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Abstract
Low-energy laser peening (LE-LP) is a green and pollution-free surface deformation strengthening technology. In 
this work, LE-LP was used to improve the properties of NiCrBSi-WC/Co (Ni-WC) coating. The investigation 
focused on the impact of LE-LP on the coating microstructure, microhardness, residual stress, and tribological 
properties. The results showed that although laser hot melting damaged the coating surface, the phase structure of 
the coatings did not change significantly. The coating’s hardness increased yet its surface roughness decreased as 
a result of the laser peening. Concurrently, after the LE-LP treatment, a residual compressive stress with an average 
value of -236 MPa was tested on the surface of the coatings. The average wear volume of the coating was reduced 
from 11.64 × 10-2 to 6.9 × 10-2 mm3, and the average wear rate was reduced from 4.31 × 10-5 to 2.55 × 10-5/N·mm3.

Keywords: NiCrBSi-WC/Co coating, low-energy laser peening, microstructure, mechanical properties, tribological 
properties

INTRODUCTION
Wear failures are generated by the surface of the part[1,2]. Wear-resistant coatings prepared by supersonic 
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plasma spraying can improve the wear resistance of components[3,4]. NiCrBSi-WC/Co (Ni-WC) coating is 
widely used in aerospace and marine areas due to its excellent mechanical property and wear resistance[5,6]. 
The enhancement of coating properties has been a hot research topic[7,8].

Heat treatment is a traditional post-treatment method to improve coating properties and eliminate residual 
stress[9,10]. Compared with traditional heat treatment, surface deformation strengthening has the advantages 
of low impact on the substrate and introduction of residual compressive stresses on the surface[11,12]. It is an 
important technology to improve the wear resistance of components[13-16]. With the development of 
technology, surface deformation strengthening technology is gradually combined with coating’s preparation 
to improve the properties of coatings[17,18].

Currently, The most widely used surface deformation peening techniques are shot peening, ultrasonic 
surface rolling and laser peening (LP)[19-21]. The characteristics of the coating are affected differently by 
different surface deformation peening methods. Li et al. shot-peened the Cr3C2-Al2O3-NiCr coatings and 
found that the surface microhardness of the coatings increased by 2.9 times[22]. The residual stress on the 
surface of the coating is -137 ± 7 MPa. And the wear rate of the coating is reduced by 98.7%. Zhao et al. used 
high temperature-assisted ultrasonic surface rolling to post-treat Ni-WC coating[23]. It is found that the 
surface roughness of the coating decreased by 49.04%, the surface microhardness of the coating increased by 
38.4%, the surface stress changed from tensile stress to compressive stress, and wear amount reduced by 
64.23%. Liu et al. found that LP increased the surface microhardness of NiCrBSi clad layers by 40.21%[24]. 
The surface residual compressive stresses were as high as -538 MPa. However, the surface roughness of the 
molten layer increased. In summary, it is feasible to use surface deformation strengthening techniques to 
improve the surface integrity of coatings. LP affects the coating to a depth of up to 2 mm and does not touch 
the coating, among other advantages[25].

Since the Ni-WC coatings prepared by supersonic plasma spraying have a laminar structure with internal 
defects such as pores and cracks, the Ni-WC coatings are prone to coating delamination and flaking during 
friction, so it is necessary to carry out post-treatment to improve the wear resistance of the coatings[26,27]. 
High-energy LP used energy of about 20 J/pulse and spot sizes fo about 3 to 5 mm. Low-energy LP (LE-LP) 
uses laser energy about 20 times smaller and a spot size of about 10 times smaller. Meanwhile, high-energy 
LP affects the metal to a depth of about 2 mm, and LE-LP affects it to a depth of about 100-200 μm. 
Compared to LP, the absorption layer is removed[1]. It saves costs and allows continuous work 
underwater[28,29]. Trdan et al. found that LE-LP increased the hardness of 6082-T651 Al alloy from 92 to 
112 HV0.2

[30]. Residual surface compressive stresses up to -407 MPa were observed. Praveenkumar et al. 
found that the wear volume of TC4 alloy was reduced from 6.75 to 4.75 after LE-LP treatment[31]. LE-LP 
improves the mechanical properties and wear resistance of metals. On the other hand, LE-LP may cause the 
metal to heat up and develop holes and fissures in its surface[32,33]. At present, this technology is mainly used 
to improve the properties of bulk metal[34,35]. It not only enhances the properties of the metal but also has no 
effect on its phase structure. Therefore, the effects of LE-LP on the microstructure and properties of Ni-WC 
coatings need to be investigated.

In this work, we prepared Ni-WC coatings for the first time by supersonic plasma spraying technique. In 
order to improve the properties of the coatings, LE-LP was used. The effect of LE-LP on the microstructure 
and properties of the coatings was investigated.
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METHODS
Powders
The raw material Ni-WC powder developed by Beijing Ryubon New Material Technology Co., Ltd. was 
used. Figure 1 shows the microstructure and chemical composition of two powders. NiCrBSi powder was 
prepared by atomized granulation, and hard ceramic WC/Co powder was sintered using 88 wt.% WC and 
12 wt.% Co. Ni-WC powder was then prepared by mixing 10% WC/Co with 90% NiCrBSi. As seen in 
Figure 1, the distribution of NiCrBSi powder particle size is around 40-80 μm, while that of WC powder 
particle size is around 25 μm. The mass ratio of chemical composition elements of the two powders was 
analyzed by energy dispersive spectroscopy (EDS).

Coating preparation
Ni-WC coatings were prepared on 45 steel (medium carbon steel) substrates by using an efficient 
supersonic plasma spraying. The sample size was 10 mm × 10 mm × 10 mm. The substrates were 
ultrasonically cleaned and sandblasted before spraying. The surface of the substrate was free of impurities 
and maintained a certain roughness. Figure 2A shows the schematic diagram of the supersonic plasma 
sprayed Ni-WC coating. After the coating preparation, the coating was strengthened with LE-LP. The 
schematic diagram of LE-LP is shown in Figure 2B. The parameters of the sprayed and LE-LP prepared 
coatings are shown in Table 1. Laser energy was 100 mJ, with a pulse width of 10 ns and a spot diameter of 
0.4 mm. The power density was 7.96 GW·cm-2, and the repetition rate was 500 Hz. The wavelength was 
532 ns, and the overlap rate was 50%. The confining layer was water.

Microstructure characterization
The three-dimensional (3D) morphology of the coatings was analyzed by using a white light interferometer 
(WLI) (SuperView W1, Chotest, China). The average value of a 1 mm2 region chosen from three distinct 
coating locations was used to calculate the coating surface roughness. The surface and cross-section micro-
morphology and elemental distribution of the coatings before and after LP were investigated using a 
scanning electron microscope (Hitachi SU8020, Japan) equipped with an energy spectrometer. The phase 
structure of the coatings was characterized using an X-ray diffractometer (XRD) (D8 Advance, Bruker, 
Germany). The Co target method was used to measure the XRD. The scanning rate is 4 °/min, and the 
wavelength is 0.17902 nm.

Mechanical properties characterization
The microhardness of the substrate and coating was tested using a microindenter (000 ZB, KELETI, China) 
after mechanical polishing treatment of the coating section. The residual stresses of the coatings were 
characterized by using an X-ray stress tester (XL-640, ST, China). The Co target method was used to 
measure the residual stresses.

Tribological properties
A multifunctional wear test equipment was used to perform reciprocating wear tests on the samples. Before 
the experiment, the coated samples and the pairs of body materials were ultrasonically cleaned. ZrO2 was 
used for the test, and its specifications were 6 mm in diameter, 50 N load, 3 mm reciprocating distance, 5 Hz 
frequency, and 30 min duration.

RESULTS
Microstructure
The 3D morphologies before and after LE-LP treatment are displayed in Figure 3. The average surface 
roughness of the untreated coating is 18.389 μm; after LE-LP treatment, it is 16.924 μm [Figure 3]. This is 
due to the further compaction of the coating surface by the pulse-induced laser wave. Under the heat effect 
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Table 1. Coating preparation parameters

Parameters of spraying Parameters of LE-LP

H2 gas flow 16 L/min Laser energy 100 mJ

Ar gas flow 150 L/min Pulse duration 10 ns

Powder feed rate 40 g/min Spot diameter 0.4 mm

Spraying voltage 120 V Power density 7.96 GW·cm-2

Spraying current 460 A Repetition rate 500 Hz

Spraying distance 130 mm Wavelength 532 ns

Scanning velocity 4,000 mm/min Overlap rate 50%

Confining layer Water

LE-LP: Low-energy laser peening.

Figure 1. Particle size analysis and chemical composition of two powders.

Figure 2. Coating preparation diagram. (A) Supersonic plasma spraying diagram; (B) LE-LP diagram. LE-LP: Low-energy laser peening.

of the LE-LP, the coating surface roughness was also further reduced. Ultimately, a synergistic effect 
between the heat influence and laser beam reduced the roughness.

In order to understand the thermal effects of the laser on the surface of the coating, the surface shape has 
been investigated. Figure 4 shows the microscopic morphology of the coating surface before and after 
LE-LP treatment. The untreated coating still has some unmelted particles and a comparatively smooth 
sprayed surface. Due to the lack of protection of the ablative layer during LE-LP treatment, the coating 
surface was inevitably subjected to thermal effects, and a large number of ablation holes could be observed 
on it. The reduction of surface roughness is caused by the secondary ablation of the unmelted particles. As 
can be seen from the pie chart in Figure 4, the mass percentage of O element increases from 1.04% to 2.70%. 
The results showed that the absence of the ablative layer led to an oxidation reaction on the coating surface, 
generating an oxide layer.
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Figure 3. 3D morphology of the coating surface before and after LE-LP treatment. (A) 3D morphology and roughness of untreated 
coating surface; (B) 3D morphology and roughness of LE-LP treated coating. 3D: Three-dimensional; LE-LP: low-energy laser peening.

Figure 4. Surface morphology and EDS of coating surface before and after LE-LP treatment. (A) Surface morphology and EDS of 
untreated coating; (B) Surface morphology and elemental composition of LE-LP treated coating. EDS: Energy dispersive spectroscopy; 
LE-LP: low-energy laser peening.
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Figure 5. Cross-sectional morphology and EDS of coating before and after LE-LP treatment. (A) Cross-sectional morphology of 
untreated coating; (B) Cross-sectional morphology of LE-LP treated coating; (C) Distribution of elements of line 1; (D) Distribution of 
elements of line 2. EDS: Energy dispersive spectroscopy; LE-LP: low-energy laser peening.

Figure 5 shows the cross-sectional morphology and EDS of the coating both before and after LE-LP 
treatment. As shown in Figure 5, the cross-sectional morphology shows the laminar structure of thermal 
spraying. The ablation layer only occurs on the surface of the coating, and there is no ablative damage 
within the coating. Figure 5C and D shows the EDS of the coating cross-section elements. The EDS in the 
coating cross-sectional shows that there is no obvious mutation point of the O element in the coating. The 
O element is aggregated due to the presence of cracks at the interface. Combined with Figure 4, the ablation 
phenomenon only occurs on the surface of the coating and has no obvious effect on the inside of the 
coating.

Figure 6 shows the results of XRD pattern analysis of the coating surface. No noticeable additional 
diffraction peaks were observed on the coated surface following LE-LP treatment when compared to the 
XRD pattern of the untreated coating, indicating that the coating did not experience a noticeable phase shift 
following LE-LP. It is also further shown that the ablation damage of the laser on the coating occurs only on 
the surface of the coating.

Microhardness
LE-LP can cause elastic-plastic deformation of the material surface and improve the microhardness of the 
coating. The effect decreases as the depth increases. Figure 7 shows the microhardness of the coating cross-
section. The hardness of the coating and the substrate was tested at 50 µm intervals using the bonding 
surface of the coating and the substrate as a standard reference. The average microhardness of the coating 
after LE-LP treatment increased from 713.8 to 799.9 HV0.3 [Figure 7]. Furthermore, the hardness of the 
coating at 50 μm from the interface is around 720 HV0.3, while the substrate’s hardness is approximately 
230 HV0.3. It shows that the reinforced layer of the coating is approximately 140 μm thick following LE-LP 
treatment.
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Figure 6. Effect of LE-LP treatment on XRD pattern of coating. LE-LP: Low-energy laser peening; XRD: X-ray diffractometer.

Figure 7. Microhardness of coating cross-section before and after LE-LP treatment. LE-LP: Low-energy laser peening.

Residual stress
Figure 8 displays the residual compressive stress on the coating surface before and after LE-LP. The average 
value of residual compressive stress on the surface of the untreated coating is -110 MPa, while after LE-LP 
treatment it is -236 MPa. Although the laser impact induces a thermal effect, the coating surface still 
undergoes plastic deformation and generates residual compressive stresses. The surface of the coating is 
subjected to the thermal effect of the laser, which, in general, causes residual tensile stresses on the surface 
of the material due to shrinkage after heating by laser irradiation. Nevertheless, there is still an improvement 
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Figure 8. Residual stress on coating surface before and after LE-LP treatment. LE-LP: Low-energy laser peening.

in the residual compressive stress because of the overlap rate of the light spots, which cancels out the 
residual tensile stress areas by the residual compressive stress areas[36].

Tribological properties
The coefficient of friction of the Ni-WC coating is displayed in Figure 9 both before and after LE-LP 
treatment. Figure 9 shows that the coating wear may be separated into three primary stages: break-in, steady 
rising, and steady wear. It is also noted that the friction coefficients of the two coatings appear to have 
stabilized around 0.5.

Enhancing the microhardness and surface residual stress of coatings can increase their resistance to wear. 
Figure 10 demonstrates the tribological properties of Ni-WC coatings. After LE-LP treatment, the width of 
the front wear mark of coatings was reduced from 1,217.02 to 998.16 μm. The depth of the front wear mark 
of coatings was reduced from 72.39 to 55.76 μm. The average wear volume of the coating was reduced from 
11.64 × 10-2 to 6.9 × 10-2 mm3, and the average wear rate was reduced from 4.31 × 10-5 to 2.55 × 10-5/N·mm3. 
The wear resistance of the coating is enhanced by the increase in coating hardness and residual compressive 
stress following LE-LP treatment.

Figure 11 shows the morphology of the wear scar region before and after LE-LP treatment. An analysis of 
Figure 11 reveals the presence of visible plow furrows, localized spalling areas, and abrasive debris 
accumulation layers on the wear scar region. The wear mechanism is typical of abrasive wear. Combined 
with Figure 10, it can be seen that although LE-LP improved the wear resistance of the Ni-WC coating, it 
did not change the wear mechanism.

DISCUSSION
LE-LP is a surface deformation strengthening technology. Using plasma pressure and temperature 
generated by a pulsed laser, the metal surface undergoes plastic deformation, causing lattice dislocations, 
grain refinement, and so on. Residual compressive stresses are generated on the surface[37]. This improves 
the mechanical and tribological properties of the coating. Figure 12 shows a schematic diagram of the 
strengthening mechanism after LE-LP. LE-LP thermally affects the metal surface and reduces the roughness 



Zhou et al. Green Manuf Open 2024;2:11 https://dx.doi.org/10.20517/gmo.2024.032701 Page 9 of 14

Figure 9. Coefficient of friction before and after LE-LP treatment. LE-LP: Low-energy laser peening.

Figure 10. Wear performance of coating before and after LE-LP treatment. (A) Wear scar morphology of untreated coating; (B) Wear 
scar morphology of LE-LP treated coating; (C) Cross-sectional profile of wear scars; (D) Wear volume and rate. LE-LP: Low-energy laser 
peening.

of the coating surface through the synergistic effect of thermal effects and plastic deformation, and the 
results are shown in Figure 3. The technology thermally influences the coating surface [Figure 4] and 
produces a large number of ablative holes. Due to the high irradiance of the laser, the water is induced to 
decompose. Oxygen produced by water decomposition reacts with the ablative surface to form an oxide 
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Figure 11. Morphology of wear scar region before and after LE-LP treatment. (A) Wear scar region of untreated; (B) Wear scar region of 
LE-LP treatment. LE-LP: Low-energy laser peening.

Figure 12. Schematic diagram of the strengthening mechanism after LE-LP. LE-LP: Low-energy laser peening.

layer[38]. However, the O elements produced due to ablation did not show significant oxidation 
characteristics at the coating cross section [Figure 5]. Combined with the XRD of the coating surface 
[Figure 6], it can be seen that the ablation effect of LE-LP on the coating occurs only on the coating surface. 
It shows that LE-LP on the coating not only retains the coating’s phase structure, but also has a certain 
improvement effect on its surface roughness.

Table 2It is shown that the microhardness of the coating increases under the action of LE-LP [Figure 7], and 
the residual compressive stress on the coating surface improves [Figure 8], forming a hardened layer[39,40]. 
According to Archard’s equation, the wear rate decreases with the increase of microhardness[22]. Meanwhile, 
the presence of the residual stress layer inhibits the generation and extension of wear cracks[41,42]. Coatings 
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Table 2. Effect of different surface deformation strengthening techniques on coatings

Technology Coatings Surface 
roughness Microhardness Residual 

stress Tribological properties Ref.

High-energy shot 
peening

Cr3C2-Al2O3-
NiCr

/ From 497.3 to 674 
HV

-131.7 MPa Wear rate is reduced by 98.7% [22]

Ultrasonic surface 
rolling

NiCrBSi + 15% 
WC

Reduced by 
49.04%

From 631.4 to 873.9 
HV0.2

-404.2 MPa Amount of wear reduced by 64.23% [23]

LP NiCrBSi Increased by 
530.7%

From 388 to  
530 HV0.2

-538 MPa / [24]

LE-LP NiCrBSi + 10% 
WC

Reduced by 
9.76%

From 704.3 to 797.8 
HV0.3

-236 MPa Wear volume and wear rate were 
reduced by 40.72% and 40.83%

This 
work

LP: Laser peening; LE-LP: low-energy laser peening.

have a layered structure and are susceptible to delamination failure. During wear testing, interfacial cracks 
appearing on the subsurface can lead to delamination and severance of the upper layer. High residual 
compressive stress can retard the formation of microcracks[43,44]. The results of the wear performance of the 
coatings before and after LE-LP treatment are displayed in Figure 10, which makes it clear that the coating’s 
wear resistance has greatly increased. The wear rate and wear volume of the coating are significantly 
reduced. The wear mechanism is abrasive wear. The work demonstrates that the wear resistance of Ni-WC 
coatings can be greatly increased using LE-LP, a surface deformation strengthening approach.

Table 2 shows the results of the surface deformation enhanced coating properties. It shows that different 
surface deformation peening techniques have distinct effects on the results of coating properties. High-
Energy shot peening, ultrasonic surface tumbling and LE-LP decrease the surface roughness of the coating, 
while LP has the opposite effect. This is due to the fact that LP treats the laser-melted cladding layer, which 
has a low surface roughness. LP has a high irradiance, which produces tough nests on the surface of the 
coating after the impact, and, therefore, increases the surface roughness of the coating. The comparison also 
shows that the residual stresses are all manifested as residual compressive stresses. Although the range of 
coating hardness enhancement by LE-LP is significantly less than that of high-energy shot peening, 
ultrasonic surface tumbling and LP, there is an enhancement of coating wear resistance. Liu et al. found that 
the hardness and residual stress of the coatings were enhanced with the laser energy, but critical values 
existed[24]. LE-LP offers advantages such as a simple process, no contact, etc.

CONCLUSION
In this work, LE-LP was used to improve the properties of Ni-WC coatings. The effect of LE-LP on the 
microstructure, mechanical properties and wear resistance of the coatings was investigated. The following 
conclusions were drawn from the work.

(1) The surface roughness of the coating is reduced by a combination of plastic deformation and thermal 
influences. An oxidation reaction occurs on the surface of the coating, producing an oxide film. 
(2) The microhardness of the coating increased from 704.3 to 797.8 after LE-LP treatment. The residual 
stress on the coating surface with an average value of -110 MPa was transformed into a residual stress with 
an average value of -236 MPa. A hardened layer of about 140 μm was formed. 
(3) The wear resistance of the coating was further improved by LE-LP. The average wear volume of the 
coating was reduced from 11.64 × 10-2 to 6.9 × 10-2 mm3, and the average wear rate was reduced from 4.31 × 
10-5 to 2.55× 10-5/N·mm3. The wear mechanism is abrasive wear.
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LE-LP can improve the tribological properties of coatings. The research foundation for LE-LP to enhance 
tribological characteristics of coatings is supplied by this work. LE-LP is a post-processing method that can 
be combined with additive manufacturing.
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