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Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease comprising multiple genetic subtypes that 
translates and impacts clinical outcomes after standard chemoimmunotherapy. Our initial understanding of the 
complex biological subtypes of DLBCL began with the identification of cell of origin (COO), and now has evolved to 
include even more specific subtypes defined by genetic signatures and mutations. These newer classifications lend 
themselves to the application of precision-based medicine, allowing us to tailor new treatment platforms that 
target specific oncogenic drivers in order to improve DLBCL outcomes. Essential to this is the development of 
genetic assays and tools that are reliable and readily available to assist in the application of these molecular 
classifications to real-world use. In this review, we discuss the history of DLBCL classification systems and their 
implication on clinical investigation as well as novel therapeutic options in DLBCL.
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INTRODUCTION
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma (NHL) and is 
characterized by highly diverse molecular subtypes. Gene expression profiling (GEP) has delineated two 
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main DLBCL subtypes: germinal center B-cell-like (GCB) and activated B-cell (ABC), with a third group 
dubbed ‘unclassifiable’ for tumors that are unable to fit discretely into the two former groups[1]. These 
subtypes have differing oncogenic drivers that impact the clinical outcome, with GCB-DLBCLs having a 
superior overall survival (OS) compared to ABC-DLBCLs[1]. More recent genetic classification systems have 
divided DLBCL into even smaller subgroups[2-6], which also have prognostic implications after standard of 
care rituximab cyclophosphamide, doxorubicin, vincristine, prednisone (R-CHOP). In this review, we detail 
the history of DLBCL classifications, the implications of these new molecular systems, and review recent 
therapeutic agents for the treatment of DLBCL.

CLASSIFICATION SYSTEMS: IMMUNOHISTOCHEMISTRY TO GENE EXPRESSION 
PROFILING
Over the past several years, our understanding regarding the immense heterogeneity that lies within DLBCL 
has led to new molecular classifications based on diverse genetic profiles[1]. Understanding the complex 
molecular background of DLBCL may lead to improved therapeutic approaches in the future. Herein, we 
describe the evolution of DLBCL taxonomy, starting with cell of origin (COO) designation to more recent 
systems that further sub-classify DLBCL into smaller hierarchical groups [Table 1].

The concept of cell of origin: activated B-cell vs. germinal center Diffuse Large B-cell Lymphoma
The premise of classifying DLBCL into subtypes can date back to studies suggesting that CD10, the 
common acute lymphoblastic leukemia antigen, could differentiate two classes of DLBCLs[7-10], translating 
into potential clinical implications based on an expression. Subsequently, using GEP, Alizadeh and 
colleagues[11] identified two distinct DLBCL subtypes, termed GCB and ABC, both of which are defined by 
expression patterns that align with different stages of B-cell maturation. The authors concluded that after 
standard of care treatment, GCB and ABC-DLBCLs are characterized by drastically different OS, with the 5-
year OS of GCB-DLBCLs being 76% vs. 16% for ABC-DLBCLs. The enhanced understanding of the 
heterogeneity of DLBCL led to the identification of a third subtype termed “type 3”, or what we have 
commonly come to know as DLBCL-unclassifiable, which represents a group of tumors that do not 
discretely fit into ABC or GCB subgroups1. Similarly to what was described by Alizadeh et al.[11], and limited 
by retrospective analysis, this study confirmed that after anthracycline-based chemotherapy, GCB-DLBCL 
patients demonstrated a superior OS compared to their ABC and unclassifiable counterparts (5-year OS: 
60% vs. 35% vs. 39%, respectively).

Another study evaluated 58 DLBCL biopsies using oligonucleotide microarrays (Affymetrix)[12] and 
identified a 13-gene model that was able to predict dichotomous outcomes: cured vs. fatal/refractory. Using 
the Affymetrix platform, Shipp et al.[12] and colleagues attempted to validate COO genes identified by 
Alizadeh et al.[11] as a surrogate for prognosis after R-CHOP, while acknowledging the limitations that come 
with this attempt which include: differential technology used by both groups (cDNA arrays/Lymphochip by 
Alizadehet al.[11] vs. oligionucleotide arrays/Affymetrix by Shippet al.[12]); differing panel of genes probed; 
varying computational approaches; and lastly, different tumor samples studied. Notably, the two GEP arrays 
developed by the separate groups shared 90 overlapping COO signature genes. As such, this 90 gene panel 
was used to cluster DLBCL samples into ABC vs. GCB-DLBCL and was able to confirm the inferior 
outcome of ABC-DLBCL tumors in the Alizadeh et al.[11] samples (Lymphochip). However, no relationship 
between COO and clinical outcome was observed in the 58 DLBCL samples used in Shipp et al.[12]’s 
(Affymetrix) developmental analysis. In an attempt to reconcile these discrepancies, another classification 
method was developed not only to distinguish COO, but also to estimate the likelihood that a tumor falls 
within a particular subgroup[13]. Applying this classification system to both the Lymphochip[1] and 
Affymetrix[12] datasets, tumor samples identified as GCB had a clear survival advantage compared to those 
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Table 1. Classification methods and prognostic implications

Methods Designated 
subtypes Prognostic implications Ref.

Cell of origin:  
molecular 
classification 

GCB 
ABC 
Unclassifiable

GCB: 5-year OS 60% 
ABC: 5-year OS 35% 
Unclassifiable: 5-year OS 39% 

Rosenwald et al.[1]

Cell of origin: 
IHC 

GCB 
Non-GCB 

GCB: superior prognosis  Hans et al.[15] 
Choi et al.[16] 
Meyer et al.[17]

LymphGen 
classification

EZB MYC+ 
EZB MYC- 
ST2 
BN2 
A53 
N1 
MCD 

EZB MYC+: 5-year OS 48% 
EZB MYC-: 5-year OS 82% 
ST2: 5-year OS 84% 
BN2: 5-year OS 67% 
A53: 5-year OS 63%: 
N1: 5-year OS 27% 
MCD: 5-year OS 40%

Wright et al.[4]

Cluster classification C0 
C1 
C2 
C3 
C4 
C5

C0, C1, C4: favorable PFS and OS compared to C2, C3, C5 Chapuy et al.[3]

Double hit signature DHITsig positive 
DHITsig negative

DHITsig positive: inferior prognosis [5-year OS 60% vs. 81%, DHITsig positive 
and negative, respectively] 

Ennishi et al.[5]

GCB signatures GCB1 
GCB2 
GCB3 
GCB4

GCB1: very poor prognosis  
[inferior OS (HR: 9.2; P = 0.0018) and PFS (HR: 6.1; P = 0.002) compared with 
other groups] 

Song et al.[6]

ABC: Activated B-cell; OS: overall survival; GCB: germinal center b-cell like; IHC: immunohistochemistry; HR: host Response; PFS: progression-
free survival.

classified as ABC[13]. Thus, we can conclude several principles from these early GEP studies: (1) the method 
by which GEP is established can impact interpretability and applicability to patient samples/outcomes; (2) 
reproducibility across laboratories is key for clinical applicability; and (3) intrinsic to the reproducibility is a 
consensus on what set of genes represent the optimal way to designate COO.

In another attempt to understand the complex phenotype of DLBCL, using whole genome arrays and three 
clustering algorithms (hierarchical clustering, self-organizing maps, and probabilistic clustering), Monti and 
colleagues elucidated three unique DLBCL clusters: (1) Oxidative Phosphorylation (“Ox-Phos”) 
characterized by an increased expression of NADH complex and cytochrome c/cytochrome c oxidase 
complex, and BFL-1/A1, an antiapoptotic member of the BCL2 family, as well as an increased incidence of 
t(14;18); (2) “BCR/proliferation” which was defined by increased expression of BCR signaling cascade 
members (CD19, CD79a, BLK, SYK, PLC2, MAP4K), transcription factors such as PAX5, OBF-1, E2A, 
BCL6, STAT6, MYC, and cell cycle regulatory genes including CDK2 and MCM with an association with 
BCL6 translocation; and lastly, (3) Host Response (“HR”) which was enriched for genes involved in the 
tumor microenvironment including T-cell mediated immune responses and classical component pathway 
[14]. Unlike other classification systems, the three clusters had similar 5-year OS (53%, 60%, and 54% [P = 
0.53] for OxPhos, BCR/Proliferation, and HR, respectively), suggesting that this hierarchy would be a more 
useful tool for novel therapeutic development rather than for prognostication. To this effect, a comparison 
of this clustering system vs. COO classification demonstrated that the two systems described different 
aspects of DLBCL biology. Nearly half of the tumors classified as BCR/proliferation cluster (53%) and 
OxPhos (46%) were classified as GCB, while the remaining tumors in each classification were either ABC- 
or ‘unclassifiable’. On the other hand, the majority of HR cluster tumors were designated ‘unclassifiable’ 
based on COO designation.
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While extremely informative and prognostic, GEP is rarely used in the real world setting due to several 
limitations, including the ability to rapidly produce these results in an informative way and, most 
importantly, the reproducibility of these classifications at the community level. As such, other methods have 
been developed using immunohistochemistry (IHC), including Hans et al.[15], Choi et al.[16] and Tally et al.[17] 
algorithms in an attempt to rapidly replicate GEP classifications with an additional benefit of significantly 
lower cost. The most frequently used IHC method, Hans’ algorithm, proposes utilizing CD10, BCL-6 and 
MUM-1 expression to differentiate between GCB vs. Non-GCB DLBCLs[15], whereas Choi uses GCET1, 
MUM1, CD10, BCL6 and FOXP1[16] in order to do so. The Tally method uses a similar antibody panel as 
Choi with the notable difference that antibody expression is not reviewed in a sequential manner but 
denoted by a score of 0-2, reserving the evaluation of LMO2 if an equal number of GCB vs. ABC 
genes/score are present[17]. Interestingly, these three IHC methods incorporate CD10, echoing earlier studies 
in the 1990s supporting the use of CD10 to broadly differentiate DLBCL subtypes[7-9]. Although quite rapid, 
IHC methods are riddled with limitations including inter-user inconsistencies and datasets suggesting 
inaccurate classifications using IHC as compared to GEP. For instance, Gutiérrez-Garcia and colleagues 
discovered that approximately 30-50% of GCB-DLBCLs and 15-25% of ABC-DLBCLs were incorrectly 
classified by IHC[18]. In a separate study, Hans’ algorithm failed to demonstrate a difference in OS between 
GCB-DLBCL and non-GCB DLBCL, whereas classification of subtypes using Lymph2Cx assay, a GEP 
platform comprising of a 20 gene panel that can be applied to FFPE tissue samples[19], was able to 
demonstrate both a 5-year OS and disease-free survival difference (96.6% vs. 77.1%, 96.6% vs. 79.2%, 
respectively) in patients with GCB- vs. ABC-DLBCLs[20]. In fact, the Lymph2Cx assay misidentified 2% 
DLBCL tumor samples compared to assignments made by the gold standard GEP[21]. To put this in context, 
the COO assignment assessed by Tally, Hans, and Choi IHC-methods led to a misassignment rate of 6%, 
9%, and 17%, respectively [15-17]. Subsequently, the Lymph2x assay was validated in a large cohort of DLBCL 
patients (n = 335) treated with R-CHOP therapy and confirmed that COO was associated with clinical 
outcomes independent of MYC/BCL2 expression and IPI score[22]. Thus, given its improved accuracy 
compared to IHC, faster turn-over compared to gold standard GEP and the ability to predict prognostic 
outcomes, Lymph2Cx was thought to be a more applicable diagnostic tool. Along those lines, the ROBUST 
clinical trial[23,24], a phase III clinical trial that investigated the merits of combining lenalidomide to R-CHOP 
in ABC-DLBCL patients, utilized the Lymph2Cx assay as a companion diagnostic in order to rapidly 
identify COO. Despite theoretically serving as a real-time GEP assay, the adaption of Lymph2Cx to the 
ROBUST study led to a delay in treatment initiation due to logistical hindrances such as central review of 
tumor specimens resulting in an inadvertent introduction of selection bias for patients with lower risk 
disease that ultimately may not have benefitted from the addition of lenalidomide to R-CHOP[24,25]. 
Therefore, although less robust, IHC categorization is still in universal use, with GEP assays often reserved 
for clinical trial studies or academic institution applications.

Novel classifications beyond cell of origin 
In the era of precision medicine, on-going attempts to better target specific mutations and aberrations have 
led to additional sub-classifications that extend beyond COO. GEP, next-generation sequencing and copy 
number variation evaluations have made this possible, permitting an increasingly detailed understanding of 
DLBCL genomic profiles.

In an integrative analysis utilizing whole-exome sequencing and transcriptome sequencing of 1001 newly-
diagnosed DLBCL patients, Reddy et al.[26] identified 150 genetic drivers of the disease and, in turn, 
characterized the functional impact of these genes using an unbiased in vitro CRISPR screen[26]. CRISPR 
screening of a panel of DLBCL cell lines led to the identification of 35 oncogenes, with 9 genes identified in 
a subtype-specific pattern: EBF1, IRF4, CARD11, MYD88 and IKBKB were essential in ABC-DLBCL 
lymphomagenesis, whereas ZBTB7A, XPO1, TGFBR2 and PTPN6 were critical for the survival of GCB-
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DLBCL. With this, a genomic risk model incorporating 150 driver genes, COO designation, and 
MYC/BCL2 expression was able to better stratify response to therapy compared to the IPI clinical model, as 
well as models relying only on COO, MYC and/or BCL2 expression.

In another attempt to better understand the genetic landscape of DLBCL, Schmitz et al.[2]characterized 574 
DLBCL samples (NCI cohort) utilizing exome and transcriptome sequencing, array-based DNA copy 
number analysis and targeted amplicon resequencing. Four genetic subtypes were elucidated: (1) MCD 
defined by MYD88 L265P and CD79B mutations, (2) N1 based on NOTCH1 mutations, (3) BN2 based on 
BCL6 fusions and NOTCH2 mutations; and (4) EZB characterized by EZH2 mutations and BCL2 
translocations. Stratification of outcomes based on this molecular classification revealed that the MCD and 
N1 subtypes had inferior OS compared to the BN2 and EZB counterparts after standard of care R-CHOP 
therapy. The LymphGen algorithm builds upon the aforementioned 4-class taxonomy, identifying 7 
subtypes: MCD, N1, BN2, ST2 (characterized by SGK1 and TET2 mutated), A53 (defined by aneuploidy 
with TP53 inactivation), and divides the EZB category into two dichotomous subtypes: EZB MYC-positive 
vs. EZB MYC-negative[4] based on the presence or absence of a Double Hit signature (discussed below). This 
genetic algorithm validated the inferior OS observed in the MCD and N1 tumor subtypes. Ultimately, the 
LymphGen algorithm was able to successfully classify more patient tumors in the NCI cohort (63.1%) 
compared to the initial 4 class method (Schmitz et al.[2], 46.6%). Thus, it is clear that not all tumors fall 
discretely into these categories, indicating that there is still a need to build upon these current molecular 
programs.

In the cluster (C) classification system, five genetically unique subgroups were defined, with a sixth cluster 
(C0) consisting of a small number of tumor samples (12 of 304) with no common defining drivers[3]. In this 
system, C3 (defined by BCL2, KTM2D, CREBBP, EZH2, PTEN mutations) and C5 (based on MYDL265P, 
CD79B, ETV6, PIM1, GRHPR, TBL1XR1, BTG1 mutations and BCL2 gains) exhibited markedly inferior 
progression-free survival (PFS) compared to C1, C2, and C4. Interestingly, C3 and C5 are comprised mostly 
of GC-DLBCL and ABC-DLBCL cases, respectively, reinforcing the notion that there is more to classifying 
tumors based solely on COO. Together, this data suggests that the heterogeneous landscape of DLBCL is 
more complex than the COO classification, and that these new molecular classifications may lend 
themselves to precision-based medicine approaches.

Double hit lymphoma signature 
High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements, termed Double Hit 
(DHL) or Triple Hit lymphomas (THL) have dismal outcomes after standard chemoimmunotherapy[27-29]. 
These diagnoses rely on FISH analysis to evaluate and confirm rearrangements of MYC, BCL2 and/or 
BCL6. In order to define the genetic landscape of DHL/THL, Ennishi and colleagues analyzed 157 GCB-
DLBCL primary tumor samples, of which 25 were DHL/THL based on FISH, and developed a DHL 
signature (DHITsig), comprising of 104 differentially expressed genes[5]. Twenty-seven percent of GCB-
DLBCLs were characterized as positive for the DHITsig, with only 50% of these tumors harboring MYC and 
BCL2 translocations. Traditionally, GCB-DLBCLs are thought to originate from the light zone of the GC 
based on GEP; however, tumors that were DHITsig positive displayed more similarities to B-lymphocytes 
from the intermediate zone of the GC, suggesting a completely unique COO for DHL/THL. This was 
recapitulated by the presence of intermediate zone genes in the DHITsig. The prognostic implication of the 
DHITsig was validated in two separate cohorts (BC Cancer Center Cohort, n = 261; and Reddy et al.[26] 
cohort, n = 511), both of which demonstrated clear survival disadvantage for patients with the DHITsig, 
which paralleled the outcomes of ABC-DLBCL patients. Interestingly, along with MYC and BCL2 
mutations, TP53, EZH2, CREBBP, DDX3X and KMT2D were more frequently mutated in the DHITsig 
positive tumors as compared to the DHITsig negative tumors, suggesting possible therapeutic interventions 
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for the treatment of DHITsig DLBCLs. In an attempt to create a more applicable tool for routine use, the 
authors condensed the 104-gene panel into 30 genes of essential importance, which was then added to the 
Lymph2Cx assay, and referred to as DLBCL90. The DLBCL90 was able to distinguish and prognosticate 
between DHITsig positive GCB-DLBCLs, DHITsig negative GCB-DLBCLs, ABC-DLBCLs and 
unclassifiable tumors. The DHITsig provides further support for the adaptation of complex genetic 
evaluation to help identify true poor-risk patients.

To further elaborate upon the DHITsig and classification of GCB-DLBCL, Song and colleagues combined 
results obtained from IHC, GEP, DLBCL90, FISH analysis for DHL/THL, copy number analysis, and 
targeted deep sequencing of 334 genes, and established four distinct groups within the broad GCB category: 
GCB1 defined as DHITsig positive with TP53 inactivation; GCB2 characterized by DHITsig positivity; 
GCB3 being DHITsig negative and EZB mutated and/or BCL2 translocation (EZB-like); and lastly, GCB4 
which were both negative for DHITsig and EZB-like characteristics[6]. Using 87 primary patient samples, 
patients assigned to the GCB2 and GCB4 categories displayed superior prognosis after R-CHOP therapy 
compared to the GCB1 and GCB3. This survival advantage was validated in an additional 188 GCB-DLBCL 
cases. Along these lines, the majority of cases fell under the GCB4 group (51%), perhaps, driving our older 
observation that GCB-DLBCLs, as a whole, have favorable outcomes after standard R-CHOP. However, it is 
clear from this study and others that not all GCB-DLBCLs (and ABC-DLBCLs) behave the same, 
supporting the need to validate a universal assay that can quickly output these novel molecular sub-
classification designations.

Limitations of novel genetic classifications 
Although these novel classification systems and assays add to our understanding of DLBCL and have 
prognostic implications, the question still persists on how applicable and readily available these assays are to 
everyday use. We have been able to apply some of these diagnostics to clinical trial studies, however, we 
have yet to evaluate these new hierarchies in a prospective manner. Ultimately, the true implication of these 
novel clusters or sub-classifications requires prospective validation in parallel with the evaluation of novel 
therapeutics applied in a precision medicine fashion. Moreover, these assays often rely upon central 
laboratories, which illustrates another limitation - the ability to replicate these diagnostic tests from one 
laboratory to another with ease and efficiency, all the while maintaining the accuracy of the assay. Until we 
are able to quickly, and without compromising accuracy, replicate these assays in local or commercialized 
laboratories, the pervasive use of these diagnostic tools will be limited to clinical trial and academic 
applications. Furthermore, as we continue to probe into the genetic background of DLBCL, we are likely to 
find even smaller subsets based on unique genetic and mutational characteristics, which in turn will impact 
clinical trial design. Although these classifications are not yet ready for universal use, the wealth of 
information obtained from these analyses has revealed potential targets for novel drug development and will 
greatly assist in our attempts to improve the clinical outcomes of DLBCL patients.

Potential of circulating tumor DNA in the management of Diffuse Large B-cell Lymphoma
Liquid tumor biopsies have been developed in both solid and hematological malignancies as both a 
predictive and diagnostic tool that obviates the need for potentially invasive biopsies, and is currently an 
emerging tool for the DLBCL management. Circulating cell-free DNA (cfDNA) are DNA fragments that are 
routinely released into circulation by apoptotic or necrotic cells.  In general, cfDNA are cleared from the 
plasma by the renal system, liver and/or spleen as well as nucleases[30].  Circulating tumor DNA (ctDNA) 
specifically refers to cfDNA fragments that originate from tumor cells and thus far has been investigated in 
diagnostic, therapeutic and prognostic scenarios. Polymerase chain reaction (PCR)-based methods that 
identify single point mutations, such as MYD88 L265P in primary central nervous system lymphoma[31,32], 
were one of the earliest iterations by which ctDNA was evaluated in lymphoma patients. This method is 
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relatively low cost and efficient but has the limitation of analyzing only select mutations with only a few 
mutations occurring with a high enough frequency to make PCR broadly applicable to disease subtypes.

As such, next-generation-sequencing (NSG) has revolutionized our ability to evaluate a panel of relevant 
mutations in a lymphoma-subtype or cancer-specific way. In order to achieve a broader applicability in 
lymphoma, the detection of clonotypic immunoglobulin (Ig) rearrangements through high throughput 
sequencing (IgHTS) was developed and used in early minimal residual disease (MRD) and relapse detection 
studies[33,34]. However, IgHTS is limited by the amount of total cfDNA present in plasma and cannot provide 
information regarding mutational profiling or genetic drivers.  Unlike IgHTS, the cancer personalized 
profiling by deep sequencing (CAPP-seq) is able to target many genetic aberrations with a sensitivity of 2.5 
part per 105 cfDNA[35] and is able to be diagnostic and therapeutic by providing mutational profiling.  In fact, 
as compared to IgHTS, CAPP-seq has a higher sensitivity in both tumor and plasma ctDNA detection, and 
is able to provide COO information, as well as detect DLBCL relapse earlier than IgHTS[36].

Several studies have evaluated baseline ctDNA and correlated levels to overall tumor burden[33,34], as well as 
clinical outcomes with patients harboring > 2.5 log he/mL of ctDNA at baseline having inferior event free 
survival (EFS) at 24 months in both the front-line and salvage settings[37]. Moreover, the role of interim 
ctDNA monitoring in the upfront and salvage setting revealed two excellent responder groups:  the early 
molecular response (EMR: 2 log decrease after 1 cycle of treatment) and major molecular response (MMR: 
2.5 log decrease after 2 cycles of therapy)[37]. Treatment naive patients who achieved an EMR or MMR had 
superior outcomes as measured by EFS and OS at 24 months compared to patients who did not achieve 
these landmarks (EMR P = 0.0015, and P < 0.001; MMR, P < 0.001 and P = 0.047, respectively).  In the 
patients receiving salvage therapy, EMR was also prognostic and associated with improved EFS (EFS 100% 
vs. 13%, P = 0.011).

In order to improve the depth and sensitivity for ctDNA MRD, Kurtz and colleagues developed phased 
variant enrichment and detection by sequencing (PhasED-seq) which identifies multiple clustered 
mutations on a single DNA molecule. These mutations are present on the same strand of DNA and occur in 
predicted areas of the genome, driven by aberrant somatic hypermutation by activation-induced 
deaminase[38]. In fact, PhasED-seq was able to outperform CAPP-seq in the ability to detect MRD after 2 
cycles of therapy as well as at end of treatment.

Ultimately, ctDNA is a promising and emerging biomarker in lymphoma, including DLBCL, that can 
overcome potential limitations of tissue biopsies and radiographic scans all the while providing 
molecular/tumor profiling information, risk stratification and disease/surveillance monitoring.  The bar for 
sensitivity of ctDNA detection continues to rise, with the newest method of PhasED-seq improving the 
depth of detection compared to prior NSG methods.  Although ctDNA seems logistically an appropriate 
biomarker and diagnostic tool to further develop, it inherently does not provide information regarding the 
interaction of the tumor and tumor microenvironment and has its limitations with low variant allele 
frequencies. Ultimately, prospective studies are needed to validate the exact role of ctDNA for MRD 
assessment, the development of possible risk-adapted trials (de-escalation or escalation of treatment), and 
lastly, as clinical surveillance following the completion of treatment.

EVOLVING TREATMENT OPTIONS
Standard of care 
Despite extensive work that has been accomplished in understanding and elucidating the diverse 
pathological drivers of DLBCL, several attempts at improving our first-line therapy for DLBCL have failed. 
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Although several rational attempts have been made to improve the R-CHOP backbone[23,39-49], with a 
particular emphasis on ABC/non-GC-DLBCL subtype, only two trials have been successful in achieving 
their primary endpoints over the past two decades. For instance, clinical trials evaluating the merit of adding 
lenalidomide to R-CHOP backbone(E1412 and ROBUST)[24,50] as well as ibrutinib (PHOENIX)[49], all seemed 
like promising interventions, but only one (E1412) of the three trials successfully demonstrated an 
improvement in PFS[50]. Although there is a multitude of reasons why these trials differ in the outcome, 
leading thoughts include different methods and approaches to identifying ABC/non-GC DLBCL patients, 
the longer interval from the time of diagnosis to initiation of treatment in the ROBUST study compared to 
E1412, and lastly, differing dosing of lenalidomide in ROBUST vs. E1412. It is not until recently, with the 
addition of a novel antibody-drug conjugate against CD79, polatuzumab-vedotin, to the R-CHOP 
backbone[51], that we have observed an improvement in the first-line setting in a large randomized, phase III 
clinical trial setting. Other attempts to improve upon the R-CHOP backbone are currently on-going 
including the addition of other monoclonal antibodies, such as tafasitamab and bispecific antibodies, all of 
which can be applied irrespective to COO, similar to polatuzumab-vedotin, thus circumventing the pre-
requisite need to identify DLBCL genetic subgroups prior to enrollment/treatment.

For those who relapse, the standard of care remains chemoimmunotherapy salvage therapy followed by 
consolidation with autologous stem cell transplant (ASCT)[52,53], at least for those who are deemed clinically 
fit. However, given that DLBCL is often a disease of the elderly, ASCT may not be a feasible option, leaving 
a clear unmet need for these patients. The more recent approvals in CAR-T cellular therapy seem 
promising [54-57], especially for patients who are chemo-refractory to R-CHOP and/or salvage chemotherapy; 
however, it is clear that the majority of patients will relapse after CAR-T cell therapy. In the following 
section, we will discuss recently FDA-approved agents and their applicability to the treatment paradigm of 
DLBCL as well as novel agents in the pipeline that leverage our understanding of the various oncogenic 
drivers elucidated by the recent molecular classifications [Figure 1], [Table 2]. For discussion purposes, we 
have organized the following section based on COO, rather than the new classification systems, and 
highlight some potential agents that can target high-risk subgroups as delineated by LymphGen and cluster 
taxonomies.

Targeting specific molecular drivers
Novel agents for the treatment of ABC-DLBCL 
ABC-DLBCLs are characterized by the overactivation of B-cell receptor (BCR) and NFκB pathways. Loss of 
function mutations/homozygous deletions in A20[58,59], and gain of function mutations in CARD11[58,60], 
CD79 A/B[61], MYD88[62], as well as the role of CARD11-BCL1-MALT1 complex[63-65], have all been 
implicated as drivers of the NFB pathway in ABC-DLBCLs, and attempts to target these pathological drivers 
have been made in the past several years. Based on the new molecular classifications, BCR-dependent NFκB 
signaling is prevalent in the MCD, A53, and BN2 subtypes, with MCD DLBCLs having an intermediate-
poor prognosis after standard of care [4].

One of the first approaches of targeting NFB in ABC-DLBCL was the interrogation of proteasome 
inhibitors, such as bortezomib. Although thought to have pleotrophic effects, bortezomib and other 
proteasome inhibitors have been used to downregulate NFB activity via inhibition of IB degradation. 
However, two frontline studies comparing the addition of bortezomib to R-CHOP vs. R-CHOP in ABC-
DLBCL patients failed to reach their primary endpoints of improved PFS [47,48].

Another more selective approach to target the ABC-subtype is the inhibition of the Bruton tyrosine kinase 
(BTK), which is an essential member of the BCR pathway. Ibrutinib, a first-in-class covalent inhibitor of 
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Table 2. Novel therapeutics and combinations for diffuse large B-cell lymphoma

Drug Mechanism of Action Clinical Trial Outcome

Ibrutinib[64,66] Bruton Tyrosine Kinase 
Inhibitor 

Phase 1-2 R/R DLBCL 
 
 
 
Phase 3 Upfront DLBCL 
Ibrutinib+R-CHOP vs. R-CHOP

ORR: 37% (14/38) 
• MYD88/CD79 Mut: ORR: 80% (4/5)  
 
 
ORR (ITT): 89.3% vs. 93.1% (P = 0.0515) 
 

Acalabrutinib[67,69,70] Bruton Tyrosine Kinase 
Inhibitor 

Phase 1-2 R/R DLBCL[67] 
 
Phase I PRISM: 
Acalabrutinb+AZD9150 
Acalabrutinib_AZD6738 
Acalabrutinib+Magrolimab+ 
Rituximab 
Acalabrutinib+AZD5153 
 
Phase 1-2 Acalabrutinib + R-CHOP 
 
 
Phase 1-2 Acalabrutinib + R-EPOCH

ORR: 24% (5/21) 
 
N/A  
(NCT03527147) 
 
 
 
 
N/A 
(NCT0400294) 
 
N/A 
(NCT03571308))

CA-4948[74,75] IRAK4  
Kinase Inhibitor

Phase 1 
 
Phase 1 
CA-4948+Ibrutinb

N/A, 1 PR  
(NCT03328078) 
 
N/A 
(NCT0332878)

KT-413[76,77] IRAK4/IMiD PROTAC Pending N/A

ABC-
DLBCL

JNJ-67856633[88] MALT1 Inhibitor Phase 1 N/A 
(NCT03900598)

Tazemetostat[121,122] EZH2 Inhibitor Phase 2 
 
 
Phase 1b/2

Closed After Interim Assessment 
(NCT01897571) 
 
N/A 
(NCT02889523)

Valemetostat[124] EZH1/2 Inhibitor Phase 1 ORR: 15% (R/R NHL)(NCT02732274)

Fimepinostat[128-130] HDAC/PI3K Inhibitor Phase 1-2 
Fimepinostat 
Fimepinostat+Venetoclax 
Fimepinostat+Rituxan  
Fimepinostat+Venetoclax+Rituxan

ORR: 55% (5/9)  
ORR: 23.3% (14/60 MYC-altered DLBCL) 
(NCT01742988) 
 

GC-
DLBCL

Venetoclax[136,137] BCL2 Inhibitor Phase 1 CAVALLI Study  
Venetoclax+R-CHOP 
 
Phase 1 ALLIANCE 51701 
Venetoclax+DA-R-EPOCH 

ORR: 87.5% 
(NCT02055820) 
 
ORR: 97% 
(NCT03036904)

PolatuzuambVedotin[
51,139] Antibody-Drug 

Conjugate against 
CD79b linked to MMAE

Phase 1b/2 
Polatuzumab+BR vs. BR 
 
 
Phase 3 
Polatuzumab+R-CHP vs. R-CHOP

Objective Response: 45.0% vs. 17.5% 
CR 40% vs. 17.5% 
OS 12.4 vs. 4.7 months 
(NCT02257567) 
 
ORR: 85.5% vs. 83.8% 
CR: 78.0% vs. 74.0% 
Decrease risk in 
progression/relapse/death: HR: 0.73; 
95%CI 0.57-0.95; P = 0.02 
(NCT03274492)

Tafasitamab[141-143] Anti-CD19 monoclonal 
Ab

Phase 1-2 L-MIND 
Tafasitamab+Lenalidomide 
 
 
 
Phase 3 FIRST-MIND 
Tafasitamb+Lenalidomide+R-CHOP

ORR: 54% 
CR: 32% 
NCT02399085 
 
N/A 
NCT04134986

Loncastuximab 
tesirine[144]

Antibody-Drug conjugate 
against CD19

Phase 2 ORR: 48.3%  
CR: 24% 
PR: 24% 
(NCT03589469)

Anti-CD47 monoclonal Objective Response: 40% DLBCL) 

Agnostic

Magrolimab146,147 Phase 1b in R/R DLBCL and FL 
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Ab CR: 30% (DLBCL) 
(NCT02953509)

Mosunetuzumab[147,
148] CD3-CD20 BsAb Phase I/Ib 

 
 
 
Phase Ib/II 
Mosunetuzumab+CHOP or 
Polatuzumab+CHP

ORR: 37%  
CR: 19% 
(NCT02500407) 
 
N/A 
(NCT03677141)

Odronexatamab[149] CD3-CD20 BsAb Phase I ORR: 60% (CAR T-cell Naïve) 
CR: 60% (CAR T-cell Naïve) 
ORR: 33.3% (Refractory CAR T-cell) 
CR: 23.8% (Refractory CAR T-cell) 
(NCT02290951) 

Epicoritamab[150] CD3-CD20 BsAb Phase I/II ORR: 100% (DLBCL) at  48mg 
CR: 28.6% (2/7) 
PR: 71.4% (5/7) 
(NCT03625037)

Glofitamab[151,152] 2:1 CD20-C3 BsAb Phase I/Ib ORR: 50% (aggressive NHL) 
CR: 29.2% 
(NCT03075696)

CMG1A46[153] Trispecific Ab: CD19-
CD20-CD3

Pending N/A

Selinexor[170] XPO-1 Mediated Nuclear 
Transport Inhibitor

Phase 2 ORR: 28% 
CR:12% 
(NCT02227251)

Ab: Antibody; BR: Bendamustine+Rituximab; BsAb: bispecific antibody; CR: complete response; DLBCL: diffuse large B-cell lymphoma; FL: 
follicular lymphoma; ITT: intent to treat; PR: partial response; MMAE: monomethyl auristatin E; NHL: non-Hodgkin lymphoma; PROTAC: 
proteolysis targeting chimera; PI3K: phosphoinositide 3-kinase (PI3K) inhibitor; R-CHP: Rituximab, Cyclophosphamide, Doxorubicin, Prednisone; 
R-CHOP: Rituximab, Cyclophosphamide, Doxorubicin, Vincristine, Prednisone; R/R: relapsed/refractory.

BTK, demonstrated single-agent activity in patients with R/R DLBCL with an ORR of 37% (14/38) in ABC-
DLBCL patients, and a more impressive response in patients with dual mutations in MYD88 and CD79A/B, 
albeit a small sample size (ORR 80%, 4/5)[66]. Phelan et al.[64]elucidated a possible mechanism driving 
ibrutinib responses in ABC-DLBCL, describing a My-T-BCR complex comprising MYD88-TLR9-BCR that 
interacts with mTOR within endolysosomes to activate downstream NFkB signaling. The My-T-BCR 
complex was found to be present in ABC-DLBCL cell lines as well as primary patient tumors that responded 
to ibrutinib, and responses were also noted in the absence of dual mutations in MYD88 and CD79A/B. 
Given these promising pre-clinical and clinical data, a phase III randomized clinical trial was launched in 
patients with non-GC DLBCL but failed to demonstrate any additive benefit to R-CHOP[49]. In a pre-
planned analysis, patients younger than 60 years of age benefited based on an improved PFS and event-free 
survival (EFS); on the other hand, those older than 60 years of age suffered from increased toxicity leading 
to reduced intensity therapy, likely contributing to reduced efficacy. One can also postulate that using a less 
robust strategy of IHC to identify high-risk patients as non-GC DLBCL may have also impacted the results. 
Nonetheless, retrospective GEP analyses of available tumor samples from the PHOENIX trial were also 
analyzed, and there was no improvement of EFS, PFS or OS when adding ibrutinib to R-CHOP. Next-
generation BTK inhibitors are in the investigation for the treatment of DLBCL, including the less toxic 
acalabrutinib. In the relapsed/refractory (R/R) setting, acalabrutinib has been evaluated as a single agent 
(ORR of 24%, 5/21)[67] and more recently in a 4-arm Phase I study (PRISM) that evaluates acalabrutinib in 
combination with one of the following: AZD9150, an antisense oligonucleotide against STAT3 mRNA; 
AZD6738, an inhibitor of ATR; magrolimab (anti-CD47) and rituximab; or AZD5153, a BRD4 inhibitor[68]. 
Acalabrutinib is also being studied in the upfront setting (NCT0400294, NCT03571308) in combination 
with R-CHOP or DA-R-EPOCH. Unlike ibrutinib, early data suggests that acalabrutinib does not 
compromise the ability to administer R-CHOP regardless of age[69,70].
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Figure 1. Novel Agents Targeting Specific Biological Pathways in Diffuse Large B-cell Lymphoma. B-cell receptor (BCR) pathway is 
affected in both GC- and ABC-DLBCL subtypes. Chronic BCR signaling, as manifested by BCR clustering, is a hallmark of ABC-DLBCL, 
and mimics antigen-dependent BCR activation. Tonic BCR signaling (antigen-independent, no BCR clustering) is a characteristic of GC-
DLBCL, and is NF-κB-independent. Mutations in proteins involved in BCR signaling and interrelated pathways include CD79B, CARD11, 
A20, and LYN. MYD88 L265P mutations lead to lymphomagenesis through activation of the TLR and IL1R pathways independent of 
ligand stimulation and have been highlighted in newer molecular classifications. Small molecule inhibitors (IRAK4, BTK, MALT1, PI3K, 
BCL2), protein degraders (IRAK4), antibody/antibody-conjugates (Polatuzumab-vedotin, Tafasitamab, magrolimab), and cellular 
therapy (CAR-T) have been developed in order to target these specific aberrations to mitigate lymphomagenesis. BCL2: B-cell 
lymphoma 2; BCR: B-cell receptor; BsAb: Bispecific antibodies; BTK: Bruton tyrosine kinase; ILR: Interleukin receptor; MALT1: mucosa-
associated lymphoid tissue lymphoma translocation protein; PI3K: phosphoinositide 3-kinase; SIRPα: signal-regulatory protein alpha. 
Created with BioRender.com.

IRAK4 has been a recent target for the treatment of MYD88-mutated DLBCLs, which represent a subgroup 
with inferior outcomes (MCD and C5 subgroups). IRAKs are key mediators of the toll-like receptor (TLR) 
and interleukin-1 receptor (ILR) signaling pathways and are essential in the innate immune system, 
inflammation, apoptosis and cancer biology. TLR/ILR signaling is mediated through recruitment of 
MYD88, an adaptor molecule, which forms the core of the Myddosome complex along with IRAK4[71,72]. 
Upon ligand binding, TLR/ILR dimerize or oligomerize, leading to the recruitment MYD88 which then 
interfaces with IRAK4 through death domains[71]. The most common MYD88 mutation substitutes leucine 
265 for a proline (L265P) and leads to constitutive activation and formation of the Myddosome (MYD88-
IRAK4-IRAK1/2), independent of ligand binding, leading to activation of downstream effectors including 
NF B transcriptional pathway and thus oncogenesis[73]. Given its role in DLBCL lymphomagenesis, IRAK4 
has been identified as a potential therapeutic target. The IRAK4 inhibitor, CA-4948, has completed phase I 
evaluation in R/R NHL, including DLBCL, with an identified recommended phase II dosing (RP2D) of 
300mg oral twice daily[74]. The treatment was overall well tolerated, with no grade 5 adverse events, and only 
two treatment associated discontinuations secondary to increase amylase and rash. At therapeutic treatment 
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doses ( 200mg BID), a range of tumor reduction was observed (5-67%). Twenty of the 31 patients enrolled 
had available information for MYD88 status, and of the 20, two harbored an MYD88 mutation, with one 
patient achieving a partial response. Based on a synergistic relationship observed in vivo, the combination of 
ibrutinib in conjunction with CA-4948 is currently being evaluated in a multicentered, phase I study in 
patients with R/R NHL[74,75].

Another novel method of targeting IRAK4, has been the development of Proteolysis Targeting Chimeras 
against IRAK4. These small molecules target specific proteins for degradation by cross-linking pathogenic 
proteins to E3 ubiquitin ligases, leading to ubiquitination of the target protein. This serves as a rationale 
mechanistic approach to eliminate oncogenic signaling. These first-in-class heterobifunctional degraders 
represent an innovative approach that could revolutionize cancer therapy. In contrast to IRAK4 kinase 
inhibitors, a strategy of targeting IRAK4 degradation would completely nullify the protein’s dual role as 
both a kinase and scaffolding protein, and potentially circumnavigate internal resistance. First-in-class 
heterobifunctional selective IRAK4 degrader, KYM-001[76], demonstrated potent efficacy in MYD88-
mutated lymphomas. IRAKIMiDs, which are novel IRAK4 degraders that utilize a cereblon binder leading 
to dual targeting of IRAK4 degradation and capitalizing on immunomodulatory(IMiD) biology, also 
demonstrates activity in MYD88 mutant DLBCL[77]. In pre-clinical models, IRAKIMiDs in conjunction with 
ibrutinib, venetoclax and umbralisib have proven to be synergistic[78], suggesting a possible multidrug 
platform using IRAKIMiDs as a backbone in order to potentially downregulate several oncogenic pathways 
simultaneously. Further clinical studies are required to validate these promising pre-clinical data with plans 
for KT-413, the lead IRAKIMiD, to enter clinical evaluation in 2022.

The development of MALT1 inhibitors is being intensively investigated and has demonstrated pre-clinical 
activity in ABC-DLBCL[79-86]. BCL10 gain of function mutations, most commonly found in BN2/C1 
subgroups[2,3], have been associated with increased MALT1 and NF B activity, as well as resistance to 
ibrutinib[87]. When exposed to JNJ-67856633, a MALT1 inhibitor, ibrutinib-resistant ABC-DLBCL cell lines 
were characterized by growth inhibition, supporting the therapeutic application of MALT1 inhibitors in 
ABC-DLBCL, especially those with BCL10 mutation and ibrutinib-resistance. At this time, a phase I study 
(NCT03900598) is currently on-going investigating JNJ-67856633 in R/R NHL (NCT03900598)[88].

PD-L1 expression has been associated with inferior outcomes and found in higher expression in ABC-
DLBCL as compared to GCB-DLBCL[89,90], and therefore has been another target for the advancement of 
DLBCL treatment. It is thought that tumor cells exploit immune checkpoint pathways in order to evade the 
host immune system. However, single-agent immune checkpoint inhibition (nivolumab) displayed limited 
efficacy in R/R DLBCL, demonstrating an ORR of 3% and 10% for patients who relapsed after ASCT and 
were ineligible for ASCT, respectively[91]. Notably, the incidence of 9p24.1 alterations was low (16% low-level 
copy gain, 3% amplification) and may partially explain the poor efficacy results after administration of 
nivolumab. The addition of PD1/PD-L1 inhibitors in the upfront setting has also been evaluated, 
postulating that upfront utilization may lead to better outcomes by optimizing a relatively more intact 
immune system. As such, pembrolizumab (anti-PD1) in combination with R-CHOP produced an ORR of 
90% (27/30) and a PFS of 83% (NCT02541565)[92]. A Phase I/II clinical trial investigating the addition of 
durvalumab (anti-PD-L1 antibody) to R-CHOP or R2CHOP [lenalidomide + R-CHOP backbone] 
(NCT03003520) was initiated, however the R2-CHOP + durvalamub enrollment (Arm B) was halted due to 
increased deaths in patients with Multiple Myeloma treated with durvalumab and lenalidomide[93,94]. The CR 
rate at the end of induction was 54% and 67% for Arm A (n = 43) and Arm B (n = 3), respectively, with 
consolidation therapy with durvalumab offered to patients who responded. Another potential platform to 
incorporate immune checkpoint inhibition is the notion of sequential therapy, during which PD1/PD-L1 
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inhibition is used as induction, followed by R-CHOP, and concluding with PD1/PD-L1 inhibition 
maintenance. The rationale behind this sequential therapy is to maximize the potential efficacy of PD1/PD-
L1 inhibition by avoiding corticosteroid-induced immunosuppression that could be observed when adding 
immune checkpoint inhibition directly to the R-CHOP backbone. This is the approach that Hawkes and 
colleagues adopted, where avelumab is combined with rituximab as induction, followed by R-CHOP x 6 
cycles, and avelumab maintenance x 6 cycles[95]. Induction with avelumab and rituximab x 2 cycles led to a 
CR rate of 21% and ORR of 60%, followed by an ORR of 89% after six cycles of R-CHOP. Further studies 
will be needed to fully elucidate the role of immune checkpoint inhibitors in the frontline setting for 
DLBCL.

Targeting GC-DLBCL 
Although patients with GCB-DLBCL generally have superior clinical outcomes compared to ABC-subtype, 
approximately 20% of GCB patients will relapse following standard of care R-CHOP. Moreover, our 
understanding of the molecular heterogeneity of DLBCL has revealed that DLBCLs with MYC-aberrations 
tend to have an inferior prognosis compared to those who do not harbor MYC-derangements. 
Approximately 5% to 14% of DLBCL cases have been reported to carry MYC translocations[28,96], and of 
those, 58% to 83% will also be characterized by a second or third translocation targeting BCL2 and/or BCL6, 
which are referred to as DHL or THL, respectively[97-99]. In fact, DHL/THL patients have a median OS rate of 
less than two years[27,100-102]. Moreover, MYC overexpression has also been associated with worse outcomes 
after first-line R-CHOP[97], and can also be frequently observed in conjunction with BCL2 overexpression 
(Double Expressors), which often coincide with an ABC-DLBCL categorization[27,29,103]. Thus, it has been 
clearly established that R-CHOP therapy is suboptimal for the treatment of MYC-altered DLBCLs, and the 
current treatment paradigm favors more dose-intense approaches, such as DA-EPOCH-R, (Dose-Adjusted-
Etoposide, Prednisone, Oncovorin, Cyclophophamide, Doxorubicin, Rituximab) in the upfront setting.

Pre-clinical data has demonstrated that the epigenome of GCB-DLBCL is dysregulated. Deregulation of 
histone methyltransferases, such as EZH2 and mixed-lineage leukemia (MLL), have been associated with 
the development of lymphomas, particularly GC-derived lymphomas[104-107]. Given the recognition of EZH2 
activating mutation in GC-derived lymphomas, such as follicular lymphoma (FL) and DLBCL, EZH2 
inhibitors have been developed based on single-agent activity observed in pre-clinical models of 
DLBCL[104,108-119]. Tazemetostat, a first-in-human EZH2 inhibitor, has been FDA approved for the treatment 
of R/R FL irrespective of mutational status. Despite initial promising responses observed in phase I 
investigation, a dedicated phase II clinical trial of tazemetostat in conjunction with prednisolone in DLBCL 
(NCT01897571) was closed after an interim assessment[120,121]. Clinical investigation of tazemetostat in 
combination with R-CHOP is on-going at this time (EPI-RCHOP, NCT02889523). The addition of 
tazemetostat thus far does not seem to compromise R-CHOP dose-intensity[122]. Valemetostat, a dual 
inhibitor of both EZH1 and EZH2, is postulated to have improved tumor suppression capabilities, and has 
demonstrated an ORR of 53% (n = 15) in patients with R/R NHL (B and T-cell lymphoma)[123]. These EZH2 
inhibitors would be ideal targets for patients in the EZB MYC-negative and C3 subtypes.

Heterozygous loss of function mutations in histone acetyltransferases (HATs) such as CREBBP and EP300 
are found in approximately 39% of DLBCL and FL[124] and cooperate with BCL6 to promote 
lymphomagenesis. The presence of CREBBP and EP300 haploinsufficiency has been associated with 
response to histone deacetylase (HDAC) inhibitors in in vitro evaluations[125]; however, it is unclear if this 
completely translates into the clinic. Nevertheless, single-agent HDAC inhibition for the treatment of 
DLBCL has modest activity with a reported ORR of 17.1% after treatment with panobinostat[126]. 
Fimepinostat, a first-in-class dual HDAC and phosphoinositide 3-kinase (PI3K) inhibitor, demonstrated an 
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ORR of 55% (5/9) in patients with DLBCL[127], leading to a dose expansion trial in R/R DLBCL. In the 
expanded component of this trial, 14 patients with MYC-altered DLBCL, defined as MYC translocated or 
amplification with ≥3 copies in >20% of cells, were included with an observed ORR of 64% and median 
duration of response (DOR) of 13.6 months[128]. In a pooled analysis of phase I and phase II study of 
fimepinostat, a total of 105 patients with R/R DLBCL were enrolled, of which 60 patients had MYC-
dysregulated DLBCL (classified as the presence of MYC translocation of MYC overexpression ≥ 40%). The 
ORR was noted to be 23.3% (14/60), with a median time to response being 2.5 months[129]. Given these 
promising results in MYC-deregulated DLBCL, a phase I trial investigating the merits of fimepinostat in 
conjunction with rituximab or venetoclax, or both (NCT01742988) is underway. Given the presence of 
recurrent epigenetic dysregulation in GCB-DLBCL, pre-clinical and clinical investigation of potential 
synergistic drug combinations involving multiple epigenetic agents and/or other small molecule 
therapeutics is warranted.

Bromodomain and Extra-terminal (BET) proteins have also been linked to the activation of MYC and BCL2 
signaling pathways, making it a rationale target for DHL[130]. Pre-clinical studies have demonstrated that 
treatment with JQ-1, an early BET inhibitor, and venetoclax, a BCL-2 inhibitor along with standard 
vincristine or doxorubicin, led to significant growth delay of DHL/THL cells compared to single-agent 
treatment[131]. Moreover, exposure to CPI203, a BET inhibitor, can overcome acquired resistance to 
venetoclax in pre-clinical DHL models[132], supporting the possible applicability of BET inhibitors for the 
treatment of DLBCL, particularly DHL/THL. Although theoretically promising, several BET inhibitors have 
entered clinical investigation, however, none to date have gained FDA approval.

The application of venetoclax for the treatment of DLBCL addresses chemotherapy resistance secondary to 
BCL-2 overexpression, especially in patients with double expressor and DHL[133]. Single-agent activity of 
venetoclax in R/R DLBCL is modest, with a reported ORR of 18%[134]. Recent studies have incorporated 
venetoclax into the backbones of R-CHOP (CAVALLI study)[135] and DA-EPOCH-R (ALLIANCE 51701 
trial)[136], specifically targeting the DHL/Double Expresser populations. In the R/R setting, venetoclax is 
being explored in various combinations including ibrutinib/rituximab (NCT03136497), RICE 
(NCT03064867), Selinexor (NCT03955783), and ibrutinib/prednisone/obinutuzumab/revlimid 
(NCT03223610, ViPOR). Ultimately the role of venetoclax in the treatment of DLBCL is yet to be firmly 
established.

Therapeutics agents with activity irrespective of COO 
Despite our advances in understanding the molecular heterogeneity of DLBCL, one can argue that perhaps 
the fastest and smoothest approach to the advancement of DLBCL treatment would be to develop novel 
drugs that can be applied across subtypes without the need for detailed molecular testing. This, of course, 
would be a shift away from a precision medicine approach, a central theme in cancer treatment, but in the 
real-world setting may be more applicable as it would overcome the hindrances and delays that often come 
with the requirement of specific and sensitive assays. A primary example of this success would be 
rituximab[137]. Along those lines, novel antibody and antibody-drug conjugates have been developed for 
lymphoid malignancies, including three recent FDA approvals in the R/R setting. Polatuzumab vedotin, an 
antibody-drug conjugate against CD79b linked to monomethyl auristatin E, has been approved in 
conjunction with rituximab and bendamustine (BR) after two failed therapies for transplant-ineligible 
patients. A phase Ib/II study demonstrated both a superior CR rate (40% vs. 17.5%, P = 0.026) and median 
OS (12.4 vs. 4.7 months; HR:0.42; 95%CI: 0.24-0.75, P=0.002) of polatuzumab-BR compared to BR alone[138]. 
Polatuzumab-vedotin has also been evaluated in combination with R-CHP (vincristine omitted due to 
overlapping toxicities) in a randomized phase III trial for treatment-naive patients[51], resulting in a lower 
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risk of progression/relapse/death as compared to standard of care R-CHOP (HR: 0.73; 95%CI: 0.57-0.95; P = 
0.02). However, there was no difference in CRs (78% vs. 74%, respectively, P = 0.16) or OS (2-year: 88.7% vs. 
88.6%). Polatuzumab-vedotin is currently under investigation in combination with salvage chemotherapy 
regimens such as R-GemOx and R-ICE, as well as in combination with venetoclax/rituximab[139], with the 
latter demonstrating a relative safe toxicity profile and median PFS and OS of 4.4 months and 11.0 months, 
respectively.

Tafasitamab, a humanized anti-CD19 monoclonal antibody, gained FDA approval in combination with 
lenalidomide for R/R DLBCL (> 1 prior line of therapy) after the L-MIND study demonstrated an ORR and 
CR rate of 54% and 32%, respectively, with a median PFS of 16.2 months[140]. In an updated analysis, the 
median DOR was reported to be 34.6 months[141]. The FIRST-MIND study is evaluating the addition of 
tafasitamab plus lenalidomide to R-CHOP in intermediate-high risk DLBCL (NCT04134936)[142]. Similarly, 
loncastuximab tesirine, an antibody-drug conjugate against CD19, received FDA approval in 2021 after 
results demonstrated an ORR of 48.3%, with a CR rate of 24% (35/145) and a PR rate of 24% (35/145) in a 
heavily pretreated R/R DLBCL population[143].

CD47 is expressed by malignant cells as a means to evade macrophages and other members of the innate 
immune system[144]. The novel anti-CD47 monoclonal antibody, magrolimab, is currently in development 
for R/R DLBCL as well as acute myeloid leukemia. This monoclonal antibody effectively inhibits a “do not 
eat me” signal and induces phagocytosis of lymphoma cells by inhibiting the interaction of CD47 and 
SIRP[145]. Thus far, a phase Ib study of magrolimab in conjunction with rituximab for the treatment of R/R 
DLBCL or FL demonstrated an objective response and CR of 40% and 30%, respectively, for patients with 
DLBCL[146]. A notable adverse event was anemia (attributed to the elimination of aging red blood cells) and 
infusion-related reactions which were circumvented by priming (1mg/kg) and subsequent maintenance 
dosing of magrolimab.

Bispecific antibodies (BsAb) are recombinant bispecific proteins that have the dual binding capacity, 
recognizing two different antigens, and in turn, are able to redirect T-cells to malignant cells in order to 
mediate a T-cell response and T-cell directed enhanced tumor cell death. Blinatumomab, the first-in-class 
CD3-CD19 BsAb, has been approved for relapsed acute lymphoblastic leukemia, with limitations of a short 
half-life requiring a continuous infusion. Next generation BsAbs have shown promising efficacy in R/R 
DLBCL, including relapse after CAR T-cell therapy, and are easier to administer compared to 
blinatumomab. Other benefits of BsAbs are that they are ‘off-the-shelf’ products, requiring no additional 
time for manufacturing, such as in the case of autologous CAR-T-cell therapies. Mosunetuzumab, a CD3-
CD20 BsAb, is currently being studied in indolent and aggressive NHL and has demonstrated a single agent 
ORR of 37% (46/124) and CR of 19% (24/124) in patients with aggressive NHL[147]. Notably, of the 30 
patients who progressed after CAR T-cell therapy, 18 patients were available for response, with four patients 
(23%, 4/18) achieving a CR, and a total ORR of 39% (7/18). Twenty-eight percent of patients experienced 
cytokine release syndrome (CRS), with 1.4% of patients experiencing Grade 3 CRS, all of which resolved 
with the administration of tocilizumab. Neurological toxicity was observed in 44% of patients, with the 
majority being Grade 1 and 2 (27.4% and 12.6%, respectively). Mosunetuzumab is currently being evaluated 
in a host of clinical trials for NHL, including the GO40515 study (NCT03677141), in which 
mosunetuzumab is combined with CHOP or CHP-Polatuzumab in the first-line setting for DLBCL as well 
as a single agent in the treatment-naive elderly/unfit patients (NCT03677154)[148].

Several other CD3-CD20 BsAbs have entered clinical development as well. The phase I study of 
odronexatamab was conducted in a highly refractory patient population, with 80.3% determined to be 
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refractory to their last line of therapy[149]. In patients with R/R DLBCL who were CAR T-cell naive and 
treated at doses ≥ 80 mg (n = 10), the CR and ORR rate was 60% with a duration of response (DOR) of 10.3 
months. Those who were refractory to prior CAR-T cell therapy and treated at ≥80 mg (n = 21), remarkably 
had an ORR of 33.3%, CR rate of 23.8% and median DOR of 2.8 months. The rates of Grade 3 CRS and 
neurotoxicity were 6.3% and 2.3%, with one observed Grade 4 CRS event noted. Epicoritamab, a 
subcutaneous administered BsAb against CD3-CD20, with proposed improved side effect profile due to its 
route of administration, has completed phase I evaluation with RP2D of 48mg based on pharmacokinetic 
profiling[150]. In DLBCL patients treated at ≥ 48 mg (n = 7), all patients achieved a response, with 2 of 7 
(28.6%) attaining a CR and 5 of 7 (71.4%) achieving a PR. Four patients were treated previously with CAR-T 
cell therapy, all of which achieved a response (2 CRs, 2 PRs). Lastly, glofitamab, a 2:1 BsAb that bivalently 
binds to CD20 malignant B-cells and monovalent binding to CD3 on T-cells, has demonstrated superior 
potency in pre-clinical models compared to 1:1 BsAbs in conjunction with pre-treatment with 
obinutuzumab (used to mitigate CRS)[151]. The phase I/Ib evaluation of glofitamab demonstrated an ORR of 
50.0% in 24 evaluable aggressive NHL patients, and a CR rate of 29.2%[152]. The most common AEs were CRS 
(57.9%), none of which were Grade 3 or higher, pyrexia (31.6%), neutropenia (28.9%), thrombocytopenia 
(28.9%) and hypophosphatemia (28.9%). Ultimately, the postulated enhanced tumor killing of this newer 
class of 2:1 CD20-CD3 BsAb compared to traditional 1:1 binding will require further clinical trial 
investigation.

Another emerging agent is the trispecific antibody CMG1A46 which engages CD19-CD20-CD3 
simultaneously, targeting not only CD19+/CD20+ DLBCL, but also those patients who relapse and lose 
expression of CD20[153]. In vivo and in vitro studies have demonstrated improved efficacy compared to 1:1 
BsAbs, and a phase I clinical trial is planned for the near future.

Another unique class of therapy that leverages immunological aspects is Chimeric antigen receptor T-cell 
therapy (CAR-T cell therapy). Thus far, autologous CAR-T cell constructs against CD19 (axicabtagene 
ciloleucel, lisocabtagene maraleucel, tisagenlecleucel) have been FDA approved in patients with R/R DLBCL 
who have failed two or more lines of therapy. Three large phase III clinical trials have attempted to move 
the CAR-T cell indication to the second-line setting, particularly evaluating patients who are deemed 
chemo-resistant (primary refractory or relapsed ≤ 12 months from first-line chemoimmunotherapy). Two 
of the three randomized trials demonstrated clinical benefit compared to autologous stem cell transplant 
(Zuma-7, TRANSFORM)[154,155], while the third randomized trial failed to meet its primary endpoint 
(BELINDA)[156]. Several possibilities have been postulated to reconcile these differences in outcomes, 
including the high proportion of patients enrolled in the BELINDA trial experiencing progression of disease 
at week 6 (prior to CAR-T cell infusion) in part due to a delay in CAR-T cell manufacturing (median time 
to infusion: 52 days, range 31-135 days).

Additionally, as more follow-up data has become available, it has become apparent that approximately 30-
50% of patients who initially respond to anti-CD19 CAR-T cell will suffer a relapse, with the majority 
occurring within one year of infusion[157]. The mechanisms behind some of these relapses have been 
attributed to limited persistence of the cellular products and downregulation/loss of CD19, leading to 
antigen escape[158]. Given these findings, potential combinations with targeted agents in combination with 
autologous anti-CD19 CAR T-cell have been studied. Qin et al.[159] demonstrated that the combination of 
ibrutinib with lisocabtagene maraleucel led to improved CAR T-cell effector function translating into 
improved survival of CD19 tumor-bearing mice[159]. Lenalidomide has demonstrated in vivo synergy with 
both anti-CD19 and anti-CD20 CAR-T cell products[160], and more recently has been documented to induce 
responses in patients relapsing post-CAR T-cell infusion likely due to both an anti-tumoral effect and 
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immunomodulatory mechanisms[161]. Another way to leverage the immune axis is the addition of PD-
1/PDL-1 inhibitors to CAR-T cell products as the expression of PD-1 is enhanced after receipt of anti-CD19 
CAR-T cell infusion[162,163]. As proof-of-principle, a case report of a patient with refractory DLBCL who 
progressed rapidly on ZUMA-1, was administered nivolumab 3 mg/kg (11 days after infusion with 
axicabtagene ciloleucel), leading to a rapid re-expansion of CAR T-cell product within 48 hours of receipt of 
nivolumab and eventual reduction of tumor volume after completing two additional nivolumab doses[164]. 
This, along with pre-clinical data, has laid the foundation for ZUMA-6, which is evaluating axicabtagene 
ciloleucel in combination with atezolizumab (anti-PD-L1 antibody) in patients with refractory DLBCL[165]. 
There is also emerging dating supporting the use of PI3K inhibitors during CAR T-cell production as it can 
enhance the expansion of CD8+ CAR T-cells, with durable persistence and increased efficacy[166]. In addition 
to combination therapies, novel CAR-T cell products have been explored in order to overcome the 
resistance associated with anti-CD19 CAR T-cell therapy, including novel autologous CAR-T cell products 
against CD20[167] and CD22[168], tandem CAR-T cell therapies in which CD19/CD20 are engaged 
simultaneously[169,170], and the development of allogenic CAR-T cell therapy, with the latter obviating the 
need for leukapheresis.

Although not immunologically-based, selinexor, an oral inhibitor of XPO1-mediated nuclear transport, has 
also recently been FDA approved, and its therapeutic index is observed across subtypes. Selinexor 
demonstrated an ORR of 28% (36/127) with 12% achieving a CR (15/127) in the R/R DLBCL population, 
and a DOR of 9.3 months (95%CI: 4.8-23.0)[171]. The most common grade 3-4 AEs were thrombocytopenia (
n = 58), neutropenia (n = 31), anemia (n = 28), fatigue (n = 14), hyponatremia (n = 10), and nausea (n = 8). 
Subgroup analysis demonstrated that responses were similar irrespective of COO, age, gender, previous 
therapy, refractory status and history of ASCT.

FUTURE DIRECTIONS: WHAT THE FUTURE OF DIFFUSE LARGE B-CELL LYMPHOMA 
CARE MAY LOOK LIKE
Despite our deeper understanding of the complex molecular landscape of DLBCL as well as several attempts 
to leverage this understanding in a logical matter, we have only recently improved upon our standard of 
care frontline chemoimmunotherapy. Although R-CHOP has remained a cornerstone in therapy for two 
decades, several improvements in the R/R setting have been observed, ranging from targeted oral molecular 
agents to antibody-drug conjugates to cellular therapy. In the past five years, the only drugs/therapies that 
have successfully achieved FDA approval for DLBCL (CD19 CAR T-cell therapy, polatuzumab vedotin, 
tafasitamab, loncastuximab, selinexor) are not used in a subtype-specific matter. In fact, these newer 
molecular DLBCL classifications are not readily available in the community and will require the 
development of rapid, reproducible assays in order to be widely adapted. A focus on the integration of 
immunologic and small molecule agents that are universal to all DLBCL subtypes into our treatment 
paradigms avoids the need to develop highly specific and costly molecular assays to identify a target 
population. Along those lines, until rapid and reliable assays are developed, one rational way to improve the 
R-CHOP backbone is the addition of agnostic agents such as monoclonal antibodies that avoid the need for 
detailed molecular subtyping that often leads to a longer diagnosis-to-treatment time, while reserving a 
more precision based approach in the R/R setting. Once the development of a reliable assay is created based 
on companion studies in the R/R clinical trial setting, the assay can be applied in the frontline setting, where 
we have come to acknowledge the importance of the diagnosis-to-treatment interval[25]. Alternatively, in 
order to avoid delay in the initiation of treatment and permit deep molecular analysis, another option is to 
incorporate pre-phase therapy as performed by Pfreundschuh and colleagues[172] in the upfront or even R/R 
clinical trial setting. There is also a dire need to develop broader eligibility criteria to evaluate novel 
precision medicine-based agents and their associated companion diagnostics as it is clear that high-risk 
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patients with baseline organ dysfunction have inferior EFS as well as higher lymphoma-related mortality 
and often are not able to enroll into classically designed clinical trials[173]. Ultimately, the future may be a 
mixture of these elements: a new platform that combines novel immunological agents in conjunction with 
specific small molecule agents tailored to a certain subtype of DLBCL. Regardless of the route, given the 
complexity of these new DLBCL subtypes, it is likely that the future of clinical trial investigation will require 
combinational therapy in order to target multiple oncogenic pathways to optimize therapeutic benefit and 
avoid the development of drug resistance.

CONCLUSIONS
The therapeutic platform for the treatment of DLBCL has been inundated with novel agents spanning from 
small molecule inhibitors to bispecific antibodies to cellular therapy. Although numerous agents have been 
introduced, the majority have not impacted frontline therapy favorably. The use of drugs that are agnostic 
to COO or DLBCL subtype may circumvent the permissive use of these complex genetic analyses in order 
to prevent delays in treatment initiation. Future investigations should focus upon synergistic drug 
combinations that are tailored for specific DLBCL molecular subtypes, all the while optimizing genetics 
assays in order to do so. The development of rapid, reliable, and affordable companion genetic assays that 
can allow us to classify patients into these newer DLBCL subclassifications is a necessity and will allow us to 
translate clinical trial findings into real-world use. At the same time, we must leverage the potential of 
ctDNA and other translational tools for diagnostic, prognostic and therapeutic applications. Nevertheless, 
in parallel with our greater understanding of the genetic heterogeneity of DLBCL comes a plethora of 
opportunities to develop novel agents that target underlying driver pathological pathways, and ultimately, 
the future of DLBCL treatment paradigms will continue to evolve, including chemotherapy-free approaches.
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