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Abstract
Parathyroid carcinoma is a rare but clinically-aggressive tumor. While most cases are sporadic, parathyroid cancer is 

overrepresented in hyperparathyroidism-jaw tumor syndrome, or rarely other heritable syndromes. Evidence suggests 

that sporadic parathyroid carcinomas rarely, if ever, evolve through an identifiable benign tumor intermediate. A few 

genes have been directly implicated in the pathogenesis of sporadic parathyroid cancer; somatic (and less common 

germline) mutations in the CDC73  tumor suppressor gene are the most frequent finding and the only firmly established 

molecular drivers of parathyroid cancer. Alterations in other important human cancer genes, including CCND1 /cyclin D1, 

PIK3CA , MTOR  and PRUNE2  have also been described in parathyroid cancer, however their abilities to drive malignant 

parathyroid tumorigenesis remains to be demonstrated experimentally. 
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INTRODUCTION
Parathyroid cancer is a rare, but aggressive, cause of primary hyperparathyroidism, accounting for less than 
1% of cases of this relatively common endocrine disorder. Parathyroid carcinoma may be suspected, prior to 
surgery, on the basis of clinical features. Parathyroid cancer presents equally in men and women, in contrast 
to the 3.5:1 female-to-male ratio seen with benign parathyroid tumors. Serum calcium levels are often 
markedly elevated in parathyroid cancer, with patients exhibiting renal and/or bone symptoms including 
nephrolithiasis, osteitis fibrosa cystica, osteoporosis and fracture. Palpable neck mass is common. While 
the majority of patients with parathyroid carcinoma are symptomatic, rare non-functioning parathyroid 
carcinomas have been reported. Histopathologic diagnosis of parathyroid cancer can be difficult and 

http://crossmark.crossref.org/dialog/?doi=10.20517/jtgg.2018.08&domain=pdf


unequivocal diagnosis of malignancy depends on the presence of marked invasion into adjacent structures 
and/or distant metastasis. Features such as fibrous banding, mitotic figures and necrosis are suggestive of, but 
not diagnostic for, parathyroid carcinoma[1]. Historic inconsistencies in diagnostic criteria for parathyroid 
cancer, in addition to its rarity, have hindered efforts to understand the genetic basis of this important 
endocrine malignancy.

GENETIC ALTERATIONS IN PARATHYROID CANCER
A hallmark of many solid tumor malignancies is their progression from normal to malignant disease through 
clinically and histologically-identifiable stages of tumorigenesis, caused by incremental accumulation 
of acquired genetic abnormalities. Surprisingly, genetic evidence argues against such a progression for 
parathyroid carcinoma. Genomic and genetic alterations common in benign parathyroid adenomas, 
most prominently loss of chromosome 11q and accompanying mutation of MEN1, which occur in 35% of 
parathyroid adenomas[2-8], are rarely, if ever, seen in parathyroid cancer[3,4,8,9]. The clearly distinguishable 
patterns of genomic and genetic alterations present in parathyroid adenomas versus carcinomas suggests 
that parathyroid cancer most commonly arises de novo, rather than evolving from a preexisting benign 
adenoma[8]. 

Hereditary parathyroid cancer
A possible exception to the predominant process of de novo parathyroid carcinogenesis is that of hereditary 
parathyroid cancer. Primary hyperparathyroidism is a feature of several hereditary tumor-predisposition 
syndromes [Table 1]. While the large majority of parathyroid tumors in these syndromes are benign, rare 
parathyroid carcinomas have been reported in multiple endocrine neoplasia type 1 (MEN1) and type 2a 
(MEN2a). Somatic mutations of the causative genes, MEN1 and RET, respectively do not appear to contribute 
to sporadic parathyroid carcinomas. A somatic mutation in CDKN2C/p18, which may cause a subset of cases 
of MEN1 or a closely related syndrome[10], has been reported in a single parathyroid carcinoma[11]. 

Parathyroid carcinoma is highly overrepresented in the hyperparathyroidism-jaw tumor syndrome (HPT-JT), 
caused by germline mutations in CDC73 (previously called HRPT2). Approximately 10%-15% of parathyroid 
tumors in HPT-JT are malignant and affected patients have a lifetime risk of developing parathyroid cancer 
approaching 40%[12]. In the setting of a germline parathyroid tumor-predisposing mutation, particularly of 
CDC73, patients may occasionally develop parathyroid carcinomas that have evolved from preexisting benign 
or atypical adenomas. Such cases likely explain the few rare reports of apparent malignant parathyroid 
tumor progression.
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Table 1. Hereditary parathyroid tumor predisposition syndromes

Syndrome Gene Parathyroid cancer Other features Somatic mutations in sporadic 
parathyroid tumors

MEN1a MEN1 Rare Pituitary and enteropancreatic 
endocrine tumors

Adenoma ~35%
CDKN1A b None reported None reported
CDKN2B b None reported None reported
CDKN2C b None reported Adenoma ~1.5%

MEN4a CDKN1B b None reported Adenoma ~5%
MEN2A RET Rare Medullary thyroid cancer, 

pheochromocytoma
None reported

HPT-JT CDC73 ~10%-15% Fibro-osseous jaw tumors, 
uterine tumors, renal lesions

Carcinoma ~77%

Adenoma ~1.5%
NSHPT CASR None reported None reported
FIHP GCM2 , others None reported None reported

aMEN1 and MEN4 are clinically indistinguishable; bgermline mutations of CDKN1A , CDKN2B , CDKN2C , and CDKN1B  have been reported 
in patients meeting the criteria for MEN1, however the full clinical spectrum of such patients has yet to be established. NSHPT: neonatal 
severe hyperparathyroidism; FIHP: familial isolated hyperparathyroidism



CDC73
A large percentage of sporadic parathyroid carcinomas also harbor mutations in the CDC73 tumor 
suppressor gene. A wide range of mutation frequencies (13%-100%) have been reported[13-16] across studies, 
likely due to inconsistencies in selection criteria. Among studies using the most stringent diagnostic criteria 
for parathyroid cancer, namely extracapsular invasion and/or distant metastasis, the mutation frequency 
is 77%[13-15]. In addition to intragenic mutations, gross deletions of CDC73 have also been reported[17-19]. 
Biallelic inactivation of CDC73 can be demonstrated in many parathyroid cancers[13-15]. A substantial subset 
of patients with sporadically-presenting parathyroid carcinoma possess germline CDC73 mutations, and 
may represent new index cases of HPT-JT or a phenotypic variant[13,15,20,21]. Most parathyroid carcinomas 
also exhibit aberrant immunohistochemical staining for parafibromin, the protein product of CDC73; 
complete loss of parafibromin expression is the most common staining pattern. As the large majority of 
benign parathyroid tumors (except in the setting of germline CDC73 mutation) display normal parafibromin 
staining, parafibromin immunohistochemistry may be considered as a diagnostic adjunct for parathyroid 
cancer in otherwise equivocal cases[22-24] but aberrant parafibromin staining alone is insufficient as a 
diagnostic marker of parathyroid carcinoma[25]. 

Parafibromin is a ubiquitously expressed, evolutionarily conserved 531 amino acid protein with predominantly 
nuclear expression. Cytoplasmic expression of parafibromin has also been described and may have functions 
different than nuclear parafibromin[26,27]. Parafibromin’s C-terminal region contains moderate sequence 
similarity to yeast Cdc73p, a cell-division protein that comprises part of the polymerase-associated factor 1 
complex (Paf1c). The human PAF1 complex (hPAF1C) contains homologs of most of the same subunits and 
shares similar functions. hPAF1C associates with RNA polymerase II during transcriptional initiation 
and elongation and participates in some histone modifications and posttranscriptional events, including 
modification of the poly (a) tail. Cdc73p homologs in higher-level organisms contain a metazoan-specific 
N-terminal domain, capable of directly binding β-catenin, and function in Wnt signaling, a central 
regulator of development and proliferation[28]. Although parafibromin’s precise role in Wnt signaling, 
which might vary by cell type[28-30], has yet to be established, the involvement of parafibromin in canonical 
Wnt/β-catenin signaling provides a possible mechanism for parafibromin’s tumor suppressive function(s). 
Activation of canonical Wnt signaling leads to β-catenin-mediated gene transcription; targets of Wnt 
signaling include cyclin D1, a parathyroid oncogene (described further below)[31,32]. Parafibromin can 
inhibit cancer cell growth and cause G1 phase arrest in vitro, in part through effects on cyclin D1[33,34]. 
Loss of Wnt pathway components APC and GSK3β[35] and accumulation of β-catenin have also been 
described in parathyroid cancer[36]. Cytoplasmic parafibromin interacts with cytoskeletal proteins[26] and 
p53 mRNA, modulating p53-mediated apoptosis[27]. Parafibromin can also interact directly with the SV40 
large T antigen; cell lines expressing SV40 large T exhibit different effects on proliferation subsequent to 
perturbation of parafibromin levels[37], a finding which has complicated interpretation of some in vitro 
functional analyses. 

Conventional and conditional transgenic mouse knockouts of CDC73 have been developed. Homozygous 
germline deletion of CDC73 is embryonic lethal and germline deletion of CDC73 at later stages of 
development led to death within 20 days; increased apoptosis was observed in many tissues[38]. No parathyroid 
gland abnormalities were initially described in either CDC73 knockout[38]. A later study, which followed 
heterozygous CDC73 knockout mice out to 21 months, reported increased parathyroid proliferation and 
histologic abnormalities commonly observed in atypical parathyroid adenomas and parathyroid carcinomas 
in humans; frank features of parathyroid cancer, such as local invasion or distant metastasis were not 
described. Deletion of CDC73 targeted to the parathyroid glands, by crossing floxed-CDC73 mice with PTH-
Cre mice, resulted in similar parathyroid gland abnormalities; heterozygous and homozygous null mice 
were both affected[39]. Further studies are necessary to understand how loss of CDC73 expression promotes 
parathyroid tumorigenesis. 
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Cyclin D1
CCND1, encoding cyclin D1, is a well-established oncogenic contributor to benign parathyroid adenomas 
and DNA amplifications or gene rearrangements have been demonstrated in a variety of tumor types. 
CCND1 gene amplification[40,41] and cyclin D1 overexpression[40,42] are common in parathyroid carcinoma. 
Parathyroid-targeted cyclin D1 transgenic mice develop chronic biochemical hyperparathyroidism and 
parathyroid gland hypercellularity, but parathyroid carcinoma has not been observed[43]. These finding suggest 
that cyclin D1 overexpression alone may be insufficient to drive malignant parathyroid tumorigenesis. The 
precise mechanisms through which cyclin D1 drives tumorigenesis remain controversial. Cyclin D1’s primary 
function is as a regulator of cell cycle progression, binding to, and activating, the cyclin-dependent kinases 
CDK4/CDK6, which can then phosphorylate pRB, promoting G1-S phase transition. Loss of pRB expression 
is also a frequent finding in parathyroid carcinomas[44,45]. Cyclin D1 levels are tightly regulated at multiple 
levels and dysfunction of any of these control mechanisms may contribute to tumorigenesis[46]. Cyclin D1 
also has CDK-independent functions, such as a role in chromosomal stability, which may also contribute to 
cyclin D1’s ability to drive tumorigenesis[47]. While it remains to be determined which functions of cyclin D1 
are most relevant, the frequent loss of pRB expression and occasional inactivation of CDK inhibitor genes 
in parathyroid cancer underscore the importance of cell cycle dysregulation to the promotion of malignant 
parathyroid tumorigenesis.

PRUNE2
PRUNE2 has recently been identified as a likely tumor suppressor gene subject to recurrent mutation in 
parathyroid carcinoma[41,48]. Whole exome sequencing revealed one parathyroid carcinoma with a germline 
missense PRUNE2 mutation accompanied by allelic loss[48] and two carcinomas harboring biallelic, somatic 
nonsense mutations[41,48]. Sanger sequencing, limited to exon 8 of PRUNE2, uncovered two additional 
somatic missense mutations. PRUNE2 functions to suppress Ras homolog family member A (RhoA) activity, 
resulting in suppression of oncogenic cellular transformation, consistent with a tumor suppressive role in 
parathyroid carcinoma. Functional studies will be needed to determine if loss of PRUNE2 is capable of, or 
sufficient to, driving malignant parathyroid tumorigenesis. 

PI3K/mTOR
The phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway is an important 
regulator of cell cycle progression, cell growth and survival, and is frequently subject to alteration in human 
cancers. PIK3CA, encoding the p110-alpha subunit of PI3K, has been recognized as an oncogene capable of 
driving tumorigenesis in many types of human tumors. A heterozygous PIK3CA mutation, resulting in a 
glutamic acid to lysine change at amino acid 545 (p.E545K), was identified in a parathyroid carcinoma subjected 
to whole genome sequencing, but interestingly this mutation was absent from two recurrent lesions from the 
same patient[11]. Whole exome sequencing revealed another established activating PIK3CA mutation (p.K111E) in 
a parathyroid carcinoma[41]. Targeted sequencing revealed two additional known activating PIK3CA mutations, 
p.H1047R and p.E545A. Interestingly, across the two studies, PIK3CA and CDC73 mutations were mutually 
exclusive, although the sample sizes were too low to determine statistical significance. Activating mutations 
of MTOR, also commonly altered in human tumors, were seen in three parathyroid carcinomas in two next-
generation sequencing studies[11,41]. Functional studies are required to determine if activating mutations of the 
PI3K/mTOR pathway are indeed capable of driving malignant parathyroid tumorigenesis. 

Additional genetic and genomic considerations 
A number of studies have sought to identify regions of genomic gains and losses relevant to the pathogenesis 
of parathyroid carcinoma. Recurrent regions of allelic loss have been reported on chromosomes 1p, 3, 13q and 
14, and recurrent regions of allelic gain on chromosomes 1q and 16[3-5,9,49]. Such regions of recurrent genomic 
alteration are expected to harbor important tumor suppressor genes and oncogenes, however both targeted 
sequencing and whole genome/exome analyses have yet to uncover commonly altered tumor suppressor genes 
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or oncogenes within those predicted genomic locations[11,41,44,48,50-54]. Notably, despite the high frequency of both 
allelic loss at the RB1 locus on chromosome 13q[44,54-57] and loss of pRB expression[44,45], intragenic mutation of 
RB1 has yet to be identified in parathyroid cancer[11,41,48,54]. Preferential amplification of mutant CDC73 alleles 
has been reported, which could account, at least in part, for observed alleic gain of chromosome 1q[48]. Whole 
genome/exome next-generation sequence analyses have identified a number of genes that may be important 
to the pathogenesis of parathyroid cancer and merit further study. Recurrent mutations have been reported 
in AKAP9, a gene frequently altered in epithelial cancers, ADCK1, a putative kinase, NOTCH1, which may 
function as either an oncogene or tumor suppressor gene, and ZEB1, a transcriptional regulator of epithelial-
mesenchymal transition[41]. Several mutations which were identified in only one tumor but affecting genes 
linked to other types of human cancer were also identified. These genes included MLL2, a MEN1-interacting 
tumor suppressor gene, THRAP3, a gene involved in regulating cyclin D1 expression, and the canonical Wnt 
pathway genes APC and RNF43. Several genes encoding kinases with postulated roles in cell migration and 
invasion, including MAP3K11, JAK1 and RIOK3, and chromatin structure-regulating genes, including ARID2, 
ARID4A, KDM5C, KDM4C, KDM4E, JMJD1C and SETD1B were also mutated. Identification of these novel 
mutations is an important next step in furthering our knowledge of the molecular pathogenesis of parathyroid 
cancer. It remains to be determined, through further sequence analysis and functional studies, which of these 
mutated genes will emerge as important driver genes in parathyroid cancer. 

CONCLUSION
Several important advances have been made towards the goal of understanding the molecular basis of 
parathyroid cancer. Observations of mutational and allelic imbalance patterns suggest that parathyroid 
cancer generally arises de novo, rather than evolving from a preexisting typical benign adenoma. Mutations 
in the CDC73 tumor suppressor gene are the most common finding in malignant parathyroid carcinomas. 
Alterations in additional genes such as CCND1/CyclinD1, PIK3CA, MTOR and PRUNE2 and others 
identified by next-generation sequencing methods have also been described in parathyroid cancer, however 
their abilities to drive malignant parathyroid tumorigenesis remains to be demonstrated experimentally. 
Additional genes important to the development of parathyroid carcinoma are likely to be identified and the 
extent and nature of their involvement will need to be carefully examined and validated with genetic and 
experimental-functional approaches.
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