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Abstract
The emergence of wearable electronics, along with an increased emphasis on personal health, has catalyzed a 
transformation in conventional health monitoring methods. Textile electronics are attracting significant attention 
due to their good flexibility, breathability, biocompatibility, portability and wearability, positioning them as a 
promising platform for human health monitoring. Consequently, substantial efforts are being dedicated to 
developing multifunctional, integrated, and reliable health monitoring systems based on textile electronics. This 
review summarizes recent advancements in textile electronics, focusing on materials, preparation techniques for 
functional fibers and fabrics, design strategies for textile-based health monitoring systems, and applications in 
ubiquitous health monitoring. Additionally, some emerging strategies for integration are presented. Moreover, the 
challenges and future outlook of textile electronics, along with potential solutions are discussed.
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INTRODUCTION
As artificial intelligence (AI) evolves and human demands increase, wearable electronics are emerging as 
platforms for the next generation of multifunctional and user-friendly intelligent devices[1-4]. Ideal wearable 
electronics possess properties of excellent wearability and durability[5-8]. Consequently, researchers are 
striving to develop wearable technologies that exhibit superior electrical performance while ensuring 
excellent deformability and comfort. Textile electronics, a crucial component of the smart wearable devices 
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sector, integrates textile technologies with electronic engineering principles to facilitate the generation, 
transmission, assessment, and modulation of electronics on fibrous substrates[9-11]. Characterized by their 
inherent softness, comfort, breathability, and washability, textile electronics have been extensively integrated 
into various applications, particularly in human health monitoring[12-15].

Health is fundamental to human survival and development, and health issues present societal concerns and 
scientific challenges. The advent of textile electronics has ushered in a new era for adaptable health 
monitoring solutions within consumer electronics markets[16,17]. These advanced devices integrate functional 
fibers to facilitate the transmission of information between the human body and the surrounding 
environment, as well as in vivo and in vitro, with exceptional interactive capabilities[18-20]. In contrast to 
conventional thin-film patch sensors, textile-based health monitoring systems offer superior breathability 
and enhanced wearability, which are essential for comprehensive large-scale sensing capabilities[18,21,22]. 
Textile electronics for health monitoring can be realized through two primary pathways. The first approach 
involves directly affixing electronic components onto the surface of textiles or integrating them as hybrid 
electronic elements within the textiles[23,24]. Subsequently, flexible or fabric circuits are employed to establish 
wired connections between microelectronic components and textiles. The alternative approach entails 
producing fibers with electronic functionalities, which are then woven into textiles[25-28].

Research on textile electronics for health monitoring dates back to the 1960s and 1970s[29], with the 
introduction of concepts such as shape memory fiber materials and intelligent fiber materials, which laid the 
groundwork for the field. Most textile electronics were developed by attaching electronic components to 
textiles using the first approach in the early stage[30]. For example, the Georgia Tech Wearable Motherboard 
was developed in 1999, and the firefly dress was created by the MIT Media Laboratory around 2000[23,31]. In 
the early 2000s, the EU-funded project WEALTHY developed a textile sensor system to monitor patients’ 
physiological signals, such as electrocardiograms (ECG) and breathing, in real time[32-35]. This system 
represents a significant advancement in the use of textile electronics for medical health monitoring. 
Subsequently, more textile electrodes for physiological monitoring arose, and textile electronics with 
wireless personal area networks were progressively utilized in health monitoring[36,37]. In 2012, researchers at 
Ohio State University developed textile antennas and circuits with a precision of 0.5 mm[24]. Subsequent 
advancements improved this precision to 0.1 mm, representing a significant milestone in textile 
electronics[38]. These wearable antennas can transmit and receive digital information, significantly enhancing 
communication capabilities for health monitoring systems[24,39-41]. With advancements in internet 
technology, cloud computing platforms have been incorporated into textile-based health systems for 
efficient processing of health big data. Subsequently, smart platforms based on various functional fibers 
have been successfully developed for electromyography (EMG) and sleep monitoring[42,43]. These studies 
demonstrate that textile electronics obtained through the second approach not only maintain the comfort 
and functionality of traditional clothing but also integrate advanced electronic functions, contributing to the 
realization of a fully electronic textile system. In recent years, the development of smart textile electronics 
has entered a flourishing stage[44-48]. Machine learning algorithms and advanced integration technology have 
greatly advanced the intelligence and integration of health monitoring systems[49-52]. Figure 1 illustrates the 
above evolution of textile electronics in health monitoring applications. Moving forward, the realization of a 
fully textile-based health monitoring system will be a primary research direction. It is anticipated that textile 
electronics will transform human lifestyles through real-time health management and remote medical care, 
in conjunction with AI, human-computer interaction, and cloud computing technology.

In this review, we systematically introduce innovative textile electronics and summarize their latest 
advancements in health monitoring systems. We begin with an overview of the materials utilized in textile 
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Figure 1. Timeline of textile electronic developments for health monitoring. Figure “WEALTHY: physiological monitoring”[35], reprinted 
with permission. Copyright 2011, Elsevier; Figure “TENG for respiratory monitoring”[53], reprinted with permission. Copyright 2016, John 
Wiley and Sons; Figure “EMG”[43], reprinted with permission. Copyright 2017, John Wiley and Sons; Figure “Sleeping monitoring”[42], 
reprinted with permission. Copyright 2017, John Wiley and Sons; Figure “Fabric for sweat monitoring”[47], reprinted with permission. 
Copyright 2018, John Wiley and Sons; Figure “Wound healing”, reprinted with permission. Copyright 2020, Elsevier; Figure “Pulse & 
respiratory monitoring”[45], reprinted with permission. Copyright 2020, Science Advances; Figure “IC textile”[51], reprinted with 
permission. Copyright 2021, Springer Nature; Figure “Pregnancy monitoring”[44], reprinted with permission. Copyright 2022, American 
Chemical Society; Figure “Multifunction”[52], reprinted with permission. Copyright 2023, Elsevier; Figure “Stress management”[49], 
reprinted with permission. Copyright 2024, John Wiley and Sons. TENG: Triboelectric nanogenerator; EMG: electromyography; IC: 
integrated circuit.

electronics, followed by an analysis of the fabrication techniques for functional fibers and fabrics. Next, we 
discuss various design strategies for developing textile-based health monitoring systems. Furthermore, 
recent applications of textile electronics in ubiquitous health monitoring are discussed. The latest 
integration strategies are then presented, representing pivotal advancements toward the commercialization 
of textile electronics. Finally, we emphasize the critical challenges faced by health monitoring systems based 
on textile electronics. Our discussion aims to cover advanced materials, fabrication techniques, applications, 
and integration strategies in this promising field.

MATERIALS OF TEXTILE ELECTRONICS
Functional materials
The performance of textile electronics is significantly influenced by functional materials, which endow 
textiles with conductive and sensing properties. The selection of materials demands a meticulous assessment 
of pivotal attributes, such as electrical conductivity, mechanical resilience, thermal stability, specific weight 
and density, thermal dissipation capacity, and the reliability and longevity essential for integration with 
conventional wire interconnections[54,55]. These characteristics are fundamental to ensuring the functionality 
and robustness of textile electronics in various applications. Figure 2 presents an overview of the prevalent 
functional materials for the preparation of textile electronics, categorized into metals, conductive polymers, 
carbon materials, and semiconductors[54,56].
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Figure 2. Images of various functional materials for textile electronics.

Metals such as Au, Ag, and Pt are highly valued for their exceptional electrical and thermal conductivity. 
These metals are available in a spectrum of dimensions, from 0D to 3D structures, as shown in Figure 2A. 
Among them, Ag nanoparticles have garnered extensive applications due to their remarkable electrical 
conductivity, stability, and the simplicity of their synthesis process[57,58]. Furthermore, the core-shell 
structured composite metal nanoparticles offer a viable alternative for the fabrication of textile electronics. 
Although metal alloying can improve strength and corrosion resistance, it potentially decreases conductivity 
relative to pure metals, alongside elevated costs and enhanced processing complexity[59,60].

As shown in Figure 2B, conductive polymers involve conventional varieties [such as polyaniline, 
polypyrrole, polythiophene and poly(ethylene dioxythiophene)][61-65], conductive hydrogels[66-68], and 
conductive liquids encapsulated by polymers[69]. These materials are notably lightweight and highly flexible, 
making them suitable candidates for textile electronics and their interconnects[70,71]. Although their 
conductivity can be adjusted through physical or chemical means, it remains lower than that of metals, 
necessitating doping for performance enhancement[72].
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Carbon materials, such as carbon black, carbon nanotubes (CNTs), graphene, and reduced graphene oxide 
(rGO), are known for their inherent electrical conductivity, excellent thermal conductivity, and low weight 
[Figure 2C][73-76]. However, they may present challenges related to dispersibility and compatibility with other 
materials[77,78]. Moreover, as depicted in Figure 2D, zinc oxide (ZnO)[79,80], organic/inorganic perovskites[81,82], 
and transition metal dichalcogenides (TMDs)[83,84] have shown considerable potential for applications in 
sensing and display modules of health monitoring systems.

Mechanical polymers
In textile electronics, mechanically flexible/stretchable polymers play an important role, especially as flexible 
substrates, conductive fibers and encapsulation layers. The three-dimensional network structure of 
polymeric matrixes can be used to carry, support and protect other materials, such as the previously 
mentioned functional materials. In textile electronics, mechanical polymers should be selected based on 
requirements for flexibility, stretchability, biocompatibility, and compatibility with functional materials.

For fabricating flexible substrates, there are some examples provided for consideration, such as using 
polyimide (PI) as a substrate directly[85], coating polyvinyl chloride (PVC)/polyurethane (PU) on textiles to 
be suitable for lithographic processes[86], and using polyethylene terephthalate (PET) fiber as a substrate for 
coaxial configuration[87,88]. Besides, the polymers are employed for fabricating conductive fibers, such as Au 
nanowires@styrene-ethylene/butylene-styrene (SEBS)[89], Ag nanoparticles@poly(styrene-block-
butadienstyrene) (SBS)[90], GO@PU[91], etc. Moreover, the polymers are employed for encapsulation layers 
such as ecoffex[92], polydimethylsiloxane (PDMS)[93], PI[94], etc.

In addition to the functional materials and mechanical polymers, other materials are also employed to 
enrich the functionality of textile electronics. For instance, pharmaceuticals are being embedded into fibers 
to enable long-term therapeutic applications[95]. Furthermore, efforts are underway to integrate antibacterial 
materials into textiles to suppress or eliminate bacteria and provide additional protection for users[96], 
especially in scenarios where strict hygiene standards are crucial.

FABRICATION TECHNIQUES
Textiles are complex hierarchical materials requiring specialized knowledge of manufacturing processes. As 
the fundamental units of textiles, fibers can be processed into yarns through twisting or texturing[97,98]. These 
yarns can be crafted into fabrics using various techniques, including weaving, knitting, or bonding[99]. Given 
the importance of electrical performance in textile electronics, it is crucial to innovate and enhance the 
fabrication techniques of textile electronics according to the framework of traditional textile production 
processes. This section introduces fabrication techniques for functional fibers and fabrics, highlighting their 
significance in developing textile electronics.

Fabrication of functional fibers
Surface treatment for commercial fibers
Conductive fibers are typically obtained through wire drawing, which involves elongating metal wires into 
fiber forms. Metals such as stainless steel, copper, and aluminum are commonly used in this method. Fibers 
with diameters ranging from a few to tens of microns can be fabricated by drawing the metal wires through 
a series of precision dies[100,101]. However, most commercial fibers are primarily insulators[102-106], so their 
conductivity can be achieved by applying conductive materials via dip-coating[90,107]. Lee et al. employed this 
technique for the fabrication of conductive fibers[90]. In their method, theSBS polymer was immersed in a 
silver-containing solution (AgCF3 COO). This immersion allowed for the infiltration of Ag into the SBS, 
enhancing electrical conductivity of SBS. Thereafter, the silver nanowire (Ag NW)-coated fiber was coated 
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using the poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) solution. This approach 
was demonstrated as an effective strategy for integrating electrical conductivity with the inherent properties 
of insulating fibers.

Certain fibers, such as polyacrylonitrile (PAN) and cellulose, can be rendered conductive through 
carbonization, a method commonly employed to fabricate high-performance carbon fibers[108,109]. For 
instance, Gupta et al. reported on the impact of carbonization temperature on the crystallinity and electrical 
conductivity of PAN fibers[110]. The conductivity of PAN fibers carbonized at 1,000, 1,800, and 2,200 °C 
increased monotonically from 5.32 to 51.01 S·m-1 and 75.91 S·m-1, respectively. Thus, by controlling the 
carbonization temperature, it is feasible to achieve fibers with the desired level of conductivity.

Additionally, electroless deposition and electrodeposition are also common methods for the surface 
functionalization of fibers[111-113]. Electroless deposition employs a potent reducing agent in a solution of 
metal ions to reduce the metal ions to their metallic form, which subsequently deposits onto the surface of 
materials[114,115]. Electrodeposition, referred to as electroplating, is a method of depositing a metal layer onto 
the surface of a material through electrolysis[116,117]. Both electroless deposition and electrodeposition have 
their respective advantages. The former does not require an external power source, and it can form a 
uniform coating on substrates of complex geometry, making it suitable for surface metallization of complex 
shapes or insulating materials[118,119]. The latter allows for the control of metal layer thickness and deposition 
rate, making it appropriate for applications requiring a thicker metal layer[120-123].

Inherently functional fiber making
Previous methods focused on surface treatment of insulating fibers to achieve functional fibers. Extensive 
experimental evidence has demonstrated that it is also feasible to produce inherently functional fibers 
through various processes, including thermal drawing, spinning, and 3D printing.

The thermal drawing technique, derived from the technology used in optical fiber fabrication, can also be 
employed to manufacture functional fibers[124]. Loke et al. have demonstrated the preparation of a preform 
integrating conductors, semiconductors, and polymer insulators, as depicted in Figure 3A[125]. Upon heating 
and stretching the preforms, the functional fiber exhibiting seamless material integration and exacting 
dimensional precision was achieved. Various methods can be employed for fabricating these preforms, 
including thin-film rolling for cylindrical fiber production, extrusion, lamination, drawing, and integrating 
different material components through hot pressing or advanced 3D printing technology[126]. Furthermore, 
various post-processing methods have been developed to overcome the mechanical property mismatch 
between different materials[127,128], such as laser and thermal annealing, as depicted in the second fiber of 
Figure 3A.

Spinning is a prevalent process for converting polymers into fibers, including melt spinning, wet spinning, 
dry spinning, dry-jet wet spinning, and coaxial extrusion. Melt spinning is a process that involves using the 
apparatus shown in Figure 3B to incorporate conductive fillers into easily meltable polymers or to blend 
conductive polymers with matrix polymers[129]. Common matrix polymers used in the spinning process 
include polypropylene (PP), PU, thermoplastic PU (TPU), and Ecoflex[130-132]. Probst et al. blended highly 
elastic TPU with conductive CNTs to fabricate conductive fibers via the melt-spinning process[132]. These 
fibers exhibit high elongation, mechanical properties comparable to conventional elastic fibers, and 
electrical conductivity on par with conductive liquid. Notably, melt spinning focuses on using the blends of 
conductive polymers with thermoplastic polymers suitable for this process due to the inadequate stability, 
toughness, and processability of pure conductive polymers[129,133].
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Figure 3. Thermal drawing and various spinning techniques. (A) Thermal drawing[125]. Reprinted with permission. Copyright 2019, John 
Wiley and Sons; (B) Melt spinning[129]. Reprinted with permission. Copyright 2020, MDPI; (C) Dry spinning[134]. Reprinted with 
permission. Copyright 2018, John Wiley and Sons; (D) Wet spinning[138]. Reprinted with permission. Copyright 2014, American Chemical 
Society; (E) Dry-jet wet- spinning[141]. Reprinted with permission. Copyright 2023, MDPI; (F) Electrospinning[143]. Reprinted with 
permission. Copyright 2021, American Chemical Society; (G) Coaxial extrusion[144]. Reprinted with permission. Copyright 2018, 
American Chemical Society.

Dry spinning is a method that usually uses hot gas to process the spinning solution for solidification. After 
the solvent evaporates, the polymer solidifies to form conductive fibers [Figure 3C][134]. For polymers and 
their solvents that are stable at high temperatures, dry spinning may be the preferred method. If the 
polymers are sensitive to high temperatures, such as PVC melt (melting point: ~80-85 °C), dry spinning is 
also possible under strict processing conditions. For those polymers that can be easily dissolved in a specific 
solvent but are not easily melted, wet spinning offers a suitable alternative. For instance, the cellulose acetate 
(melting point: ~160-190 °C) is dissolved in acetone (boiling point: ~56 °C) for fabricating a wet spinning 
solution[135-137]. First, a spinning solution containing conductive nanomaterials or conductive polymers is 
extruded through a spinneret into a coagulation bath. Subsequently, the solvent diffuses into the bath, 
facilitating the solidification and formation of conductive fibers [Figure 3D][138]. The earliest single-walled 
CNT (SWCNT) fibers were successfully assembled through wet spinning[139]. By adjusting parameters such 
as injection rate, flow speed, and the size of the needle or capillary tube, the morphology of the spun fibers 
can be controlled, allowing for the fibers with diameters ranging from a few micrometers to 100 μm. Eom 
et al. extruded a high-concentration MXene dispersion through a nozzle into a coagulation bath containing 
NH4Cl and NH4OH, forming a gel-like MXene fiber[140]. Subsequent post-treatment in a water bath yielded 
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highly conductive MXene fibers with excellent electrical conductivity (7,713 S·cm-1) and good mechanical 
properties.

Additionally, the dry-jet wet spinning technology combines both dry and wet spinning characteristics. 
Unlike conventional wet spinning, in dry-jet wet spinning, the fine filament stream exits the nozzle and 
traverses a defined air gap without encountering any solidifying medium, as illustrated in Figure 3E. This 
intervention is beneficial for curtailing fiber stretching and enhancing fiber orientation[141]. Consequently, 
dry-jet wet spinning can significantly reduce solvent consumption, boost production efficiency, and is 
applicable to a broad spectrum of polymers, including those that present processing challenges in traditional 
wet spinning setups.

Electrospinning involves continuously drawing fibers using static electricity [Figure 3F][142,143]. Although 
electrospinning shares a reliance on solvent evaporation for fiber solidification with dry spinning, 
traditional dry spinning is limited in producing nanoscale fibers. Furthermore, advances in spinneret design 
have led to the development of coaxial extrusion techniques, such as coaxial electrospinning and coaxial wet 
spinning [Figure 3G][144,145]. Coaxial extrusion can create multi-layered fibrous structures, typically with a 
conductive layer at the core and an insulating layer as the sheath.

Moreover, 3D printing technology, with its exceptional design flexibility and manufacturing adaptability, 
enables on-demand customization. For example, composite fibers of boron nitride nanofiber/polyvinyl 
alcohol (BNNS/PVA) have been successfully produced via 3D printing, boasting high mechanical strength 
and excellent thermal conductivity[146]. The functional fibers can be further integrated into textiles with 
diverse structures for personal cooling applications. As shown in Figure 4A and B, the BNNS/PVA ink is 
continuously extruded through a metal needle into a methanol bath at 0 °C for cooling, forming a 
continuous printed fiber. In this process, PVA serves as a dispersing agent to achieve uniformly dispersed 
BNNSs, as shown in Figure 4C.

Similar to the coaxial extrusion, coaxial fibers can also be prepared by 3D printing. As shown in Figure 4D, 
a conductive core ink is formulated by blending graphene powder with a PDMS prepolymer, while an 
insulating sheath ink is concocted by combining polytetrafluoroethylene (PTFE) particles with the same 
PDMS prepolymer. The core and sheath printing inks are extruded through the coaxial printing nozzle of 
the 3D printer. The printed fibers were heat-cured at 170 °C, and then highly elastic coaxial fibers with 300% 
strain were obtained[147]. Moreover, 3D printers can design various 3D shapes and even directly print a 
complete device[148,149]. Figure 4E shows the step-by-step process of 3D printing to fabricate a pressure 
sensor. In this process, a base layer was printed using silicone rubber. A sensing layer was printed using a 
composite material with specific silver content. The ratio of silver to polymer can be adjusted to achieve the 
desired conductivity and pressure sensitivity. The electrode layer was printed using a composite material 
with high Ag content to ensure optimal conductivity. An isolation layer was employed in the device to 
separate the sensing layer and the electrode layer. Notably, the support layer should be removed through 
hydrolysis after printing.

In general, the preparation of multifunctional fibers often requires the participation of various technologies. 
Consequently, in the specific preparation process, these technologies should be strategically selected and 
combined based on the actual requirements of the application.

Fabrication of functional fabrics
Functional fibers can be obtained using the fabrication techniques previously presented, preparing for the 
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Figure 4. (A) Schematic of the fabrication of as-printed fiber; (B) Photo image of 3D-printed fiber cooling in methanol; (C) Photo image 
showing DMSO/BNNSs dispersion and PVA/DMSO/BNNSs dispersion after standing for one week[146]. Reprinted with permission. 
Copyright 2017, American Chemical Society; (D) Schematic of the 3D printing process of coaxial functional fiber[147]. Reprinted with 
permission. Copyright 2021, Elsevier; (E) 3D printing procedure of different functional fibers for a sensor[148]. Reprinted with permission. 
Copyright 2017, John Wiley and Sons. DMSO: Dimethylsulfoxide; BNNSs: boron nitride nanofibers; PVA: polyvinyl alcohol.

fabrication of yarns and fabrics. Four production stages are shown in Figure 5A, ranging from the initial 
fiber stage to the finalization of apparel products. As shown in Figure 5B, the classification of fabric 
structures is delineated into five distinct categories[150-153].

Weaving is a prevalent technique for the integration of textile electronics into fabrics due to the minimal 
deformation that occurs during the weaving process[154,155]. Woven structures can be formed by vertically 
interweaving warp and weft threads through a loom, resulting in a fabric with a uniform texture, including 
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Figure 5. (A) Production stages from fibers to products; (B) Summarization of various fabric structures. Figure “Weaving”[150], reprinted 
with permission. Copyright 2018, John Wiley and Sons; Figure “Kitting”[151], reprinted with permission. Copyright 2013, Elsevier; Figure 
“Stitching”[152], reprinted with permission. Copyright 2020, Elsevier; Figure “Braiding”[153], reprinted with permission. Copyright 2020, 
Springer Nature; (C) Woven structures obtained by individual functional fiber, complex fibers and carbonization, respectively. Figure 
(i)[168], reprinted with permission. Copyright 2017, Springer Nature; Figure (ii)[169], reprinted with permission. Copyright 2021, American 
Chemical Society; Figure (iii)[170], reprinted with permission. Copyright 2019, Elsevier.

plain, twill, satin, basket, leno, and mock leno[156-158]. The most popular woven structure is the plain weave 
due to its simplicity, minimal repeat dimensions, and ease of formation and identification[159]. This structure 
integrates various electronic components such as pressure sensors, strain sensors, circuit boards, logic 
operations, solar cells, etc.[51]. However, the precise control of the weft yarn presents a challenge for the 
positioning of microelectronic devices[160].

In the knitting process, yarns are formed into a looped structure through either mechanical knitting 
machines or manual knitting techniques[161,162]. Owing to their looped construction, fabrics with knitted 
structures exhibit high extensibility, enabling them to withstand external forces better[160]. Additionally, 
knitting makes it easy to obtain circular or tubular structures in a bi-layer configuration. It is beneficial for 
the fabrication of devices that require the integration of multiple materials in contact.

Stitching, a method that employs sewing threads to bind multiple layers of material, is employed to enhance 
the thickness, strength, and durability of fabrics[163,164]. This process not only significantly amplifies the 
reinforcing effect but also elevates the permanent recovery ratio[152]. Furthermore, braiding is a simple 
technique for intertwining three or more strands of yarn to create narrow strips or flat fabrics, used for rope, 
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shoelaces, and net-shape composite preforms[153,165]. Furthermore, non-woven structures stand apart from 
traditional weaving or knitting. They are formed by fixing fibers together using adhesives, heat pressing, or 
electrospinning, resulting in anisotropic, inhomogeneous fabrics with porosity and permeability[41,166,167].

Regardless of the structures, functional fabrics can be formed by individual functional fibers/yarns, or by 
weaving functional fibers/yarns with insulating fibers/yarns, which are then made into garments. Moreover, 
the previously discussed techniques for the functionalization of insulating fibers, such as carbonization and 
deposition, are equally applicable to insulating fabrics. Taking the woven structure as an example, as shown 
in Figure 5C, the fabrication of functional fabrics can be achieved through weaving with individual 
functional fibers, weaving with different fibers, and carbonization[168-170].

DESIGN STRATEGIES OF TEXTILE HEALTH MONITORING SYSTEM
The design and fabrication of textile electronics constitute a complex endeavor, as they involve integrating 
electronic systems with a textile platform. A simple health monitoring system includes a power module, 
sensing module, interconnections, data processing module, communication module, and display module. In 
such integrated systems, the design of textile electronics necessitates well-considered manufacturing 
decisions, which involve selecting appropriate materials and processes to ensure adherence to design 
specifications under specific constraints.

Power module
The power module serves as the energy core of the system, providing the necessary power to other modules. 
The power management circuitry is responsible for voltage regulation, current control, and power 
distribution. Recently, beyond conventional commercial energy devices, a variety of textile-based energy 
harvesting and storage devices, such as solar cells, supercapacitors and batteries, has emerged.

The energy harvesting devices effectively capture ambient energy sources, including solar radiation, thermal 
gradients, mechanical vibrations, and kinetic energy from human motion, to power wearable health 
monitoring systems. They typically leverage specialized materials optimized for energy conversion, such as 
photovoltaic, triboelectric, piezoelectric, and thermoelectric materials, to achieve efficient energy 
management in wearable applications. The use of photovoltaic materials to create solar cells is the primary 
technology for solar power generation[171]. When two triboelectric materials come into contact and then 
separate, they generate electrical energy due to the triboelectric effect[172]. Additionally, piezoelectric 
materials generate an electric charge when subjected to mechanical stress, also leading to the production of 
electrical energy[173,174]. Furthermore, thermoelectric materials are capable of converting thermal energy into 
electrical energy, making them particularly useful for waste heat recovery or in environments with 
significant temperature differences[175].

When ambient energy is insufficient, energy storage devices become essential to maintain reliable operation 
of health monitoring systems. Critical factors in designing these devices include volume, weight, flexibility, 
safety, charge-discharge rate, and cycle life. For example, Li et al. demonstrated that zinc-ion batteries are 
highly suitable for textile applications due to their high theoretical capacity and low redox potential, making 
them effective for powering display modules[176]. In an intelligent health monitoring system, energy storage 
devices should be capable of working in tandem with energy harvesting systems to enable seamless 
transitions during periods of low energy supply.
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Sensing module
The sensing module is designed to monitor various parameters related to physical health. Sensing fibers can 
be integrated into textiles to establish direct contact with the skin or other body parts. For textile-based 
pressure sensors, the working principle relies on the increased contact area between sensing fibers and 
electrode fibers, as well as the interactions between the sensor fibers themselves[177]. The contact and 
compression within and between the fibers lead to an increase in the conductive pathways, thereby 
enhancing the overall conductivity of the sensor. Additionally, the sensitivity of acoustic sensors to sound 
pressures and frequencies at various distances suggests the potential for harnessing energy from ambient 
noise and vibrations[178]. In addition, ultraviolet (UV)-sensitive textile electronics are mainly realized 
through materials that respond to UV exposure[179]. Temperature sensors can be created using temperature-
sensitive materials as textile electrodes[180]. If the body’s electrolyte balance, kidney function, or breath odor 
needs monitoring, sensors can be designed to detect biochemical signals related to liquids or gases[181,182].

Interconnections
Textile-based sensors require connection to other circuit elements, additional sensors, and/or data 
acquisition circuits to function effectively. Therefore, flexible or rigid interconnects and connectors are 
critical to ensuring the functionality and durability of the final monitoring system. Interconnects are 
conductive pathways that link various textile electronics within or between textiles. These pathways can be 
made from conductive fibers, tracks printed with conductive inks, or other forms of conductive 
materials[70]. Typical interconnects found in textile electronics that are suitable for textile-based sensors are 
conductive yarns[40]. Connectors are physical interfaces used to connect conductive pathways in textiles to 
rigid electronic components, such as integrated circuits (ICs) and sensors. These connectors provide a 
reliable electrical connection between the softness of the textile and the rigidity of the electronic 
components. Connectors can be categorized into three types: physical connections (such as soldering and 
welding)[31], mechanical connections (such as gripping, crimping, and sewing)[183], or connections using 
conductive adhesives (such as conductive epoxy)[184,185]. Moreover, the electrodes in textile electronics, often 
integrated as conductive fibers or yarns, play a crucial role in the detection, collection, and transmission of 
signals[186]. The synergistic integration of the various textile electronics, electrodes, interconnects and 
connectors holds great promise for realizing a comprehensive textile-based health monitoring system.

Data processing module
The data processing module serves as the central component of the health monitoring system. After 
capturing the initial sensing signals, a signal conditioning circuit that includes amplifiers, filters, and analog-
to-digital converters (ADC) is utilized to process these signals. Subsequently, the processed data is 
transmitted to the microcontroller for further analysis and processing.

This module is underpinned by a suite of algorithms that leverage statistical analysis, machine learning, and 
other sophisticated data analysis techniques to enhance the accuracy and efficiency of health monitoring 
protocols. In textile-based health monitoring systems, machine learning provides a range of powerful data 
analysis techniques. Compared to traditional data processing methods, machine learning can handle 
datasets with high complexity and multiple variables, which is critical for processing extensive health 
monitoring data. Algorithms such as support vector machines (SVM), convolutional neural networks 
(CNN), K-nearest neighbors (KNN), and decision trees can make predictions about new, unseen data after 
undergoing training. Although the data processing module is crucial, it often receives less attention in the 
literature compared to the more prominent sensing modules. Table 1 summarizes several machine learning 
algorithms utilized in textile-based health monitoring systems, providing a reference for the future 
development and optimization of new algorithms.
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Table 1. Some machine learning algorithms for healthcare monitoring systems

Textile Sensor Function Machine learning models Ref.

Fabric Pressure sensor Biometric gait recognition SVM [187]

Muscle pants Stretch sensor Human motion recognition Random forest, neural network, SVM [188]

Chest band Stretch sensor Talking detection Random forest, neural network, linear discriminant
analysis

[189]

Fabric Gas sensor Gas sensing identification Machine learning-enabled principal component analysis [190]

Vest Triboelectric sensor Sitting position recognition Random forest [191]

Cuff Triboelectric Sensor Cardiovascular monitoring Neural network [192]

Wristband, socks Pressure sensor Respiration and gait 
recognition

CNN [193]

Garment Polymer optical fiber 
sensor

Activity classification KNN classifier [194]

Knee covers, 
sleeves

Strain sensor Human motion recognition 1D CNN [195]

SVM: Support vector machines; CNN: convolutional neural networks; KNN: K-nearest neighbors.

Communication module
The function of the communication module is to realize the transmission and communication of health 
data. Communication modules can be categorized into two types based on transmission mode: wired and 
wireless. Wired communication modules, such as Ethernet, are ideal for scenarios demanding stable and 
high-speed data transfer. On the other hand, wireless communication modules, including Bluetooth, Wi-Fi, 
near field communication (NFC), and radio frequency identification, are suited for situations that call for 
mobility and flexibility in data transmission. Textile antennas, designed for the transmission and reception 
of radio waves, have garnered considerable research attention. To meet specific design requirements, the 
antenna’s geometry and dimensions are developed using electromagnetic simulation software to predict the 
performance of the antenna[196]. Subsequently, the conductive material is applied to the substrate material 
using printing technology (such as screen printing or inkjet printing) or coating technology to create the 
antenna[197].

Display module
To present visual health management and analysis, the collected monitoring data is transmitted to an 
external display device, such as a smartphone or computer interface. In recent years, preliminary display 
fabrics have been realized. There are two approaches to fabricating textile displays. The first approach 
involves directly manufacturing thin-film light-emitting diodes (LEDs) onto the fabrics. For optimal LED 
performance, it is essential that the underlying substrate is extremely smooth. Consequently, a critical step is 
applying a polymer buffer layer to the textile’s uneven surface through methods such as heat pressing or 
UV-induced photopolymerization[198,199]. Alternatively, light-emitting fibers can be created and then woven 
directly into the fabric to serve as displays[200,201]. The advancement of light-emitting fabrics for real-time 
health status display is anticipated to drive significant progress in health monitoring system development.

In summary, the design of all modules must consider compatibility, size, shape, and flexibility to facilitate 
their integration with textiles. The existing textile-based health monitoring systems still combine rigid and 
flexible components. Numerous challenges remain in the development of a fully textile-based health 
monitoring system.

APPLICATIONS OF TEXTILE ELECTRONICS IN HEALTH MONITORING
In health monitoring systems, textile electronics play an essential role, necessitating one or more such 
components. These fundamental components can be categorized into four types based on their 
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functionality: sensors, displays, energy devices, and memory devices[160,202]. They are integrated with some 
commercial hardware and software to achieve a comprehensive health monitoring workflow. Notably, the 
applications introduced in this review are just a few emerging examples. The health monitoring systems 
based on textile electronics are rapidly evolving, and an increasing number of applications are expected to 
be developed. The integration of diagnostic and therapeutic capabilities in healthcare systems represents a 
future trend for the advancement of textile electronics.

Human motion monitoring
Currently, technologies for detecting human motion are predominantly divided into two principal 
categories: stationary and mobile monitoring. The stationary monitoring approach is contingent upon 
equipment positioned at designated sites, including depth cameras and far-infrared cameras. However, this 
approach has several limitations, including high costs, data accuracy, extensive data storage and processing, 
restricted monitoring range, and potential privacy concerns[14]. In contrast, mobile monitoring technologies 
facilitate the unrestricted movement of subjects within an environment, typically employing wearable 
sensing systems. In these systems, the application of textile electronics is revolutionizing the way of human 
motion monitoring. These intelligent textile electronics demonstrate high sensitivity to minute variations in 
tension or pressure. Moreover, they can be custom-tailored into various configurations and dimensions to 
meet the diverse requirements of human motion monitoring[203]. In human motion monitoring systems, 
textile electronics are integrated into the seams of garments to capture the movements of the limbs (such as 
the knees or elbows), and they can also be positioned on the dorsal region to monitor spinal posture and 
upper body position[191,204,205].

For instance, to motivate individuals with obesity or cardiovascular conditions to engage in increased 
physical activity, the development of lightweight and comfortable sensing textiles is imperative. These smart 
textiles can monitor their daily activity levels, providing a means to track progress and encourage a more 
active lifestyle[206]. Regarding Parkinson’s disease, although a complete cure is not possible, active treatment 
and management can help patients maintain a good quality of life and work capacity[207]. Precise 
measurement of their movements is crucial for assessing the effectiveness of treatment. By monitoring 
specific motion patterns, physicians can better understand the patient’s condition and adjust the treatment 
plan accordingly.

In clinical monitoring applications, textile electronics designed for human motion monitoring are 
integrated with motion analysis algorithms. In 2020, Lin et al. developed an innovative near-field responsive 
sensing network by integrating near-field relays, commercial NFC tags, wireless battery-free temperature 
and strain sensors, conductive threads, connections using conductive epoxy (CW2460, Chemtronics), and 
wireless readers[208]. This state-of-the-art wireless garment enables the real-time assessment of spinal posture 
and the continuous monitoring of body temperature and gait during the exercise period. In 2022, Jiang et al. 
used machine learning algorithms for the design of a self-powered posture monitoring vest (SPMV) 
integrating conductive fibers, nylon yarns, sensor array [triboelectric nanogenerators (TENGs)] with 
protection layer[191]. In addition, a step motor for periodic contact-separation movement and LabView and 
Python software platforms for real-time data processing are applied. Precise, real-time posture recognition 
and correction are achieved using the SPMV. Besides, the deployment of a random forest classifier has 
yielded an impressive accuracy rate of 96.6%, surpassing the accuracy of logistic regression and decision tree 
classifiers. In 2023, the same research group developed a self-powered multi-point body motion sensing 
network (SMN) based on a fully textile structure, enhancing pressure response sensitivity and breathability 
[Figure 6A][187]. Similar to their previous study, the body motion sensing system consists of a sensing fabric, 
a linear motor, and a human-computer interface platform based on LabView software. The sensing fabric 
was fabricated using Ag-polyethylene core-sheath composite yarns through 3D knitting techniques, 
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Figure 6. (A) The structure of SMN for body motion sensing. The sensitivity of the SMN is 1.56 V·kPa-1 under pressure below 2 kPa; (B) 
SVM classifier for gait recognition and auxiliary rehabilitation training; (C) Multi-channel test results of five deformed gaits containing 
PG, SG, MG, GG, and CG; (D) Classification accuracy of five gaits using different machine learning algorithms[187]. Reprinted with 
permission. Copyright 2023, John Wiley and Sons; (E) The working process of an epilepsy treatment system; (F) In vivo experiment to 
relieve epileptic seizures in mice; (G) Total epileptic seizure duration under two conditions; (H) The mean epileptic seizure number 
during 0-120 min under two conditions[210]. Reprinted with permission. Copyright 2023, Elsevier. SMN: Self-powered multi-point body 
motion sensing network; SVM: support vector machines; PG: Parkinson’s gait; SG: scissors gait; MG: mopping gait; GG: gluteus maximus 
gait; CG: cross-threshold gait.

ensuring each sensing node exhibits high linear sensitivity to pressure. Additionally, a SVM algorithm was 
integrated into the SMN for processing the sensory data [Figure 6B]. By analyzing the time series and 
dynamic parameters of five deformed gaits [Figure 6C], gait recognition and classification with an accuracy 
rate of 96.7% are effectively achieved [Figure 6D]. Constructing a real-time human-computer interaction 
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platform based on the SMN holds the potential to assist in the diagnosis of neurological disorders, such as 
Parkinson’s disease and dystonia.

In everyday scenarios, human limbs may exhibit vibrations at approximately 1-3 Hz, whereas epileptic 
seizures are characterized by vibrations at varying frequencies, reaching up to 7 Hz[209]. Therefore, it is 
possible to distinguish between the signals of normal movement and epileptic seizures by analyzing the 
frequencies associated with different human behaviors. A self-powered, wearable epilepsy monitoring 
system for potential epilepsy treatment is shown in Figure 6E[210]. This system is capable of real-time 
monitoring of human motions and delivering neural stimulation signals to mitigate epileptic seizures. In 
this system, the energy harvesting module converts mechanical energy generated from human motions into 
electrical energy, with the rectifier subsequently charging the capacitors. The motion detection sensor 
detects subtle human motions and transmits signals to the data processing center. The data processing 
center can identify epileptic seizures and generate neural stimulation signals. As shown in Figure 6F, the 
system operation successfully suppressed the epilepsy of the mouse. By stimulating the dentate gyrus of the 
mouse with a stimulation electrode, the total duration of epileptic seizures in the mouse can be reduced by 
40%-50% [Figure 6G and H].

The research findings highlighted the potential of merging textile electronics for human motion monitoring. 
With the assistance of AI algorithms, a motion monitoring system based on textile electronics is equipped 
to offer personalized health advice and exercise prescriptions to individuals.

Physiological monitoring
Textile electronics have revolutionized the conventional rigid design of physiological monitoring devices, 
enabling the development of textile electronics that provide real-time, continuous, non-invasive, and 
comfortable monitoring of vital physiological signals[211]. These devices stand out for their efficacy in 
monitoring chronic conditions, including cardiovascular diseases and diabetes[192,212]. To intuitively 
understand the applications of textile electronics in physiological monitoring over the past five years, 
Table 2 presents a comprehensive overview of physiological monitoring devices with the materials 
employed, the fabrication techniques utilized, the product developments realized, and the monitoring 
locations.

ECG represents a medical diagnostic technique designed to capture the electrical activity of the heart. 
Unlike the mechanical vibration sensing of acoustic sensors, ECG sensing is adept at detecting alterations in 
the action potentials of cardiomyocytes. The integration of textile electrodes has become the cornerstone for 
ECG monitoring, allowing for a more comfortable and continuous assessment of cardiac activity. In an 
early study[229], emulating the traditional Yuzen dyeing technique of Japanese kimono, researchers employed 
PDMS as a template to directly imprint conductive polymer patterns of PEDOT:PSS onto textiles, as 
illustrated in Figure 7A. The textile electrodes were utilized for ECG recordings with the SandsResearch 
system (EA68 or EA136 amplifiers) and a data processing module (LabView software). The realization of 
the precise tracking of cardiac activity in motion [Figure 7B] and good stability in ambient air [Figure 7C] 
represents a significant development to textile electronics for ECG monitoring applications.

EMG signals are typically acquired from the arms or legs [Table 2]. For instance, muscle activity monitoring 
using a leg sleeve for detecting EMG signals is illustrated in Figure 7D[230]. For EMG recordings, the textile 
electrodes and reference electrodes were connected to a wireless EMG acquisition system that included a 
wireless transmitter and a BIOPAC system with a wireless receiver. Then, the results were shown on the 
user terminal through an Ethernet connection. Moreover, an investigation into embroidery techniques for 
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Table 2. Summary of representative physiological monitoring devices in the past five years with materials, preparation methods, 
products and monitoring location

Signals Materials/components Fabrication Products Monitoring 
location SEI SNR/sensitivity Ref.

ECG Ag-plated fibers Electrostatic 
flocking

T-shirt Chest A few hundred k
Ω at 100 Hz and 
1,000 Pa

/ [213]

ECG Ag/M-PETF Electroless 
deposition

T-shirt Chest / / [214]

ECG Ag/AgCl Screen printing Polyester fabric Hand and leg A few hundred Ω 
within 100 Hz

/ [215]

ECG/EMG rGO, sericin, water retention 
polymer

Knitting Sports 
undergarment, 
sleeve

RA, RL, LL 24 kΩ at 1,000 
Hz

35-40 dB at 
pH = 4.3

[216]

ECG Fabink-TC-C4001, MOS 
TitanRF

Screen printing Mattress Back ~200 kΩ at 
10Hz; 50 kΩ at 
100-1,000 Hz

-40 dB [217]

EMG Graphene Dip-coating Sleeve Arms and 
legs

~90 kΩ at 1-5 Hz 19.23 dB [218]

EMG PEDOT:PSS Screen printing Sleeve Legs 3-20 kΩ at 
30 Hz

/ [219]

EEG Ag flakes/SIS Screen printing Headband Forehead < 10 kΩ -32.7 dB [220]

EEG Ag Knitting Cap Head 5-30 kΩ at 
0.1-30 Hz

33.6 dB [221]

EOG Graphene Dip-coating Headband Forehead / / [183]

ECG/EOG LIG, AgCl, carbon inks Screen printing Fabric Forehead ~700 Ω at 
0.1-500 Hz

/ [222]

EEG/EOG Ag Knitting Headband Forehead / / [223]

Temperature Polycarbonate, battery, 
thermistors

Thermal 
drawing

Digital fiber, 
T-shirt

Body / / [224]

Temperature PEDOT:PSS, PU/graphene Wet spinning, 
weaving

Fabric Arm / -1.72%/°C [225]

Temperature Thermal-sensitive ink PDMS Etching, 
coating

Fabric Lower limb / 62.3 V/K [226]

Respiratory 
Rate

Functional yarns Wrapping Mask Face / 82.4 pF/% RH [227]

Respiratory 
Rate

Ag NPs Drop casting Chest strap Chest / 0.043 [228]

SEI: Skin-electrode impedance; SNR: signal-to-noise ratio; ECG: electrocardiograms; M-PETF: modified polyester fabric; EMG: electromyography; 
rGO: reduced graphene oxide; RA: right arm; RL: right leg; LL: left leg; Fabink-TC-C4001: silver conductive polymer ink; MOS TitanRF: self-
adhesive conductive textile fabric; PEDOT:PSS: poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate); EEG: electroencephalographic; SIS: 
styrene-isoprene-styrene; EOG: electrooculogram; LIG: laser induced graphene; PU: polyurethane; PDMS: polydimethylsiloxane; RH: relative 
humidity; NPs: nano-particles.

textile electrodes found that the moss stitch method produced a lower skin-electrode impedance (SEI) than 
the lock stitch method. SEI, or the resistance at the skin-electrode interface, is crucial for efficient signal 
transmission and high accuracy, which is mainly reflected in the signal-to-noise ratio (SNR). Thus, the moss 
stitch method enhances reliable EMG signal acquisition.

Electroencephalographic (EEG) signals capture the electrical activity of the brain, playing a crucial role in 
the diagnosis of neurological disorders such as epilepsy, sleep disorders, and brain injury. Tseghai et al. 
developed washable and flexible textile electrodes for detecting EEG signals emanating from cerebral 
activity[231]. The textile electrodes demonstrate lower SEI compared to conventional Ag/AgCl dry electrodes 
after three minutes [Figure 7E] due to sweat permeating the textile, rendering them highly suitable for long-
term EEG monitoring applications. In Figure 7F, three textile electrodes and two reference electrodes are 
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Figure 7. (A) Process of PEDOT:PSS coating on textiles; (B) Percentage of accuracy of heartbeat detection for five human behaviors; 
(C) Evolution of ECG signals over time[229]. Reprinted with permission. Copyright 2015, Springer Nature; (D) Schematic illustration of 
the measuring process for EMG signals and the testing postures[230]. Reprinted with permission. Copyright 2023, Springer Nature; (E) 
Skin-to-electrode impedance condition of different EEG electrodes over time; (F) Schematic illustration of the EEG measurement 
system [231]. Reprinted with permission. Copyright 2021, IEEE; (G) Photograph of an EOG headband; (H) EOG trace showing the 
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different types of eye movement[183]. Reprinted with permission. Copyright 2019, IOP Science. PEDOT:PSS: Poly(3,4-
ethylenedioxythiophene)-poly(styrenesulfonate); ECG: electrocardiograms; EMG: electromyography; EEG: electroencephalographic; 
EOG: electrooculogram.

connected to a battery and an OpenBCI board to record EEG waveforms. The EEG signals are then 
displayed on a laptop using the OpenBCI GUI software via a Bluetooth module. Notably, these textile 
electrodes enable skin contact without the requirement for conductive gels and exhibit robust stability in 
EEG signal acquisition, even following multiple wash cycles and bending.

Electrooculogram (EOG) records the electrical activity linked to eye movements, serving as a valuable 
diagnostic tool for investigating the visual system and analyzing sleep patterns. As shown in Figure 7G, a 
smart headband using graphene is used for EOG signal monitoring. The graphene textile electrodes are 
secured in an elastic headband with adhesive foams by a metallic snap fastener. The EOG-based human-
computer interaction interface is obtained by a front-end readout circuit and a smart headband for signal 
acquisition, a microcontroller unit for processing signals, and a laptop computer for display. Furthermore, 
an automated algorithm has been developed to detect and classify ocular movements [Figure 7H]. The 
integration of the algorithm with the bright headband has expanded its applications in human-computer 
interaction and human-machine interfaces, achieving impressive recognition accuracies ranging from 85% 
to 100%.

Additionally, variations in human body temperature are indicative of metabolic activity and can reflect 
pathophysiological information[226,232]. Zhang et al. fabricated a thermosensitive micro/nanoporous fiber with 
an unprecedented high thermal sensitivity (β = 4,994.55 K, α = -5.58%/K at 26 °C) and the fastest response/
recovery times (97/239 ms) recorded for textile-based temperature sensors[233]. The fiber was achieved by 
growing Fe2(MoO4)3 nanostructures on graphene using a wet spinning method. Compared to the 
conventional direct mixing of Fe2(MoO4)3 and graphene, the fibers produced by this method exhibit 
enhanced thermal sensing performance. The core thermoresistive micro/nanoporous fiber strand acts as 
both the temperature sensor and the working electrode of the textile TENG. The output signals are 
displayed on a mobile phone screen through a wireless system that includes an analog-to-digital conversion 
module, Bluetooth, and an accompanying app. Ultimately, real-time wireless monitoring of body 
temperature and pulse is achieved through textile electronics.

Respiratory rate, a vital sign, varies with age, health status, and activity levels. Anomalies in respiratory rate 
could be symptomatic of various conditions, including cardiac, pulmonary, metabolic disorders, or 
infections[234]. In respiratory rate monitoring systems, the humidity sensors[227] and pressure sensors[235] are 
fundamental and critical components. For instance, Lin et al. developed a pressure sensor based on ultrasoft 
helical functional fibers, demonstrating high sensitivity (1.726 V/N) and rapid response time (20 ms)[236]. 
They have successfully developed a real-time respiratory monitoring system, which includes a pressure 
sensor, an analog-to-digital conversion module, and a signal processing unit, and utilizes LabView software 
for further data processing. The system can continuously record vital parameters such as respiratory 
intensity, frequency, and intervals.

Biochemical monitoring
Sweat, as a biological fluid, provides a wealth of health-related biomarkers[237-239]. The rapid production and 
renewal rate of sweat implies that it can provide nearly real-time information on physiological status[240]. 
Therefore, long-term continuous monitoring of sweat can help track the trend of individual health status 
changes and detect abnormalities in time.
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Recently, Li et al. developed a Janus nanoprocessed electronic textile (JNET) for comfortable sweat 
monitoring[241]. By combining radiative cooling with moisture-wicking capabilities, substantial 
enhancements in wearing comfort have been realized [Figure 8A]. The structure of JNET, as shown in 
Figure 8B, involves weaving different fiber sensors to detect various substances in sweat. The novel 
integration of the optimized substrate and sensing fibers ensures a comfortable physiological 
microenvironment for sweat monitoring under sweating and hot conditions. Compared with traditional 
fabrics, experimental results have shown that Janus nanoprocessed silk (JNPS) achieves significant cooling 
effects and reduces skin surface humidity [Figure 8C]. Figure 8D demonstrates that the textile electronics 
can simultaneously detect pH, uric acid (UA), and Na+ biomarkers. In practical applications, the JNET is 
connected to a printed circuit board (PCB) via fiber electrodes. The PCB primarily consists of an MS02 
chip, Bluetooth module, power supply, and other functional modules, enabling the real-time wireless 
transmission of sensing signals to be displayed on a smartphone [Figure 8D].

Additionally, cortisol can be detected in sweat, correlating with the stress levels experienced by individuals. 
Hu et al. developed textile electronics based on CNT fibers for populations troubled by depression[49]. In the 
research, Prussian blue as an oxidation-reduction probe was deposited onto molecularly imprinted 
polymers (MIP) to directly detect cortisol upon contact with sweat. As shown in Figure 8E, the textile 
includes three functional fibers. MIP/CNT fiber serves as the working electrode, while Ag/AgCl/CNT fiber 
and Pt/CNT fiber act as the reference and counter electrodes, respectively. Then, the integrated textile 
electronics and other modules of a complete sweat monitoring system are illustrated in Figure 8F. The sweat 
sensor converts variations in cortisol concentration into electrical signals, which are subsequently 
transmitted to the flexible PCB for data processing. These signals are amplified, filtered, and converted into 
readable data, and then sent to the display module via a wireless module (such as Bluetooth). Users can view 
real-time monitoring reports of cortisol through the user interface (UI). An application scenario of real-
time stress management is shown in Figure 8G. After the stress test, the cortisol levels of participants 
gradually decrease. If participants exercise, their cortisol levels will also decrease after exercise.

Multifunctional health monitoring system
Conventional health monitoring systems with single-function monitoring are inadequate for some special 
situations, such as pregnancy and sleep monitoring that necessitate simultaneous tracking of various human 
motions and physiological signals[44,226]. Hence, the necessity for multifunctional health monitoring systems 
arises to meet the intricate demands of such scenarios[242-244]. In this section, a multifunctional health 
monitoring system for sleep monitoring as an example is discussed.

Lin et al. developed a smart mattress based on pressure-sensitive TENG arrays for real-time monitoring of 
sleep behaviors[42]. The smart mattress is constructed with conductive fibers and elastic materials, exhibiting 
high sensitivity, rapid response time, durability, and waterproof performance. The configuration of the 
sensor array is illustrated in Figure 9A, with individual addressing for each TENG unit. The conductive 
fibers are linked to the signal amplifier via the row/column data bus. The amplified signals are subsequently 
transmitted to the analog multiplexer and then fed into the ADC The microcontroller receives the digital 
signals from theADC for further processing. As the scanning progresses from the first row to the ith 
column, an i × j pressure image is constructed. This sequence of images forms a continuous data stream, 
which is subsequently transmitted to an external device such as a medical terminal or a personal mobile 
phone via the Bluetooth module.

When a user lies on the smart mattress, the body posture, position, and pressure distribution can be 
visualized on the graphical UI, as shown in Figure 9B. Figure 9C illustrates the distribution of pressure 
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Figure 8. (A) JNET with function of radiative cooling and anisotropic wettability; (B) The JNET is fabricated by different functional fibers 
and exhibits high sensitivity: 81.03 mV·pH-1 for pH, 0.08 μA/μM for UA, and 108.93 mV/decade for Na+; (C) Comparison of hygroscopic 
properties between pristine silk and JNPS; (D) The results of real-time sweat monitoring by JNET[241]. Reprinted with permission. 
Copyright 2023, Elsevier; (E) Schematic illustration of a fabric sensor for cortisol monitoring, with a detection limit of 1 pM for cortisol; 
(F) Design of an integrated system containing a biosensing module, FPCB module, Energy module and display module; (G) Different 
stages of stress monitoring and management[49]. Reprinted with permission. Copyright 2024, John Wiley and Sons. JNET: Janus 
nanoprocessed electronic textile; UA: uric acid; JNPS: Janus nanoprocessed silk; FPCB: flexible printed circuit board.

values for a sleeper throughout the night, indicating the sleep quality. In addition to sleep monitoring, the 
intelligent textile can serve as a fall warning system for the elderly or patients. If an elder or patient falls 
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Figure 9. (A) Multi-channel data acquisition system for sleep state monitoring. One pixel corresponds to one TENG unit with a pressure 
sensitivity of 0.77 V·Pa-1; (B) The UI showing sleep states information including posture, position, and pressure distribution; (C) The 
diagram showing the press number distribution of a sleeper throughout the night; (D) Automatic warning function of smart bedsheet; 
(E) Auxiliary warning function of smart bedsheet[42]. Reprinted with permission. Copyright 2017, John Wiley and Sons; (F) Schematic 
illustration of a smart bedsheet integrated functional fibers with a high sensitivity of 10.79 mV·Pa-1; (G) Design of an integrated system 
containing sensing array, signal amplifiers, multi-channel processing, ADC, Bluetooth transmitter, and mobile terminal; (H) The 
flowchart of the obstructive sleep apnea-hypopnea syndrome monitoring and intervention system; (I) Photograph showing the patient is 
awakened by the system in abnormal situations[243]. Reprinted with permission. Copyright 2020, Elsevier. TENG: Triboelectric 
nanogenerator; UI: user interface; ADC: analog-to-digital converters.

from the bed, signals from five TENGs along the edge of the mattress are sent to a computer or mobile 
terminal, triggering an alarm signal [Figure 9D]. Besides, they can autonomously call for help by touching 
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the TENG in the upper left corner of the mattress when experiencing discomfort, thereby alerting family 
members or healthcare professionals [Figure 9E]. These advancements carry significant implications for 
remote healthcare.

However, multi-layered electronic fabrics can increase the weight of the detection system. Recently, the 
same group optimized the textile electronics. They first prepared a single functional fiber, and then multiple 
fibers were woven into a black textile substrate with a serpentine structure design, ultimately creating a 
single-layer, ultra-soft intelligent bedsheet [Figure 9F]. The operation of the monitoring system is shown in 
Figure 9G. Similar to their previous study, the pressure signals generated by each sensing unit are 
independently addressable and can be recorded through a customized multi-channel data acquisition 
circuit. After analog-to-digital conversion, the electric signals are transmitted to a mobile terminal via 
Bluetooth. The real-time images of sleep postures and various physiological signals are shown on mobile 
terminal displays.

Furthermore, the group also designed an obstructive sleep apnea-hypopnea syndrome monitoring and 
intervention system and demonstrated its reliability [Figure 9H]. In cases where the apnea duration exceeds 
a predetermined threshold, an alarm is activated immediately [Figure 9I]. Compared with their previous 
study, this monitoring system has demonstrated advancements in enhancing monitoring accuracy, 
broadening the scope of surveillance, and improving user comfort. In addition to tracking sleep posture and 
behavior, it has further expanded to include the monitoring of respiratory rate and heart rate.

INTEGRATION OF TEXTILE HEALTH MONITORING SYSTEM
Integration strategies
If fiber- or yarn-based sensors and LEDs are employed in the sensor module and display module, they can 
form multiple sensing and display pixels through the previously described five textile structures. However, if 
other flexible electronic devices are integrated into textiles, two connection steps require attention: the 
mechanical connection with the textile material and the electrical connection integrated into the conductive 
structure. Both connections must be functionally reliable. The mechanical connection involves securely 
attaching electronic components to the textile, considering the stability and durability of the connection 
while ensuring the softness and comfort of the textile. Mechanical connections can be achieved through 
sewing, adhesive bonding, or other textile processing techniques, similar to traditional ICs and 
multifunctional devices on two-dimensional wafers. Currently, limitations on scaling down and challenges 
in electronic circuit configuration remain significant obstacles.

Recently, Hwang et al. proposed a technology for integrating electronic devices such as transistors, 
inverters, ring oscillators, and thermocouples onto the outer surface of a one-dimensional microfiber 
substrate, as shown in Figure 10A[245]. Using capillary-assisted coating methods and high-resolution 
maskless lithography techniques, multiple micro-devices can be rapidly integrated onto a very narrow and 
thin fiber surface. Subsequent evaluations of the electronic characteristics of the micro-devices on the fiber 
included assessments of switching and data processing capabilities, as well as units for sensing or converting 
light and thermal signals. Test results indicate that this mechanical connection technology provides the 
device with good stability and flexibility, presenting a viable strategy for manufacturing high-density 
electronic microfibers.

Notably, while functional fiber assembly has advanced, current wireless modules and microelectronics still 
rely on silicon chips and batteries, which are bulky and rigid, adversely affecting textile functionality and 
comfort. Yang et al. addressed this challenge by proposing a human body coupling energy interaction 
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Figure 10. (A) Integration of multiple electronic components on a microfiber[245]. Reprinted with permission. Copyright 2022, Springer 
Nature; (B) The process of in-textile photolithography technology[247]. Reprinted with permission. Copyright 2024, Springer Nature; (C 
and D) The process of NIT and NIT-type IC[51]. Reprinted with permission. Copyright 2021, Springer Nature. NIT: Non-printed 
integrated-circuit textile; IC: integrated circuit.

mechanism for smart fibers, enabling wireless signal transmission via environmental electromagnetic 
energy[246]. By integrating an electrostatic-sensitive photoelectric medium, these fibers consolidate sensing 
and actuation, allowing for light-emitting displays and touch interaction without the need for chips or 
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batteries, thereby offering a novel integration strategy for textile health monitoring systems.

To establish electrical connections in textiles, PCBs play a crucial role. Over the past two years, Wang et al. 
have reported innovative fabrication methods for creating circuit patterns on textiles, specifically double-
sided photolithography technology and in-textile photolithography technology[247]. The latter represents an 
optimization of the former, enabling the fabrication of finer metal patterns (sub-100 µm) that can penetrate 
the interior of the textiles. This advancement maintains the three-dimensional porous structure of the 
textiles, thereby preserving their breathability and comfort [Figure 10B]. The optimized circuit patterns 
have been utilized to construct a multiplex sweat sensing system fully integrated into the textile framework, 
successfully monitoring physiological signals.

Additionally, Yang et al. prepared a non-printed integrated-circuit textile (NIT) for biomedical and 
therapeutic diagnostic applications[51]. This system comprises devices such as transistors, sensors, diodes, 
solar cells, and batteries, all constructed in the form of fibers or crossover nodes [Figure 10C]. These devices 
are woven into a deformable textile IC [Figure 10D]. The NIT employs fiber-based transistors for logic 
operations, incorporates various sensors for health and environmental monitoring, and integrates 
photovoltaic and battery fibers for self-powered energy. Wireless data transmission is facilitated via infrared 
or advanced communication fibers. The NIT represents a fully self-powered, wearable monitoring system, 
simulating an AI “nurse” for health oversight and emergency assistance. This non-printing approach offers 
a novel manufacturing process distinct from traditional PCBs, promising for future wearables and 
personalized healthcare.

Security and reliability of the components
The safety of textile-based health monitoring systems encompasses two primary aspects: human safety and 
environmental friendliness, as well as data security and privacy protection. Given that health monitoring 
devices are intended for integration on the human body or even for implantation, the functional fibers and 
fabrics must be non-toxic and harmless at a cellular level. Materials that are green, harmless, and 
environmentally friendly should be prioritized. Devices implanted in biological tissues must exhibit 
excellent biocompatibility to prevent scarring and inflammation.

In the data processing module, UI, and software, devices should undergo regular calibration to maintain 
data accuracy. In accordance with data protection regulations, such as the General Data Protection 
Regulation[248], personal health information should be encrypted for storage and transmission. Access 
control measures should be implemented to ensure that only authorized users can access sensitive data. To 
guard against cyber-attacks, firewalls and intrusion detection systems should be employed to enhance data 
security.

As textile electronics continue to evolve, future health monitoring systems are expected to develop into 
more powerful telemedicine solutions and smart wards. Therefore, for systems closely linked to medical 
care, the entire system design must comply with the safety and reliability standards of medical devices, such 
as obtaining Food and Drug Administration (FDA) approval[249].

CONCLUSION AND OUTLOOK
Textile electronics hold substantial potential for development in the field of wearable health monitoring. 
This review provides an overview of the materials and fabrication methods associated with textile 
electronics. Key design strategies for developing textile-based health monitoring systems are discussed. 
Furthermore, the applications of textile electronics in ubiquitous health monitoring are also introduced, 
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including human motion monitoring, physiological monitoring, biochemical monitoring, and 
multifunctional monitoring. Moreover, current strategies for integrating health monitoring systems are 
explored, along with the security and reliability of their components. Despite the significant advancements 
made in textile-based health monitoring systems over the past two decades, considerable challenges remain 
to be addressed, spanning from material selection to system integration and eventual commercialization.

Performance improvement
In the development of textile electronics, active substances are typically endowed with specific functions 
through deposition onto textile substrates or polymer fibers. However, material compatibility issues may 
result in weak interactions at the interface between these active substances and their carriers, leading to a 
tendency for the active substances to detach under mechanical stress such as bending, stretching, or 
washing. This detachment adversely affects the operational stability of textile electronics. To enhance 
stability and durability, comprehensive optimization of material selection, fabrication processes, and textile 
structures is essential. For instance, improving coating techniques or utilizing more compatible binders can 
strengthen adhesion between active substances and fiber substrates, thereby enhancing the reliability of 
textile electronics during prolonged use. Additionally, the stability of energy storage fibers warrants 
attention, as passivation of electrode surfaces and biological contamination can lead to erroneous 
operational responses.

Integration
The integration of textile electronics is a pivotal step in achieving a multifunctional and efficient health 
monitoring system. Through integration, a variety of functionalities such as energy harvesting, signal 
processing, data storage, and wireless communication can be realized on a compact and wearable platform. 
Reliable connection technologies and textile-compatible ICs contribute significantly to the high degree of 
integration within electronic textiles. Although some integration technologies have been discussed in 
previous sections, there remains substantial room for improvement in the current level of integration 
compared to the demands of practical applications. Therefore, developing more effective integration 
strategies is essential for achieving high-performance textile electronics.

Large-scale fabrications
Industry reports indicate that numerous enterprises have developed a variety of smart textile electronics. 
Examples include Sergers heat socks designed for alpine skiing, Skin brand underwear capable of recording 
real-time heart rate, resting heart rate, and heart rate variability, and Siren’s washable smart socks tailored 
for individuals with diabetes. However, the manufacturing of these electronic textile products remains 
largely confined to laboratory settings. To facilitate commercial application, a transition to industrial-scale 
production is imperative. This transition necessitates not only the development of manufacturing 
technologies suitable for mass production but also considerations of cost-effectiveness. Laboratory-level 
manufacturing often fails to meet the cost and efficiency demands of large-scale production. Industrial 
manufacturing must address issues such as automation, standardization, and quality control. Additionally, 
the development of textile machinery adapted for functional fibers is crucial for realizing mass production. 
For instance, traditional textile machinery may require modification or redesign to accommodate the 
production of new types of textile electronics.

Health delivery
From a user-centric perspective, textile electronics must be sufficiently resilient to withstand regular use, 
including daily wear and washing, and yet remain comfortable and unobtrusive for patients. Therefore, 
standardized guidelines for the deployment and maintenance of these systems are essential. For these 
devices to be widely adopted in healthcare, they must comply with regulatory standards for medical devices, 
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such as those established by the FDA. Furthermore, user adoption plays a crucial role in health delivery 
effectiveness. Patients may require training on proper use and maintenance of these wearable textiles, and 
healthcare providers must adapt to new patient data streams generated by these systems. Addressing these 
challenges can contribute significantly to improved patient outcomes and the efficient delivery of care 
resources.

To sum up, the advancement of textile electronics necessitates collaborative efforts from researchers across 
multiple disciplines, including materials science, textile engineering, electronic engineering, and biomedical 
engineering. By consistently overcoming pivotal material and technical challenges, future textile electronics 
will possess the capacity to integrate diverse functionalities and establish a closed-loop medical care system 
that delivers personalized, real-time, and comprehensive health management services. This progress not 
only fosters innovation in the healthcare sector but also enhances convenience and well-being in the daily 
lives of individuals.
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