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Abstract
Aim: The aim of the current study was to evaluate the potential clinical impact of clonal evolution detected by 
fluorescence in situ hybridization (FISH) in untreated chronic lymphocytic leukaemia (CLL) patients managed with 
a watch-and-wait strategy.

Methods: We performed both overall survival (OS) and time to first treatment (TTFT) analysis. For the first one, 
we exploited a real-life cohort of 123 consecutive CLL patients followed at our institution, for which at least a 
second FISH evaluation during watch and wait was available. For TTFT analysis, we considered only patients 
treated after the second FISH sample (n = 69).

Results: Considering the original cohort, patients who acquired a FISH abnormality displayed a worse outcome 
with a median OS of 91.9 months compared to 147.3 months for patients who did not acquire any FISH 
abnormalities (P = 0.007). Unmutated immunoglobulin heavy chain gene (IGHV) genes were associated with a 
higher probability of acquiring a FISH abnormality (P = 0.04). Turning to TTFT analysis, patients who gained at 
least one FISH abnormality (n = 7, 10%) were characterised by an earlier treatment requirement with a median 
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(n = 62, 90%) (P = 0.025).

Conclusions: The dynamic acquisition of karyotypic abnormalities by FISH predicts poor outcomes and early 
treatment requirement in CLL patients. Our results suggest that FISH analysis could be integrated with other 
clinical and biological features to obtain dynamic scores that are able to predict outcomes at different phases of 
disease history.
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INTRODUCTION
Chronic lymphocytic leukaemia/small lymphocytic lymphoma (CLL/SLL) is the most common leukaemia 
in adults in Western countries, accounting for approximately 25% to 35% of all leukaemias[1-4]. Most CLL 
patients, namely Rai 0-I and Binet A, are asymptomatic, do not require therapy, and are managed with a 
watch-and-wait strategy[4-6]. Currently, at least two different models have been devised to identify early-stage 
CLL patients with a relatively short time to first treatment (TTFT). These models incorporate baseline 
clinical variables, namely palpable lymph nodes and lymphocyte count, as well as biological features, namely 
IGHV mutation status and fluorescence in situ hybridization (FISH) karyotype[7,8]. Since most CLL patients 
do not require therapy for long periods after diagnosis, this leukaemia may provide an informative model to 
evaluate the disease’s intrinsic mechanisms of clonal evolution in the absence of the external stimuli 
imposed by therapy. While the above-mentioned prognostic models consider static clinical and biological 
features at the time of diagnosis, they do not consider the potential clinical impact of dynamic clonal 
evolution over time during the watch-and-wait management in the absence of cytoreductive treatment.

The prognostic value of the most frequent CLL karyotypic abnormalities (del13q14, trisomy12, del11q23, 
and del17p13) identified at the time of diagnosis by FISH has already been established and confirmed by 
previous studies[9]. However, the prognostic impact of dynamic clonal evolution detected by FISH over the 
course of the natural history of CLL in the absence of treatment has not been explored in detail.

METHODS
We exploited a real-life cohort of 123 consecutive CLL patients followed at our institution and satisfying the 
following criteria: (i) availability of at least a second FISH evaluation during the watch-and-wait 
management of the disease; (ii) no treatment requirement for at least 3 months after the date of first FISH 
analysis. The FISH karyotype was evaluated using the XCE 12 probe for tris12 detection (MetaSystems) with 
a cut-off for positivity of 3% of the nuclei, XL DLEU/TP53 probe for del17p detection (Cytocell Aquarius) 
with a cut-off of 5%, XL ATM/11cen locus-specific probe for del11q detection (Cytocell Aquarius) with a 
cut-off for positivity of 5%, and XL DLEU/LAMP probe for del13q detection (MetaSystems) with a cut-off 
for positivity of 2%. The endpoints of the study were overall survival (OS) and TTFT. For OS analysis, we 
considered all 123 patients of the study cohort, whereas for TTFT analysis, we considered only the cases 
treated after the second FISH sample, obtaining a group of 69 patients. The study was approved by the 
Ethical Committee of the Ospedale Maggiore della Carità di Novara associated with the Università del 
Piemonte Orientale (study number CE 120/19).

RESULTS
Patient characteristics are reported in Table 1 and are consistent with those derived from current real-life 
epidemiological data[10]. The median age of the cohort at diagnosis was 68.2 years; 65 patients (53%) carried 
unmutated IGHV genes, 110 (90%) patients scored Rai 0-1 at diagnosis, and 99 patients (81%) scored Binet 
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Table 1. Patients characteristics

Characteristic Values (n = 123)

Age (Years) Median 
IQR

68.2 
60.5-73.8

Lymphocytes (n/μL) Median 
IQR

8.950 
5.197-16.633

Hb (g/dL) Median 
IQR

14.0 
13.2-14.9

PLTs (n/μL) Median 
IQR

194.000 
155.750-239.250

LDH (mU/mL) Median 
IQR

346 
294-407

RAI

0 
I 
II 
III 
IV

N (%) 
 
 
 
 

70 (56%) 
40 (33%) 
10 (8%) 
1 (1%) 
2 (2%)

BINET

A 
B 
C

N (%) 
 
 

99 (81%) 
21 (17%) 
3 (2%)

IGHV

UM 
M

N (%) 
 

65 (53%) 
58 (47%)

BASAL FISH PANEL

Normal FISH 
≥ 1 FISH abnormality 
Del13q14 
Trisomy12 
Del11q23 
Del17p13

N (%) 
N (%) 
 
 
 
 

47 (38%) 
76 (62%) 
58 (73%) 
20 (26%) 
12 (16%) 
3 (4%)

IGHV: Immunoglobulin heavy chain gene; M: mutated; UM: unmutated; IQR: interquartile range.

A. At the time of the first FISH evaluation, 47 (38%) patients had a normal FISH panel and 76 (62%) cases 
displayed at least one abnormality. In this second group, 58 patients (76%) carried del13q14, 20 (26%) 
patients trisomy12, 12 (16%) patients del11q23, and 3 (4%) patients del17p13 [Supplementary Figure 1].

After a median follow-up of 14.6 years, the median number of sequential FISH evaluations in each patient 
before the initiation of treatment was 2.7 (range 2-7). During the watch-and-wait management, seventeen 
patients (14%) acquired a FISH abnormality that was not detectable at the time of diagnosis. Some patients 
acquired more than one FISH abnormality and a total of 20 abnormalities were detected and distributed as 
follows: 5 (25%) patients acquired del17p13, 9 (45%) patients acquired del13q14, 3 (15.0%) patients acquired 
trisomy12, and 3 (15.0%) patients acquired del11q23 [Supplementary Figure 2]. In contrast, 97 (79%) 
patients did not acquire any abnormality and 9 (7%) cases lost at least one FISH alteration that had been 
previously identified.

Unmutated IGHV genes were associated with a higher probability of acquiring a FISH abnormality. More 
precisely, 21% of patients with unmutated IGHV genes acquired a FISH abnormality compared to 8% of 
patients with mutated IGHV genes (P = 0.04). One patient was excluded from this analysis because of a lack 
of information about IGHV status. Other genetic features investigated at CLL diagnosis in this cohort 
(mutations of TP53, NOTCH1, SF3B1, and BIRC3) did not show any significant association with clonal 
evolution of the FISH karyotype.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202401/jcmt100131-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202401/jcmt100131-SupplementaryMaterials.pdf
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Table 2. Multivariate analysis

Multivariate analysis

Characteristic HR 95%CI P

Unmutated IGHV 1.83 1.042-3.212 0.035

Acquisition of FISH abnormalities 2.34 1.183-4.626 0.015

IGHV: Immunoglobulin heavy chain gene; HR: hazard ratio; CI: confidence interval; FISH: fluorescence in situ hybridization.

Figure 1. Kaplan-Meier estimates of OS and TTFT according to FISH clonal evolution. (A) OS analysis in patients treated at least 3 
months after the first FISH sample. Patients who did not acquire karyotypic abnormalities in the second FISH panel are represented in 
blue. Patients who acquired karyotypic abnormalities in the second FISH panel compared to the first FISH panel are represented in red. 
(B) TTFT analysis in patients treated after the second FISH sample. Patients who did not acquire karyotypic abnormalities in the second 
FISH panel are represented in blue. Patients who acquired karyotypic abnormalities in the second FISH panel compared to the first FISH 
panel are represented in red. P-value is represented by adjacent curves.

In order to evaluate the clinical impact of acquiring clonal evolution by FISH, we evaluated the OS in 
patients who acquired a FISH abnormality (n = 17, 14%) compared to patients with unchanged FISH or who 
had lost any abnormality that had been previously detected (n = 106, 86%). By survival analysis [Figure 1A], 
patients who acquired a FISH abnormality displayed a worse outcome with a median OS of 91.9 months 
compared to 147.3 months for patients who did not acquire any FISH abnormalities (P = 0.007). The 
acquisition of at least one FISH abnormality maintained an independent association with OS when adjusted 
for IGHV mutational status [Table 2].

In order to evaluate the impact of FISH evolution on treatment requirement, TTFT analysis was performed 
considering the 69 patients treated after the second FISH sample [Figure 1B]. Seven (10%) patients gained at 
least one abnormality that was not present in the first FISH panel. More precisely, a total number of 8 
gained abnormalities were detected and distributed as follows: 2 (25%) patients gained del17p13, 4 (50%) 
patients del13q14, 1 (12.5%) patient trisomy12, and 1 (12.5%) patient del11q23. In contrast, 56 (81%) 
patients did not acquire any abnormalities and 6 (9%) cases lost at least one FISH alteration. Patients who 
gained at least one FISH abnormality (n = 7, 10%) were characterised by an earlier treatment requirement 
with a median TTFT of 1.1 months, compared to 2.7 months in patients who did not acquire any FISH 
abnormalities (n = 62, 90%) (P = 0.025).
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DISCUSSION
Overall, this study shows that the acquisition of karyotypic abnormalities by FISH predicts poor outcomes 
in CLL patients, underscoring the negative prognostic impact of clonal evolution in CLL patients initially 
managed with a watch-and-wait strategy[11,12]. In fact, although the prognostic impact of clonal evolution has 
already been demonstrated in previous studies, in this work, we analyse a cohort of untreated CLL patients, 
emphasizing the value of clonal evolution in the absence of the selective pressure induced by therapy[13]. In 
addition, our findings reinforce the notion that molecular predictors should be tested at different times 
during the course of the disease to ensure correct treatment tailoring[13-15]. The retrospective nature of the 
study and the fact that serial FISH sampling was not pre-scheduled but was decided by clinicians according 
to the clinical course may represent limitations of the analysis. However, the criteria for sequential FISH 
sampling were uniform across this monocentric cohort that was managed according to pre-planned 
diagnostic strategies of the hematological center. Importantly, despite these potential limitations, the 
acquisition of clonal evolution retained its prognostic value. Future analyses in prospective CLL series 
should integrate FISH clonal evolution with the investigation of gene mutations and other biological 
features in order to create a dynamic score that can predict outcomes at different time points of the natural 
history and clinical course of the disease.
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