networks (CNN)[21]. These methods 
have been successfully applied in various fields, including medical imaging[22-25] and remote sensing[26-28]. In 
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the field of electron microscopy, Fura et al. employed generative adversarial networks to enhance the 
resolution of SEM images of fractured cathode materials[29]. Jangid et al. found that incorporating domain 
knowledge into the training process of super-resolution models improves their performance on electron 
microscopy image datasets[30]. However, existing work has limitations in resolution enhancement while 
maintaining the original field of view, typically achieving 2×, 4×, 8×, or 16× enhancements. As magnification 
increases, the “authenticity” of the images diminishes. Even with a 16× magnification, it falls short of the 
requirements for cross-scale imaging. Moreover, limited magnification may not meet the requirements 
when characterizing materials at the centimeter scale while preserving microscale details, which cannot be 
solely addressed by conventional super-resolution techniques. Another potential solution for cross-scale 
imaging is image stitching. Yin et al. have developed an all-weather continuous autonomous imaging 
system for transmission electron microscopy, enabling high-throughput image acquisition at the petabyte 
scale through parallelization and automation[31]. This work achieved high-throughput imaging and stitching 
to obtain extremely large images. However, it suffers from fatal drawbacks such as equipment modifications 
and excessively long acquisition times.

To overcome these challenges, we propose a novel method for generating cross-scale HR-SEM images, i.e., 
macroscopic ones with submicron-level details. The required equipment is simply a standard electron 
microscope with video recording capability, along with our plug-and-play system called the Cross-Scale 
Electron Microscopy Image Generation System (CEMI), as shown in Figure 1. Given a LD SEM video as 
input, CEMI extracts consecutive LD frames, and feeds them into a pre-trained denoising model to generate 
corresponding HD images. The images are then stitched together using an image stitching module. This 
technique holds paramount significance for materials research. Firstly, our proposed method addresses the 
limited imaging range issue of traditional SEM techniques, and it has no magnification limitations while 
preserving microscale details in comparison with super-resolution methods, allowing researchers to obtain 
images over a broader range. By generating large-scale HR images, researchers can better observe the 
microstructure and properties of materials, providing a more comprehensive understanding in the field of 
materials science. Secondly, we greatly reduce the cost of acquiring HD SEM images based on LD ones at a 
much faster scanning speed. Furthermore, we explore analytical methods for the cross-scale image to gain 
better insights into the microstructure and properties of materials. Due to the enormous imaging range of 
cross-scale images, it is challenging for the human eye to derive meaningful conclusions directly. Therefore, 
we employed image segmentation techniques to segment the microstructures of interest. In this work, we 
conducted a statistical analysis of the distribution of three microstructural components in AlCoCrFeNi2.1 
eutectic high entropy alloys (EHEA). These components include lamellar structures, lamellar width, and the 
body-centered cubic (BCC) phase. Furthermore, we analyzed their correlation with material hardness. 
Another example presented in this work is the application of the CEMI to thermoelectric gradient material. 
CEMI is not only applicable to SEM but also easily integrable with various types of microscopes, making it a 
valuable tool for researchers across multiple scientific disciplines.

RESULTS
Image capturing
Conventionally, a series of high-magnification photographs with partial (typically 30%-60%) overlaps must 
be captured to serve as input data for image stitching over large length scales[32-37]. This is also true for the 
commercial software Thermo Scientific Maps, which is only compatible with its own facilities. However, 
shooting HD images is very time-consuming and labor-intensive. Even for skilled operators, taking a HD 
SEM image requires 1-2 min (including locating the local region, focusing, scanning and saving). By 
contrast, CEMI offers flexibility to deal with either low-quality videos or LD images directly. Compared 
with HD image (cycle time = 26.2 s), it only takes one-tenth of the corresponding time to acquire the LD 
image (cycle time = 2.7 s). Furthermore, we can continue to save time in data acquisition and free up 
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Figure 1. Overall workflow of Cross-Scale Electron Microscopy Image Generation System and its modules.

manpower by using the automatic sample stage translation and video capture function. By setting an 
appropriate movement velocity, a low-quality video containing structural information throughout the 
lateral x-axis could be obtained. In this way, we finally collected 18 videos, from which 3,902 frames were 
automatedly extracted by setting appropriate extraction intervals, covering the specimen with a macro size 
of 2.75 cm × 0.175 cm as shown in Figure 2A. To facilitate subsequent stitching, the extracted adjacent video 
frames have a certain degree of overlap (which can be cumbersome to manually control). In fact, we can 
further magnify the image to capture videos, obtaining more photographs and finer structural information 
as well as maintaining the same level of definition. After preprocessing by the image acquisition module, the 
LD image is sent to the denoising module, where it is processed to obtain the corresponding HD image.

Image denoising
The overall structure of the denoising model is inspired by ESRGAN[38], which can be used for image 
denoising when the magnification factor is 1, and utilizes an adversarial neural network[39] consisting of a 
generator and a discriminator. As shown in Figure 2B, the generator consists of four components: shallow 
feature extraction, deep feature extraction, upsampling module, and reconstruction module. The deep 
feature extraction consists of multiple basic blocks, which are implemented based on the Residual-in-
Residual Dense Block[38]. Each basic block contains three dense blocks, and each dense block consists of five 
convolutional layers (with ReLU activation applied after the first four layers). The discriminator employs a 
U-Net[40] network with spectral normalization regularization[41], which helps stabilize the training process. 
We trained the model using 100 pairs of high-low definition images of high-entropy alloy samples (detailed 
shooting methods can be found in the Section "Methods"). Due to the instability of adversarial training, we 
first trained the generator separately using L1 loss. The resulting denoising model is referred to as SEMNET. 
Then, we used the trained SEMNET as the initialization for the generator in the adversarial neural network 
and combined L1 loss, content perception loss, and adversarial loss to obtain the final denoising model, 
named SEMGAN. The results are shown in Figure 3A. Overall, images generated by SEMNET tend to be 
relatively smooth, with some loss of fine details compared to HD real images. In contrast, SEMGAN 
performs better in this regard and is therefore used as the denoising model in CEMI. The so-obtained HD 
images show better similarity with the ground-truth (GT) HD images, than the LD images. For example, we 
evaluated the numerical disparities in BCC phase fractions (details for this microstructure will be discussed 
later in this work) between the output images from the denoising model and the real 100 HD-LD image 
pairs in the training set [Supplementary Figure 1]. The results of the denoising model’s output images 
closely align with those of real HD images, while real LD images show larger disparities from the other two. 
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Figure 2. (A) Illustrates the SEM imaging path and the frame extraction process for video-based image acquisition. (B) Schematic 
diagram of the denoising model’s structure.

Figure 3. Denoising model performance demonstration. (A) LD represents the low-definition input image to the model, followed by the 
HD images generated by SEMNET and SEMGAN. GT denotes the GT HD image. (B) The image shows a large-scale image created by 
stitching together 3,902 images. It has a size of 123,672 × 7,848 pixels and a physical size of 2.75 cm × 0.175 cm.  The actual length of 
the material is approximately 28 mm.

Furthermore, when only HD images are available, we can use a degradation model to obtain the 
corresponding LD images, which can then be used for training the denoising model. You can find more 
detailed information in the Section "Discussion".

The denoising module is an indispensable component of CEMI in this EHEA case for two main reasons. 
Firstly, for the purpose of rapidly and cost-effectively generating cross-scale images, LD images obtained 
through the image capture module must undergo the denoising module before being used for subsequent 
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stitching. Secondly, the denoising module can be used independently, reducing the cost of acquiring HD 
images. Furthermore, as per our knowledge, there is currently no high and LD SEM image data set for 
training denoising models. We have produced and made the above data public, which will help promote the 
research of denoising models dedicated to the SEM area.

Image stitching
By using the trained denoising model, we can input LD images obtained from the image acquisition module 
and generate corresponding HD images. Subsequently, we employ image stitching methods to merge the 
generated HD images and create cross-scale images. The stitching process takes time proportional to the 
number of images being stitched, with approximately 3 h needed for the 3,902 images. In our experiments, 
we found that LD images are not suitable for large-scale image stitching due to their limited feature points. 
Even when combining two LD images, there is still a possibility of stitching failure. Therefore, LD images 
are not usable when the number of images for stitching reaches thousands. As shown in Figure 3B, we 
generated a large-sized image of 123,672 × 7,848 pixels using the 3,902 images, which corresponds to a 
physical size of 2.75 cm × 0.175 cm. An animation of the zooming-in process on the cross-scale image is 
demonstrated in Supplementary Gif 1. For ease of description in the following text, we will refer to the 
horizontal direction as the x-direction and the vertical direction as the y-direction. Remarkably, even at this 
scale, we were able to observe details at the submicron level. The amplification level in this work is 
equivalent to reading a textbook with a font size of 10 from a distance of 300 m.

The significance of cross-scale images lies in their ability to capture a wide range of information that is not 
easily obtained through conventional imaging techniques. In our experiments, we utilized SEM, but any 
microscope capable of recording videos can leverage CEMI to generate cross-scale images that were 
previously unattainable. From a material application perspective, an overwhelming amount of information 
provided by cross-scale images makes manual analysis practically impossible. Consequently, there is a need 
to develop CEMI plugins for automated cross-scale image analysis. In the following section, we demonstrate 
the scientific value of CEMI by showcasing a plugin for image segmentation in high-entropy alloys.

Applications of cross-scale image
In the context of cross-scale images generated through stitching, a more in-depth exploration of analytical 
methods has been undertaken. The sample we adopted here was AlCoCrFeNi2.1 EHEA, in which fine, 
intricately spaced phases provide exceptional mechanical properties, making it gain significant attention in 
aerospace, automotive, and other applications in various industries. Prior investigations indicated that 
hardness, strength, and ductility are correlated with some factors such as the contents of lamellar eutectic 
structures, BCC phases, and size of eutectic structures[42-45]. In order to illustrate the structural heterogeneity 
within the ingot and determine local microstructure-property correlation in a high throughput manner, we 
used CEMI to automatically image the microstructure with a high resolution throughout the entire ingot. 
The ingot of AlCoCrFeNi2.1 EHEA was manufactured by arc melting method, with a diameter of ~ 3 cm. To 
quantitatively obtain the distribution of different types of microstructural features, the cross-scale image has 
been partitioned into a grid of 19 × 243 smaller images, each measuring 508 × 413 pixels. Subsequently, 
dedicated procedures have been applied to these smaller images, encompassing lamellar structure 
segmentation, lamellar width quantification, and BCC phase proportion estimation. The outcomes of these 
operations are then visualized on a 19 × 243 matrix, where darker shades indicate higher numerical values in 
the respective regions. The so-obtained distribution of microstructures serves as a quantitative tool to 
eliminate the bias of inhomogeneity, and such information cannot be obtained from single SEM (or other 
type) images.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/microstructures4071-SupplementaryMaterials.gif
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For lamellar structure segmentation, an image segmentation model has been employed. In recent years, 
image segmentation networks[46-51] based on deep learning have experienced rapid development. In this 
work, the U-net[40] architecture, known for its robust segmentation capabilities, specifically a U-net++[52] 
variation, has been utilized for the lamellar segmentation task, as illustrated in Figure 4A. Based on the 
results of lamellar structure segmentation, the widths of the lamellar structures have been quantified, as 
demonstrated in Figure 4B. This was achieved by determining the minimum bounding rectangle for each 
lamellar region within the smaller images. The width of each lamellar region (represented by the length of 
the green line segment) and the count of lamellar structures (indicated by the number of black lines 
intersected by the green line segment) were computed. It is important to note that due to the presence of 
multiple lamellar regions within each smaller image, the width of lamellar structures was calculated 
separately for each region, and the average value was considered as the lamellar width within the respective 
smaller image. In the case of BCC phase proportion estimation, the original image was first transformed 
into a grayscale representation. Subsequently, a binary image was created through a thresholding 
procedure[53], enabling the quantification of the BCC phase’s respective proportion (represented by the black 
regions in the binary image), as depicted in Figure 4C. The comprehensive distribution of these three 
microstructural characteristics is illustrated in Figure 4D-F. The proportion of lamellar structures is 
relatively low on the far right, with some degree of fluctuation in other parts.  Lamellar width is higher at 
both ends and lower in the middle. The BCC phase exhibits a distinct feature of being higher in the middle 
and lower at both ends.  The x and y axes in the distribution graph are the corresponding dimensions of the 
sample, allowing for a direct comparison with real measurements. This approach facilitates direct 
observation of the distribution of these microstructural features across different regions, thereby aiding 
subsequent analyses.

Subsequently, we quantified the microstructural information at corresponding positions. This information 
was condensed into one dimension by averaging along the y-axis, as illustrated in Figure 5A-C. The overall 
distribution of lamellar width ranges from 550 to 750 nanometers, predominantly concentrated around 600 
nanometers. The overall distribution of the lamellar structure proportion ranges from 15% to 33%, with a 
main concentration near 26%. The distribution of the BCC phase ranges from 33% to 35%, predominantly 
centered around 34.5%, in accord with the phase fraction reported in the literature[54,55]. To evaluate the local 
mechanical properties varying with the structural features, nanoindentation experiments, a powerful 
method to investigate the surface mechanical properties, were carried out along the lateral x-axis to 
determine the hardness of small volume with small load and small tip size[56-58]. As depicted in Figure 5D, the 
hardness changes with the length along the x-axis, initially increasing from 450 to 550 HV and subsequently 
descending back to approximately 450 HV. Maximum harness is achieved in the range of 1.1-1.5 cm, that is, 
the middle section of the ingot with a smaller lamella width of 600 nanometers, lamella content of 26% and 
maximum BCC content of 35%. Based on the data from Figure 5A-C, we calculated the Pearson correlation 
coefficients between hardness and each of the three microstructural characteristics, resulting in values of 
-0.4439, -0.2645, and 0.633, respectively. The feature of BCC, showing higher values in the middle and lower 
values at the ends, exhibits the strongest correlation with hardness, while the distribution of the lamellar 
structure demonstrates the weakest correlation. Even when using combinations of microstructural 
distributions, there was no significant improvement in the overall correlation with experimental hardness, 
and there was a tendency toward overfitting (see Supplementary Figure 2). We believe this is primarily due 
to fluctuations in the results of the indentation experiments and image segmentation, particularly in relation 
to the segmentation of lamellar structures. Based on the existing data, we conclude that the proportion of 
the BCC phase and the width of lamellar structures are the crucial factors influencing hardness.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/microstructures4071-SupplementaryMaterials.pdf
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Figure 4. Visualization and analysis of microstructures in cross-scale images. (A)  The portion enclosed by green lines represents 
segmented lamellar components. (B) Lamellar widths are calculated based on the lamellar segmentation results. (C) Image 
binarization; black regions denote the BCC phase. (D) Distribution of lamellar structures. (E) Distribution of lamellar structure widths. 
(F) Distribution of BCC phase composition.

Figure 5. Microstructure and hardness information.

DISCUSSION
One of the key points of our work is the denoising model trained from 100 pairs of high-low definition 
images. However, taking pairs of high-low definition images has complicated post-processing operations 
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such as image alignment, which will limit the generalization of CEMI. In addition, we found that many
electron microscopy laboratories have accumulated a lot of HD SEM images, but there are no
corresponding LD images. To address the above situation, we explored the feasibility of using only HD
images, and the LD images are generated by degradation model, and then used for denoising model
training. The relationship between HD and LD images can be modeled using Equation (1), where x
represents the LD image, y represents the existing HD image, k is the blur kernel, r is the downscaling
factor, and n is the noise. The degradation model is complex and irreversible. Although classic degradation
models can represent the degradation process, directly using them to generate LD images leads to limited
diversity in the generated LD images.  Inspired by Real-ESRGAN[13], we mix the degradation processes, as
given in Equation (2), randomly combining blur, down-sampling, and noise operations twice, with the
possibility of skipping each step (For further details, please refer to the Section "Methods"). The model
trained using the degradation data is referred to as the “synthetic model”, while the one trained with paired
images is termed the “pairs model”. As shown in Figure 6, the synthetic model effectively recovers primary
textural details, but it may overlook smaller black point-like areas. The Learned Perceptual Image Patch
Similarity (LPIPS)[59] values for the synthetic and pairs models vs. the HD image in the testing dataset are
0.3363 and 0.2772, respectively. Lower LPIPS values indicate greater similarity between two images, while
higher values indicate greater dissimilarity. While there is indeed some difference between the synthetic and
pairs models, the synthetic model remains suitable for the denoising module in CEMI. We replicated the
process illustrated in Figure 1 using the synthetic model and conducted a statistical analysis of the BCC
phase. As shown in Supplementary Figure 3, despite differences in values, the overall distribution trend is
very similar to that in Figure 5C. The suitability of the synthetic model in CEMI is because subsequent
applications and analyses primarily focus on the texture structure of the images rather than fine-grained
pixel-level differences. After image processing, we calculated the average LPIPS between 100 HD images
and the processed versions from the original LD images, resulting in 0.119. Our LPIPS score of 0.119
demonstrates the authenticity of the processed images, aligning with results from other image-denoising
studies[60,61], where tested methods achieved LPIPS scores ranging from 0.1 to 0.17 and 0.08 to 0.287.

x = D(y) = (y  k) ↓r + n                                                                            (1)

x = D2(y) = (D2  D1)(y)                                                                            (2)

In addition to the alloy materials studied in this work, CEMI can also be used to generate cross-scale images
for other types of materials, such as thermoelectrics. We synthesized a series of gradient materials
(PbSe)1-x(SrSe)x with varying proportions of PbSe and SrSe at different locations[62]. We captured a 6-min
video, extracted 63 HD images, and successfully stitched them into Figure 7A, with a resolution size of
9,096 × 608 pixels and a physical size of 2,165.75 μm × 145.3 μm. The sample exhibits semiconducting
properties, and this panoramic image can be used for further analysis of the component distribution at
different positions. It is notable that due to the high clarity of the original video, no denoising module was
required before stitching, demonstrating the flexibility of CEMI. From the stitched image, we can get the
two-dimensional distribution of the Sr-rich phase, as shown in Figure 7B.

In this research, we have developed a cross-scale electron microscope image generation system based on
computer vision techniques. Through the utilization of video frame extraction, denoising models (based on
100 pairs of LD and HD images), and image stitching, we have successfully generated electron microscope
images ranging from centimeter to submicrometer scales. The overall function of CEMI is to generate cross-
scale images, which can be applied when the horizontal axis has a meaningful physical scale, such as in the
case of gradient structural materials. On the other hand, each module of CEMI can also be used individually

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/microstructures4071-SupplementaryMaterials.pdf
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Figure 6. Comparison of denoising results. The performance of SEMGAN trained on real paired data and degradation data is 
demonstrated. The “Pairs” section shows the results obtained with real paired data, while the “Synthetic” section presents the results 
obtained with degradation data.

Figure 7. Stitched image of PbSe-SrSe and distribution of Sr-rich phase. (A) The Electron Microscopy Image Stitching of PbSe-SrSe. It 
has a size of 9,096 × 608 pixels and a physical size of 2,165.75 μm × 145.3 μm. (B) The distribution of Sr-rich phase.

to address the issue of material structural heterogeneity. For instance, one can directly capture a certain 
number of LD images, apply the denoising module in CEMI, and then perform image stitching to obtain the 
cross-scale image containing micrometer-level microstructures. We then explore methods for cross-scale 
image analysis using an image segmentation model. Three different microstructures are examined, and the 
proportion of the BCC phase and the width of lamellar structures significantly influence hardness. The 
primary benefit of CEMI is its ability to rapidly and automatically generate cross-scale images with spatial 
distribution, which is of great significance in materials science research. Understanding the structure and 
properties of materials at different scales is crucial for developing new materials and improving existing 
ones. This technology aids in identifying and analyzing material defects and studying the effects of 
processing and treatment on material performance. Furthermore, its modular design ensures that CEMI can 
be continuously improved by incorporating the latest denoising, stitching, and segmentation techniques as 
deep learning technology advances.

https://dx.doi.org/10.20517/microstructures.2024.71
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METHODS
Materials preparing
The AlCoCrFeNi2.1 EHEA was prepared via arc melting high purity elements with purity > 99.99% in argon 
atmosphere[63,64]. Briefly, the metal blocks were mechanically ground to remove the surface oxide layer, 
cleaned by anhydrous ethanol solutions within an ultrasonic cleaning machine, and then dried with cold air 
before weighing. The alloy elements were sequentially placed in a crucible within the furnace based on their 
melting points. High-purity argon gas was adopted for purging and protecting before and during 
manufacturing. The melting current was set to about 150 A.

Sample polishing
The AlCoCrFeNi2.1 EHEA ingot was cut as shown by the schematic in Supplementary Figure 4A. Prior to 
the microstructural characterizations, the ingot was respectively ground with 1,000, 2,000, 3,000, 5,000, and 
7,000 grit SiC papers. The polishing process continued until all unidirectional scratches on the surface 
became invisible. Subsequently, vibration polishing was performed using a VibroMet2 vibration polishing 
device from Buehler, USA, operating at 20% power for approximately 5 to 10 min. Finally, the 
AlCoCrFeNi2.1 EHEA specimen was ultrasonicated in ethanol, and dried in air to acquire clean and fresh 
surfaces, as shown in Supplementary Figure 4B.

Image datasets and video shooting
Microstructural heterogeneity of the AlCoCrFeNi2.1 EHEA specimen was characterized within a field-
emission scanning electron microscope (SEM, model G300, Carl Zeiss, Germany) at 500× magnification, 
with a 60 μm aperture size, contrast information set at 49.5%, and brightness at 68.8%. The backscattered 
electron detection (BSD) mode was utilized, and low, HD image data shots of the training set (containing 
100 LD images and 100 HD images) were captured using Pixel Avg mode with a scan speed of 5 
(Cycle time = 2.7 s) and Line Avg mode with a scan speed of 7 (Cycle time = 26.2 s), respectively, at the 
same site. Furthermore, a LD video was recorded along the X-axis at a moving speed of stage vector X = 2% 
in the Pixel Avg mode (Cycle time = 2.7 s) with all other conditions being the same. The sample table was 
returned to its initial position, moving a specific distance in the Y-axis direction, and then the movement 
continued along the X-axis at the same speed to capture the next video data. This process was repeated until 
panoramic video data of the macro sample was obtained. For the dataset of 100 pairs of HD and LD images, 
we removed microscope parameter information unrelated to the images themselves. Then, we randomly 
selected 90 pairs for training the denoising model and ten pairs for evaluation. From these pairs, we further 
selected 24 LD images and annotated the regions of interest corresponding to the lamellar components 
using Labelme[65] for training the segmentation model. Regarding the LD video data, we utilized OpenCV to 
extract frames with overlapping views, ensuring an overlap rate of 30% to 60% between adjacent frames.

Nanoindentation experiment
The microhardness of AlCoCrFeNi2.1 EHEA was assessed using a nanoindentation instrument (model 
iMicro, KLA), with maximum indentation depth of 5,000 nm, and maximum load of 1 N. To ensure 
accurate results, a minimum of three indentations were made at specific x-position, with sufficient distance 
between each indentation to avoid overlapping effects.

Denoising model
We employed an adversarial neural network approach, where the generator’s detailed structure is depicted 
in the provided diagram [Supplementary Figure 5]. The discriminator utilized a U-Net architecture. During 
training, the upsampling module had a magnification factor of 1, ensuring consistent input and output sizes. 
For the SEMNET training stage, we employed L1Loss, and for training SEMGAN, we initialized the 
parameters using the pre-trained SEMNET model. The loss function comprised adversarial loss, content 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/microstructures4071-SupplementaryMaterials.pdf
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perception loss, and L1 loss[14].

Image degradation
In our study, we employed Gaussian noise and Poisson noise with probabilities of 0.5 each to obtain LD 
images from the HD counterparts. The noise sigma range was set between 1 and 30, while the Poisson noise 
scale ranged from 0.05 to 3. For the second degradation process, the noise sigma range was adjusted to 1-25, 
and the Poisson noise scale was set between 0.05 and 2.5.

Image stitching
To merge the captured images seamlessly, we utilized PanoramaStudio 3.6.7 Pro for the image stitching 
process.

Image segmentation model
Our segmentation model was trained using a dataset of 21 HD images for training and three for validation. 
We adopted the U-net++ architecture with the se_resnext50_32x4d encoder for the segmentation model.

Training details
We incorporated transfer learning in our denoising model training. Initially, we fine-tuned the SEMNET 
model based on the pre-trained ESRGAN[38] model to achieve faster convergence. Subsequently, we trained 
the SEMGAN model based on the improved SEMNET. During training, the batch size was set to 18, and we 
utilized Adam[66] optimizer with a learning rate of 1e-4. All models were trained for a total of 40,000 
iterations. For implementation details not mentioned in the paper, we followed the guidelines provided by 
the ESRGAN[38]; this module is developed based on the BasicSR[67] framework. The segmentation model 
employed a pre-trained model based on the imagenet[68] dataset and utilized Dice Loss[69] as the loss 
function. The optimizer used was Adam with a learning rate of 0.0001, and the training was conducted for 
80 epochs. All training of deep neural networks was performed on a machine equipped with an NVIDIA 
RTX 3090 GPU.
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