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Abstract
Accurately estimating the state of charge (SOC) of lithium-ion batteries is essential for optimizing battery 
management systems in various applications such as electric vehicles and renewable energy storage. This study 
explores advancements in data-driven approaches for SOC estimation, focusing on both conventional machine 
learning and deep learning techniques. While traditional machine learning methods offer reliable performance, they 
often encounter challenges with high-dimensional data and adaption to complex operational conditions. In 
contrast, deep learning models provide enhanced capabilities in nonlinear modeling and automated feature 
extraction, leading to improved accuracy and robustness. Through comprehensive evaluations across diverse 
scenarios, this research identifies key technical challenges and outlines future directions, including distributed 
training, incorporation of physical data, development of dynamic neural networks, and the establishment of 
standardized benchmarking protocols. These insights aim to guide the creation of more precise, efficient, and 
adaptive SOC estimation models, thereby advancing the reliability and effectiveness of battery management 
systems.
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INTRODUCTION
Lithium-ion batteries (LIBs), valued for their high energy density, long lifespan, and low self-discharge rate, 
are integral to modern technologies, powering portable electronic devices, electric vehicles (EVs), and 
renewable energy storage systems, propelling technological advancements and sustainable development. 
Despite these advantages, the widespread adoption of LIBs has also produced increasing challenges such as 
safety risks, capacity degradation, and the need for precise health monitoring. These challenges affect 
battery overall performance and pose significant safety hazards. Accurate estimation of state of charge 
(SOC) is essential for managing and optimizing battery performance under complex conditions and is 
considered one of the key steps in addressing these issues. As a key metric for determining charge levels, the 
accuracy of the SOC estimation directly influences the decision-making and control efficiency of the battery 
management system (BMS). Precise SOC estimation enhances battery usage efficiency, prolongs lifespan, 
and mitigates potential overcharging or over-discharging risks, thereby improving system safety and 
reliability. Consequently, achieving accurate SOC estimation remains a critical challenge in battery 
management.

Conventional SOC estimation methods, such as the open-circuit voltage (OCV) method[1], Coulomb 
counting[2], and equivalent circuit models (ECMs)[3], estimate the battery’s SOC using voltage and current 
measurements combined with predefined models or formulas, but these approaches face significant 
limitations due to complex chemical processes, temperature variations, and aging effects in LIBs. For 
example, the OCV method requires long periods of battery inactivity, making real-time SOC estimation 
impractical[4]; Coulomb counting is susceptible to sensor inaccuracies and cumulative errors caused by 
battery aging[5]; and ECMs, despite considering dynamic battery behavior, involve complex model 
development and parameter identification, which hinder their accuracy under changing conditions[3]. 
Additionally, internal physical and chemical changes within LIBs, such as stress variations, charge 
distribution imbalance, and cyclic damage in composite electrodes, further impact SOC estimation by 
causing localized damage and uneven utilization of active material, as revealed by computational models[6], 
while experimental studies demonstrate that heterogeneous damage, including crack propagation and 
structural breakdown, exacerbates the challenges of accurate SOC estimation over prolonged operation[7]. 
These issues underscore the necessity for robust estimation techniques that consider the evolving internal 
states of batteries.

Recent advances in data-driven machine learning (ML) methods have enhanced SOC estimation[8,9], offering 
notable advantages. These methods leverage historical data to train models that learn the mapping 
relationship between battery characteristics/performance and SOC, bypassing the need for a complex 
physical modeling process. Traditional ML techniques, such as k-nearest neighbors (KNNs)[10], decision 
trees[11], support vector machines (SVMs)[12], extreme learning machines (ELMs)[13], and Gaussian process 
regression (GPR), are effective in SOC estimation with limited computational resources. These methods rely 
on known variables such as voltage, current, and temperature, with manually crafted voltage, current, and 
temperature, as well as manually crafted features for model training, providing good accuracy in specific 
conditions. For instance, the KNN method[14] uses charging and discharging data, decision tree algorithms 
and Kalman filter (KF) to enable dynamic SOC estimation[15], while the SVM, ELM and GPR methods 
improve nonlinear fitting and real-time performance by utilizing kernel functions and optimization 
algorithms[16,17]. However, these methods often depend on extensive feature selection, involve complex 
feature engineering processes, and exhibit limited generalization capability in complex scenarios.

The rapid advancement of deep learning (DL) has created new opportunities for SOC estimation. DL 
models, such as multilayer perceptrons (MLPs)[18], convolutional neural networks (CNNs)[19], and recurrent 
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neural networks (RNNs)[20], excel in nonlinear fitting capabilities and can automatically learn feature 
representations, demonstrating strong performance in SOC estimation. MLPs map input variables and SOC 
by stacking fully connected (FC) layers[21], while CNNs capture local features in temporal signals through 
convolutional layers, making them effective for analyzing battery voltage and current variations over 
time[22]. RNNs and their variants, including long short-term memory (LSTM)[23] and gated recurrent units 
(GRUs)[24], are effective for sequence modeling, capturing the impact of historical measurements on the 
current SOC[25]. LSTM and GRUs address the vanishing and exploding gradient problems in standard RNNs 
through gating mechanisms, making them particularly suited for processing long sequences in SOC 
estimation. Despite progress in DL-based SOC estimation, challenges remain that must be addressed. A 
primary issue is the lack of standardized data collection, model training, and evaluation methods, which 
impedes comparison across different studies and the establishment of a unified benchmark. Additionally, as 
batteries age and their characteristics evolve, the modeling performance for SOC estimation may decline[26], 
highlighting the need for adaptive models.

The remainder of the paper is organized as follows. Section 2 reviews traditional ML-based SOC estimation, 
highlighting their principles, advantages, and limitations in practical applications. Section 3 examines recent 
advancements in DL methods, focusing on the roles of MLPs, CNNs, and RNNs in SOC estimation. Finally, 
Section 4 addresses the challenges of data-driven SOC estimation and suggests future research directions. 
This review aims to offer a comprehensive technical perspective to researchers, fostering the advancement 
of intelligent BMS.

SOC ESTIMATION BASED ON TRADITIONAL ML METHODS
Traditional ML methods are crucial for the SOC estimation of LIBs, relying on measured data rather than 
detailed battery or complex mathematical models. Traditional ML methods include KNNs, decision trees 
(such as XGBoost), SVMs, ELMs, and GPR, which use manually selected features for model training leading 
to SOC prediction. Despite challenges in feature selection, computational complexity, and model 
robustness, these methods offer effective SOC estimation, particularly when computational resources are 
limited. The definition of SOC of a battery is the percentage of its current available capacity to its rated total 
capacity, expressed as: SOCt = Qt/Qmax, where Qt denotes the remaining capacity of the battery at moment t. 
Qmax is the total rated energy of the battery, which can be obtained by measurement or estimation[27,28]. 
Figure 1 illustrates the basic steps or key techniques of the four traditional ML methods described in this 
section for SOC estimation.

KNNs
KNN is an instance-based ML algorithm commonly applied to classification and regression tasks. It predicts 
unknown data points by analyzing their proximity to instances in the training dataset. For SOC estimation, 
KNN identifies the neighboring points by computing distances between the target and training data points. 
KNN algorithm typically employs metrics such as Euclidean distance or Manhattan distance to measure 
similarity between data points. Once the distance metric is selected, the KNNs are constructed at the target 
point. The SOC value is then inferred by averaging the SOC values of these neighbors, either weighted or 
unweighted. This simple, assumption-free method is intuitive. It does not require assumptions about data 
distribution and can yield effective results in certain cases.

KNN has demonstrated notable accuracy and adaptability in SOC estimation for LIBs. For instance, 
Talluri et al. used charge-discharge cycle data, including voltage, current, and time, to train and test a KNN 
model, achieving a 98% accuracy rate with an average absolute error of 0.74%[14]. Similarly, Ghassani et al. 
applied the KNN algorithm to smartphone charging prediction, using periodic SOC data collected to 
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Figure 1. Flowchart depicting traditional ML methods for estimating SOC. Input variables (voltage, current, and temperature) undergo 
data cleaning and feature transformation before being processed by machine learning models: KNN, Decision Trees, SVM, ELM and 
GPR. The final step involves results processing, accuracy evaluation, and error analysis. SOC: State of charge; KNN: k-nearest neighbor; 
SVM: support vector machine; ELM: extreme learning machine; GPR: gaussian process regression.

enhance the accuracy of charging time[29]. The result indicates that setting the number of nearest neighbors k 
= 2 yields highly precise prediction. While simple averaging in SOC estimation overlooks distance 
information and is sensitive to noise, weighted averaging has been introduced to address these limitations. 
For example, Hu et al. proposed a method for LIB capacity estimation, combining particle swarm 
optimization (PSO) with KNN regression[30]. This approach defines five key features related to battery 
capacity - initial charging voltage, constant current charging capacity, constant voltage charging capacity, 
final charging voltage, and final charging current - capturing the complex relationship between the battery 
capacity and the KNN model. This method, which is validated with a decade of continuous cycle data, 
effectively estimates battery capacity across battery’s lifespan. By optimizing feature weights through PSO 
and minimizing cross-validation errors, the model enhances accuracy and mitigates the effects of 
suboptimal weighting strategies.

The KNN method stands out for its simplicity and adaptability, as it does not rely on assumptions about 
data distribution, making it well-suited for scenarios with complex patterns. However, it has notable 
drawbacks, including high computational demands due to its reliance on the entire training predictions and 
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challenges with the “curse of dimensionality,” which can impair distance-based calculations in high-
dimensional spaces. The effectiveness in SOC estimation depends heavily on the availability of high-quality, 
representative training data, which can significantly change the prediction accuracy. Moreover, the 
sensitivity of KNN to noise and outliers necessitates thorough data preprocessing and careful feature 
selection. Despite these limitations, the KNN method performs well in certain contexts, particularly when 
the data distribution is relatively uniform.

Decision trees
Decision trees are hierarchical ML algorithms that map features to target variables through recursive data 
partitioning. During construction, the algorithm selects features to split the data, optimizing subset 
propriety based on criteria such as information gain or Gini index. To evaluate the feature effectiveness, 
nodes represent feature-based decisions, branches correspond to feature values, and leaf nodes provide 
predictions for the target variables. In SOC estimation for LIBs, the algorithms of decision trees are effective 
for modeling complex, nonlinear relationships and multivariate input-output problems. SOC depends on 
factors such as voltage, temperature, and charge-discharge rates, which often interact nonlinearly. The 
hierarchical structure of decision trees efficiently captures these nonlinear relationships and adapts to 
varying battery operating conditions.

Recent studies have aimed to enhance the accuracy and resilience of SOC estimation. Jiang et al. addressed 
effects of battery aging by introducing two new features - voltage drop rate and temperature rise rate - and 
employed the XGBoost algorithm to model their relationship with SOC[31]. This method does not require an 
initial SOC value and can perform reliably across various battery conditions, showing strong potential for 
practical applications. However, the data for battery operation often contain noise, and directly using such 
data for training can severely degrade model accuracy. Consequently, combining model-based filtering 
techniques with ML methods has gained significant attention. To mitigate measurement noise and external 
disturbances, filtering techniques have been incorporated. For example, Song et al. proposed a hybrid 
method combining the XGBoost and the KF[15]. The XGBoost models the nonlinear relationship between 
features and SOC during the offline training phase, while the KF refines the XGBoost estimation in real time 
during online estimation. A more stable and accurate SOC estimation is achieved. This method has 
demonstrated high accuracy in random walk discharge tests, effectively addressing nonlinear problems and 
suppressing noise. However, as the KF is designed for linear systems, its application is limited by its 
inherently dynamic characteristics. Liu et al. improved the accuracy and robustness of SOC estimation by 
integrating extended KF (EKF) with the XGBoost algorithm[32]. The EKF estimated the nonlinear system 
states of the battery, while the XGBoost algorithm trained and validated the resulting data. Another study 
utilized the improved tree seed algorithm (TSA) with EKF, optimizing the battery model parameters 
globally through TSA and combining EKF for dynamic SOC estimation[33]. Simulation and experimental 
results demonstrate high estimation accuracy and stability. Similarly, Wang et al. developed a SOC 
estimation model for hybrid EV batteries using classification and regression trees (CARTs)[34]. By 
accounting for energy feedback during regenerative braking, the model achieved high accuracy, with 
relative errors below 0.035 in simulations and 0.05 in experiments.

Decision trees offer significant advantages in SOC estimation, including simplicity, ease of implementation, 
and suitability for modeling multivariate and nonlinear relationships. Their adaptability allows SOC 
estimation under varying battery conditions without requiring an initial SOC value. The accuracy and 
robustness of SOC estimation can be enhanced by integrating methods such as the KF, EKF, and improved 
TSAs. However, single Decision trees are prone to overfitting, especially with limited or noisy data, 
necessitating advanced algorithms such as the XGBoost to enhance the model generalization. The Decision 
trees model is sensitive to initial parameters, often requiring extensive experimentation and tuning for 
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optimal performance. The model, with high computational complexity and large datasets, can result in long 
training times, emphasizing the need for algorithmic improvements and parallel processing to boost 
efficiency.

SVMs
SVMs are statistical learning-based ML models widely applied in classification and regression. They operate 
by identifying the optimal hyperplane to partition data points into distinct categories. The strong 
generalization ability of SVMs stems from maximizing the classification margin, relying on support vectors. 
It encompasses data points closest to the decision boundary, enhancing predictive ability on unseen 
samples. For nonlinear problems, SVMs employ a kernel function to map data into higher-dimensional 
space, enabling linear partition in the transformed space even when the original data is nonlinearly 
separable. Common kernel functions, such as the radial basis function (RBF), polynomial kernel, and 
sigmoid kernel, effectively model complex data relationships.

The use of SVMs in SOC estimation for LIBs has attracted significant attention. Álvarez Antón et al. 
developed an SVM-based model for SOC estimation using current, voltage, and temperature as inputs[16]. By 
optimizing hyperparameters with the RBF kernel and cross-validation, the model achieved a determination 
coefficient (R2) of 0.98 and a maximum error below 6%. Building on this approach, Álvarez Antón et al. 
further applied SVM to LiFePO4 batteries, achieving an R2 of 0.97 and demonstrating its suitability for low-
cost, microcontroller-based BMS[35]. The result highlights SVM’s feasibility across different battery types. 
Additionally, in the SOC estimation of unmanned aerial vehicle batteries, Wei et al. employed support 
vector regression (SVR) method trained on charge-discharge data, achieving 98.42% accuracy with a mean 
square error (MSE) of 1.783%[36]. These results confirm the potential of SVMs in high-precision, real-time 
SOC estimation.

Various optimization strategies have been implemented to improve the performance of SVMs in SOC 
estimation. Li et al. integrated the grey wolf optimization (GWO) algorithm with the least squares SVM 
(LSSVM) method, leveraging global optimization for enhanced parameter selection[37]. This approach 
reduced the root MSE from 0.89% to 0.22%, significantly boosting accuracy and robustness. Additionally, 
ensemble learning methods have been applied to refine the estimation performance of SVMs. Sheng and 
Xiao combined the LSSVM with fuzzy reasoning and nonlinear correlation measurement, mitigating the 
influence of low-confidence samples and further improving the accuracy of SOC estimation[38]. Li et al. 
enhanced the accuracy and stability of SOC estimation by combining the SVM with ensemble learning and 
PSO for optimized parameter selection[39]. In hardware implementation, Stighezza et al. developed a field-
programmable gate array (FPGA)-based SVM algorithm optimized with the ant colony optimization (ACO) 
method for real-time SOC estimation[40]. Experimental results demonstrate the hardware model’s ability to 
accurately track SOC changes of the battery, with a maximum error of 3.1%, highlighting the practical 
feasibility and effectiveness of the SVM algorithm.

Despite its advantages, SVM has limitations. Ipek et al. compared SVR with XGBoost, two ML algorithms, 
concluding that the XGBoost is more efficient for SOC estimation due to faster computation speed and 
lower error rates[41]. However, the performance of SVR heavily depends on the proper configuration of the 
kernel function and parameter. While Ipek highlighted the challenges in parameter configuration for SVR, 
Song et al. proposed a method combining SVM with cubature KF (CKF)[42]. This approach leverages the 
generalization capability of SVM and filtering properties of CKF, improving the accuracy and robustness of 
SOC estimation. Experimental results show significant error reduction under complex driving conditions.
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SVM can be applied independently or integrated with other algorithms to enhance the estimation accuracy.
Xie et al. introduced a method combining the unscented KF (UKF) with SVM, significantly improving the
accuracy by using the UKF outputs as inputs for a second estimation with the SVM[43]. Experimental results
demonstrate that this approach reduced the error of SOC estimation to below 1%, outperforming the UKF
alone. Similarly, Hu et al. developed a method for SOC estimation integrating the barnacle mating
optimizer (BMO) and SVM, optimizing the SVM parameters to further enhance accuracy and stability[44].
The use of SVMs in SOC estimation extends beyond theoretical research. Hansen and Wang evaluated an
SVM model using dynamic US06 operation data from the U.S. Department of Energy’s hybrid EV project, 
demonstrating its effectiveness in real-world driving conditions[45]. The experimental result reveals that the 
root MSEs are 5%, 5.76%, and 2.54% in three scenarios and confirm the strong performance of SVM in SOC 
estimation under complex driving conditions.

The primary advantages of SVMs in SOC estimation are their ability to model nonlinear relationships and
strong generalization capacity. By selecting the right kernel function, the SVM can identify the optimal
separating hyperplane in high-dimensional feature spaces. It is effective with small datasets and high-
dimensional data, maintaining accurate SOC estimation even under complex driving conditions. However,
the disadvantages of the SVM cannot be ignored. Its high computational complexity, particularly with large
datasets, can result in prolonged training time. The SVM is highly sensitive to parameter selection, with the
KF and hyperparameters critically influencing model performance, necessitating optimization through
methods such as cross-validation. Additionally, noisy and outlier data can reduce the estimation accuracy.
Therefore, practical applications require careful parameter adjustment to fully leverage the advantages of the
SVM.

Extreme learning machine
ELM is a novel learning algorithm primarily used for training single-layer feedforward neural networks
(SLFN). It accelerates learning by randomly initializing the weights and biases of the hidden layer nodes and
keeping them fixed during the training process, which enhances learning speed and efficiency. Traditional
neural network (NN) training relies on the time-consuming backpropagation algorithm and is prone to
local optima. ELM achieves rapid learning mainly through the following steps. Initially, the hidden layer
parameters, such as weights and biases, are randomly assigned, rather than adjusted according to training
data. The input data is then mapped into a high-dimensional feature space using the activation function of
the hidden layer nodes. Nonlinear activation functions, such as sigmoid, and rectified linear unit (ReLU),
are used to map inputs into a high-dimensional feature space, enhancing the representational capacity.
Subsequently, the hidden layer output matrix is constructed, and the output layer parameters are
determined using the least squares method, eliminating the need of complex iterative training process. The
advantages of the ELM lie in its simplicity and efficiency, achieving faster training speed on multiple
datasets while maintaining accuracy comparable to traditional DL models across various datasets. In
addition, due to its unique random characteristics, the ELM provides robustness with noise in training data,
making it well-suited for large-scale datasets. Consequently, it has been widely employed in SOC estimation.
By utilizing battery voltage and current as input variables, ELM bypasses complex battery voltage and
current as input variables to predict SOC, thus avoiding the complex battery modeling and enabling a
direct, data-driven approach to SOC prediction.

Densmore et al. applied an ELM model to predict the SOC and State of Health (SOH) of LIBs using the
NASA-AMES dataset, achieving a minimum SOC error of 3.1% and demonstrating the high accuracy of
ELM[46]. To further improve the estimation precision, the ELM model has been optimized. Dou et al.
integrated the gravitational search algorithm (GSA) with an ELM model, significantly enhancing its
computational intelligence and robustness and enabling accurate SOC estimation with low error rates
across varying temperatures and driving cycles[17]. The GSA with its global search capability optimizes
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hidden layer neurons and network parameters, overcoming the limitations of traditional ELM with complex 
data. Jiao et al. demonstrated an ELM model enhanced by GSA, achieving high accuracy and stability across 
various operating conditions[47]. The salp swarm algorithm (SSA) further refines the weights and hidden 
layer biases of ELM’s network, improving generalization and computational precision. The SSA-ELM model 
achieves an average absolute error of 0.538, highlighting its precision and robustness in SOC estimation. 
Wang and Yang enhanced regularized ELM (RELM) by integrating the alternating direction method of 
multipliers with regularization techniques, mitigating overfitting while improving stability and accuracy of 
SOC prediction[48]. By optimizing output weights, the RELM enhances the generalization of the model, 
delivering robust performance under complex conditions.

Chin and Gao introduced a mixed generalized maximum correlation criterion (MGMCC) to develop a 
robust ELM model, which minimizes the effects of non-Gaussian noise and significantly improves the 
accuracy of SOC estimation[49]. Zhao et al. improved the MGMCC-ELM with an enhanced loss function, 
boosting robustness against noisy data[50]. The adaptive online sequential ELM (AOS-ELM) achieved 
efficient SOC estimation across varying ambient temperatures by dynamically adjusting model parameters 
online. The AOS-ELM[51] uses sequential data and limited samples for training, reducing errors and 
computation time in traditional NN training, and demonstrating its potential in practical applications. For 
diverse operating conditions, multi-input ELM (MI-ELM) incorporates online model parameter recognition 
technology with the recursive least squares (RLS) method, providing accurate SOC estimation under 
varying operating conditions. The MI-ELM[52] demonstrated notable strengths in SOC estimation by 
effectively utilizing complex nonlinear relationships, enhancing both estimation accuracy and robustness. 
To address data quality issues, the outlier robust ELM (OR-ELM) utilized the L1 norm loss function and the 
alternating direction multiplier method (ADMM) to significantly boost noise resistance. The OR-ELM[53] 
exhibits superior robustness in datasets with outliers, surpassing traditional ELM and RELM models, and 
improves stability and accuracy in handling noisy data through advanced training methods. The improved 
PSO-ELM (IPSO-ELM) utilizes nonlinear inertia weights to enhance global optimization, significantly 
improving the accuracy and stability of SOC estimation. Experimental results confirm its high precision and 
low error rates, highlighting its practical applications. By leveraging advanced global search optimization 
techniques, the IPSO-ELM effectively addresses complex conditions, demonstrating robust performance.

While the ELM and its enhanced variants excel in SOC estimation with benefits such as fast computation, 
simplicity, and adaptability, challenges remain in managing high-noise data and large-scale datasets. 
Traditional ELM models are sensitive to data quality, often yielding significant estimation errors with noisy 
data, and may struggle to fully capture complex nonlinear dynamics. Future research could utilize DL and 
advanced algorithms to enhance the ELM performance in SOC estimation, enabling better handling of 
complex practical application scenarios. Additionally, exploring new feature variables and data 
preprocessing techniques can further improve the accuracy and robustness, ultimately enhancing the 
reliability and performance of the BMS.

GPR
GPR is a Bayesian, nonparametric learning method widely used in regression tasks. Instead of finding a 
single best-fit function, GPR places a prior distribution over the space of possible functions, capturing 
uncertainty directly. By conditioning on observed data, it derives a posterior distribution for both mean 
predictions and predictive variances, enabling robust uncertainty estimation. Similar to SVMs, GPR 
leverages kernel functions - such as the RBF, Matérn kernel, and others - to characterize relationships 
between data points in potentially complex, high-dimensional spaces. This kernel-based flexibility allows 
GPR to adapt to nonlinear patterns while providing principled confidence intervals, making it particularly 
effective in scenarios with limited data or when precise uncertainty quantification is desired.
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Building on this foundational understanding of the flexibility of GPR, researchers have increasingly 
explored its application to SOC estimation in LIBs, recognizing its capacity to model highly nonlinear 
system dynamics while directly quantifying prediction uncertainty. Ozcan et al. proposed a GPR-based 
online SOC estimation framework, leveraging different kernel functions - such as the squared exponential, 
Matérn, rational quadratic, and quasi-periodic kernels - to effectively capture the complex interactions 
among voltage, current, and temperature[54]. This approach yields high accuracy under both dynamic and 
constant loading conditions and provides a probabilistic confidence interval for each estimate. To address 
the often high computational burden of GPR, Ozcan et al. employ a sparse formulation that reduces the 
complexity from O (N3) to O (NM2) (N is the number of original samples, M is the number of Inducing 
points, and N >2 M) by introducing a smaller set of inducing points[55]. This makes real-time SOC 
estimation feasible even with large-scale datasets. Meanwhile, Sahinoglu et al. extend GPR by incorporating 
recurrent structures to account for time-series dependencies, thereby refining the prediction of SOC across 
successive measurements and achieving remarkably low errors in multi-condition experiments[56].

Beyond these developments, hybrid methods also leverage the nonparametric strength of GPR in tandem 
with state estimators. Chen et al. proposed coupling a UKF with GPR to adaptively adjust for measurement 
noise, resulting in robust performance across diverse driving cycles and temperatures[57]. Similarly, Lee et al. 
proposed data-driven Gaussian Process Kalman and Particle Filters (GP-UKF and GP-PF) to learn both the 
prediction and observation models from data, offering significant improvements in accuracy and 
uncertainty quantification compared to classical filtering schemes[58]. Extending the scope further, Yi et al. 
demonstrated a novel approach that incorporates battery expansion features alongside voltage and current 
measurements, revealing that GPR can capture subtle mechanical changes associated with SOC 
variations[59]. This multimodal integration reinforces the versatility of GPR, although the computational 
demands and sensitivity of the technique to kernel hyperparameters underscore the importance of 
methodical model optimization. Deng et al. focused on the challenges of SOC estimation in LIB packs 
caused by cell inconsistencies[60]. By employing feature extraction methods such as correlation analysis and 
principal component analysis (PCA), they optimized the input data for GPR modeling, effectively capturing 
the nonlinear dynamics of battery packs. Additionally, they validated the autoregressive approach proposed 
by Sahinoglu et al. within their framework, demonstrating its robustness across dynamic cycles, 
temperatures, and aging states[56]. This work achieved estimation errors below 3.9%, highlighting a practical 
path for accurate and efficient SOC estimation in complex battery pack systems. These studies collectively 
highlight the potential of GPR as a powerful, uncertainty-aware tool for LIB SOC estimation - particularly 
when accurate modeling of nonlinearities and robust real-time performance are paramount.

Regarding its advantages, GPR excels at capturing complex, nonlinear relationships without needing an 
explicit physical model, and it inherently provides uncertainty quantification through posterior predictive 
variance. These strengths facilitate high accuracy, flexibility, and robust performance even with limited data 
or under varying operational conditions. However, GPR also faces challenges. Its computational cost 
typically scales cubically with the dataset size, although sparse representations can partially alleviate this 
burden. Moreover, model performance heavily depends on appropriate kernel selection and 
hyperparameter tuning, necessitating careful calibration or automated optimization methods. Despite these 
limitations, the growing body of research underscores the strong potential of GPR in delivering reliable 
SOC estimation and uncertainty analysis for LIBs, supporting both practical deployment and future 
innovation in BMSs.

Summary
Data-driven SOC estimation for LIBs leverages ML techniques that bypass the need for battery working 
principles. The evolution of ML technologies has advanced these methods, with traditional algorithms such 
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Table 1. Advantages and drawbacks of conventional ML techniques for SOC estimation in LIBs

Method Advantages Drawbacks

KNN Simple and intuitive, strong adaptability for multi-
dimensional features

Computationally intensive for large datasets, prone to errors with noisy 
data and outliers

Decision 
trees

Simple structure, effectively handle complex nonlinear 
relationships

Prone to overfitting, high computational complexity and long training 
times, sensitive to initial parameter selection

SVM Efficiently manage complex nonlinear relationships and 
multi-dimensional data, good generalization

Computationally intensive, long training times, sensitive to kernel and 
hyperparameter selection, requires cross-validation

ELM Fast learning, streamlined computational process, highly 
adaptable model structure

Highly sensitive to data quality, prone to noise interference, struggle to 
capture dynamic variations in complex nonlinear relationships

GPR Capture complex nonlinear relationships, provide 
uncertainty quantification, suitable for limited data 
scenarios

High computational cost, dependent on kernel selection and 
hyperparameter tuning

SOC: State of charge; LIB: lithium-ion battery; ML: machine learning; KNN: k-nearest neighbor; SVM: support vector machine; ELM: extreme 
learning machine; GPR: gaussian process regression.

Despite advancements in traditional ML methods for SOC estimation, they still face limitations. These 
traditional ML methods rely on manual feature design and selection, demanding expertise and extensive 
experimentation, often using linear or basic nonlinear models with limited expressive power. The 
computational demands are high, particularly for large datasets, resulting in low efficiency. Additionally, 
these methods are highly dependent on parameter selection and data preprocessing, with any oversight 
potentially degrading the model performance. KNN is sensitive to noisy data, and Decision trees are prone 
to overfitting, while SVM, ELM and GPR depend heavily on kernel functions and hyperparameter choices, 
necessitating optimization through methods such as cross-validation. Moreover, traditional ML methods 
struggle with noisy or outlier-laden data, reducing their robustness and estimation accuracy. Future 
research should focus on refining these algorithms to enhance their efficiency and robustness in handling 
complex and large datasets. While traditional ML methods have advanced SOC estimation, as discussed 
above, they still face challenges in feature engineering, model complexity, parameter sensitivity, and data 
robustness. As a result, more advanced ML techniques are explored to address these issues and improve 
estimation accuracy. The following sections explore DL models such as MLP, CNN, RNN, and encoder-
decoder (ED)-based sequence models, which have demonstrated significant potential across various 
domains. These models, known for their strong nonlinear fitting capabilities and automated feature 
extraction, are transforming approaches to estimating complex system states. We will examine their 
working principles, applications in SOC estimation, and how they address the limitations of traditional 
methods.

DL-BASED SOC ESTIMATION
DL, a subset of ML, leverages NNs and shows significant potential for estimating the SOC of LIBs. NNs can 
be trained to extract optimal feature representations from raw data, and demonstrate strong capability in 
learning complex patterns and relationships. There are two major stages in DL-based SOC estimation. The 
first stage, excluding attention mechanisms, involves the development of numerous SOC estimators using 
basic sequence modeling techniques. The second stage introduces attention mechanisms to better capture 
long-term sequential relationships and replace recursive processes. According to recent publications, 
research in the first stage appears to have plateaued. In this section, we outline practical strategies for SOC 
estimation, followed by a concise overview of the theory and application of two basic network types. We 
then review the theories, applications, and integrations of these techniques, focusing on the progression of 

as KNN, Decision trees, SVM, ELM, and GPR commonly employed. Table 1 summarizes the advantages 
and drawbacks of these algorithms.
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sequence modeling technologies without attention mechanisms. The summary assesses its influence on the
current thriving attention mechanism-based SOC estimators.

SOC estimation task design
Apart from OCV, all aspects of battery performance, including SOC, are dynamic[61]. As SOC estimation
relies on sequences such as current, voltage, and surface temperature, it is inherently a time-series
prediction task. In contrast to typical time-series prediction tasks, such as weather forecasting, power
consumption prediction, and product sales prediction, SOC estimation faces unique challenges. In
conventional prediction scenarios, target parameters are typically observable. In SOC estimation, the SOC
of a battery cannot be continuously measured. It is only measured under specific temperature conditions
and when the battery reaches its cutoff voltage the SOC can be confirmed as fully charged (100%) or
completely discharged (0%)[61]. Therefore, SOC values at individual points in a charge/discharge cycle can
only be determined through the proportional relationship between the accumulated charge/discharge and
the total battery capacity after completing a full cycle. This characteristic complicates the direct use of real
SOC measurements in practice. Consequently, SOC estimation primarily depends on external variables
rather than the target variables. As a result, standard time-series prediction models cannot be directly
applied to SOC estimation, necessitating the development of tailored modeling standards to address actual
conditions.

Table 2 summarizes practical SOC estimation strategies for various dynamic NN (DNN)-based estimators.
Here, w indicates the sliding window length of the input sequence. The external variable input xi = {Ii, Vi, Ti

,…} at time i may include voltage Vi, current Ii, temperature Ti, and other variables, where NN(·) refers to
the NN function, and Y signifies the estimated SOC value at time i. If the variable to be estimated is
included in the input, the non-continuous nature of SOC measurement means that only prior estimation
values can be used, a method known as recursive prediction. In contrast, non-recursive estimation
approaches exclude the variable, such as SOC, from being estimated in the input sequence. Given the
nonlinear dynamic characteristics and dependence on external variables, the nonlinear autoregressive
model with exogenous inputs (NARX) is commonly applied for continuous recursive estimation of SOC.
While single-step estimation predicts the next time step’s observation, multi-step estimation requires SOC
predictions for multiple time points.

Various estimation strategies are applicable to different application scenarios. Single-step non-recursive
estimation is simple to implement and typically delivers high accuracy, making it the most widely used
approach for SOC estimation. Multi-step non-recursive estimation, derived by modifying the output layer
of a single-step non-estimation network, provides SOC estimations for multiple historical time points,
simultaneously offering more comprehensive data for the BMS system; however, it may suffer from lower
accuracy. Non-recursive estimation avoids initial errors by not using historical SOC values, but it may result
in discontinuities in continuous outputs due to the lack of historical constraints. In contrast, recursive
estimation enhances stability, particularly in LIBs with distinct voltage platforms, though it may lead to drift
in continuous estimation due to initial and cumulative errors.

Basic components and applications of NN
Multilayer perceptron
MLP is a fundamental component of DL comprising FC Layers and activation functions, as shown in
Figure 2. FC layers transform arrays between dimensions via linear transformations, enabling
comprehensive feature analysis. Activation functions, including Sigmoid, Tanh, ReLU, and SoftPlus,
introduce nonlinearity to the network. By layering multiple “FC-activation function” units, MLPs can
model nonlinear relationships between inputs and outputs, establishing their role as a cornerstone of DL
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Table 2. Strategy for SOC estimation

Strategy Formulaic expression

Single-step non-recursive estimation T1

Multi-step non-recursive estimation T2

Single-step recursive estimation T3

SOC: State of charge.

Figure 2. Architecture of a multilayer perceptron.

technology.

In an MLP, the learnable parameters include the transformation coefficient matrix and bias vector within 
FC layers. Training involves forward propagation to process input arrays and generate output, with 
supervised learning calculating the deviation from pre-defined labeled values through a certain norm. 
Backpropagation then distributes this loss, updating parameters via optimization algorithms. After a 
sufficient number of iterations, the network converges to the training set distribution, freezing parameters 
for inference where only forward propagation is performed.

As one of the earliest deep NNs applied to SOC estimation, MLP demonstrates its effectiveness. 
Chemali et al. developed an MLP-based estimator with high accuracy across various temperatures[62]. Their 
method mapped SOC by relating average current and voltage at the current moment to voltage, current, 
temperature, and data from 50-400 historical moments, using a fixed number of MLP layers and neurons 
per layer. Hannan et al. eliminated historical averages, basing SOC estimation solely on real-time current, 
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voltage, and temperature; they also used a backtracking search algorithm during training to optimize the 
number of hidden neurons and learning rate in a single-hidden-layer MLP[21]. How et al. analyzed how the 
number of hidden layers in an MLP affects the accuracy of SOC estimation. Their results revealed a U-
shaped relationship: too few layers hinder learning capacity, while excessive layers increase overfitting and 
estimation error for unknown cycles[63]. Jung et al. addressed this issue, drawing comparable conclusions[64]. 
They further incorporated single-step voltage changes as an input variable to account for the instantaneous 
dynamics of the power battery.

The early MLP studies established foundational strategies for single-step SOC estimation. These efforts also 
highlight the significant impact of NN hyperparameters on estimation accuracy, directing subsequent 
research toward hyperparameter optimization.

MLP estimators have become less prevalent in SOC estimation due to their inability to effectively handle 
temporal data, which is critical for accurate and stable SOC estimations[63]. The MLP structure is inherently 
unsuited for processing time-series information and faces three severe challenges in this context. MLP is 
unsuitable for SOC estimation due to its lack of memory structure, preventing it from processing sequential 
time-series data effectively. It treats all inputs as independent, failing to capture the relationship between 
past measurements and the current SOC. Additionally, the FC structure of MLP, with its numerous 
parameters, leads to high computational demands and overfitting risks when handling longer data 
sequences. Furthermore, its one-dimensional input design struggles with multi-two-dimensional, multi-
moment, and multi-variable data typical in SOC estimation, requiring additional designs such as auto-
encoding or dimensionality reduction. The FC structure is difficult to use directly for SOC estimation of 
batteries. These limitations have prompted the adoption of more advanced DNN architectures for SOC 
estimation, largely replacing MLP.

CNNs
CNNs are a fundamental class of NN models distinguished by their extraction method of information. In 
contrast to MLPs, which analyze all features through FC layers, CNNs use convolutional layers that focus on 
local regions (referred to as receptive field) during each convolution operation. By sliding the receptive field 
across the input, they extract local information and compile it into a feature map, as shown in Figure 3. This 
process involves globally shared convolutional kernel parameters, significantly reducing the number of 
learnable parameters and improving computation speed through parallel processing. Convolutional kernels 
are categorized as 1D-CNN, 2D-CNN, and 3D-CNN, with the first two CNNs being prevalent in SOC 
estimation. Following the convolution, activation functions and pooling layers extract key features from the 
feature maps. Pooling layers operate locally, applying rule-based operations such as maximum, minimum, 
or mean functions without performing linear transformations.

Various CNN architectures are applied in SOC estimation. Bhattacharyya et al. employed two 2D 
convolutions with a stride of 2 to extract features, followed by an MLP for final estimation, achieving a 
mean absolute percentage error (MAPE) below 0.5% on two datasets with ambient temperatures[22]. This 
CNN-MLP hybrid model has inspired advancements such as ResNet in computer vision. However, there 
are debates that 2D convolutions may obscure temporal relationships among variables[65], leading to the 
preference for 1D-CNNs in later studies to better capture the temporal dynamics of individual variables. 
Bhattacharjee et al. supported this perspective and utilized receptive fields of varying lengths within single-
variable channels to capture multi-scale temporal patterns, later merging these features before applying an 
MLP for the final output[66]. Hannan et al. replaced the MLP with a full CNN for the output layer, creating a 
SOC estimator based on a fully convolutional network (FCN)[67]. Resultantly, it surpasses LSTM, GRU, and 
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Figure 3. Illustration of CNNs. CNNs: Convolutional neural network.

CNN-MLP methods in estimation accuracy, generalization ability, floating point operations per second 
(FLOPs), and runtime speed. Li et al. addressed the correlation between SOH and SOC by first estimating 
SOH with a 3D-CNN, and then combining it with a 2D-FCN for SOC estimators[68]. Mohanty et al. adopted 
a continuous wavelet transform-based CNN (CWT-CNN), leveraging CWT to analyze input signals in both 
time and frequency domains and extract features before CNN-based SOC estimation[69]. This approach 
transforms low-dimensional variable signals into 2D feature maps, leveraging visual networks for analysis, 
achieving an MAE below 0.7%.

CNN-based SOC estimators show significant potential but are primarily utilized for data preprocessing in 
most studies. Table 3 compares various MLP and CNN studies on SOC estimation for LIBs, including 
references, model structures, evaluation methods, window sizes, benchmark comparisons, battery types, 
battery operating temperatures, test datasets, and error ranges.

Basic sequence modeling networks and applications
Since SOC estimation is fundamentally a time-series prediction task, early MLP-based strategies led 
researchers to incorporate fundamental sequence modeling techniques from DL, marking the beginning of 
deep SOC estimators and sparking initial research. This section provides a summary of basic sequence 
modeling techniques derived from MLP and CNN and outlines the development of CNN/RNN networks 
and their combined technologies.

Table 4 summarizes various studies on sequence modeling techniques for SOC estimation of LIBs, detailing 
references, model names, model structures, evaluation methods, window sizes, benchmark comparisons, 
battery types, operating temperatures, test profiles, and error ranges. This comparison allows for the 
evaluation of the effectiveness of various methods and highlights key challenges and advancements in 
sequence modeling techniques.
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Table 3. Comparison of SOC estimation performance between MLP and CNN

Reference Model 
name

Model 
structure/Strategy

Estimation 
mode

Window 
size

Compared 
models Dataset Temperature 

(°C) TestProfile Error 
(%)

[62] DNN MLP NRSS 1 NCR-
PF18650[70] 

US06 
HWFET

MAE < 1

[21] BPNN-
BSA

MLP NRSS 1 RBFNN-BSA 
GRNN-BSA 
ELM-BSA

INR-18650-
20R[4]

0 °C 
25 °C 
45 °C

DST 
FUDS

MAE < 
1.74 
RMAE < 
0.87 
MAPE < 
20.09

[22] CNN CNN-FC Samsung 
18650

15 °C 
25 °C 
45 °C

RMSE < 
0.19 
MAPE < 
1.14

[66] CNN CNN-FC 
Transfer Learning

NRSS 500 LSTM 
GRU

NCR-
PF18650[70] 
LG 18650 
HG2[71]

0 °C 
10 °C 
25 °C

US06 
HWFET

MAE = 
0.81 
(NCR) 
MAX = 
1.78 
(NCR) 
MAE < 
1.20 
(LG)

[67] FCN FCN NRSS 400 GRU 
LSTM 
CNN

NCR-
PF18650[70] 

25 °C 
-20 °C to 25 °C

US06 
HWFET

MAE = 
0.7 
MAX = 
2.96 
MAE = 
1.55 
(v,t.) 
MAX = 
7.63 
(v.t.)

[69] CWT-
CNN

CWT-CNN NRSS INR-18650-
20R[4]

25 °C DST 
US06 
FUDS

MAX < 
0.76 
RMSE < 
1.26

[72] GA-
CNN on 
FPGA

CNN NRSS 30 CNN MAE < 
3

[73] CNN 1D-CNN NRSS GRU NCA-
PF18650ZY 
(Private 
data)

CCCV 
CC

MAE = 
1.62 (32 
type) 
MAE = 
4.35 (8 
type)

[74] NARX MLP RSS 2 BPNN NCA 
(Private 
data)

0.5C 
1C 
2C

MAX < 
3

SOC: State of charge; MLP: multilayer perceptron; CNN: convolutional neural network; DNN: deep neural network; NRSS: non-recursive single-
step; RSS: recursive single step; ELM: extreme learning machine; FC: fully connected layer; BSA: backtracking search algorithm; LSTM: long short-
term memory; GRU: gated recurrent unit; FCN: fully convolutional network; CWT: continuous wavelet transform; NARX: nonlinear autoregressive 
model with exogenous inputs; RSS: recursive single-step; NCA: Nickel-cobalt-aluminum oxide.

Sequence modeling techniques based on RNN and its variants
Following challenges similar to those in the NLP field, various NNs have been developed with memory 
structures. The most common models include RNN, as illustrated in Figure 4A. The figure depicts MLP-
based networks such as simple RNNs (SRNNs)[94], LSTM [Figure 4B][23], and GRU [Figure 4C][24]. This 
subsection will review these models, their variants, and their applications in SOC estimation.
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Table 4. Comparison of SOC estimation methods using sequence modeling approaches

Reference Model 
name

Model 
structure/Strategy

Estimation 
mode

Window 
size

Compared 
models Dataset Temperature 

(°C) TestProfile Error 
(%)

[25] RNN SRNN NRSS 1 16Ah Softclad CC MAX < 
0.1

[75] RNN SRNN NRSS BPNN-FA 
BFNN-FA

NMC 
NCA 
(Private data)

SD 
HPPC

MAE < 
1.43 
(SD) 
MAE < 
0.42 
(HPPC)

[76] NARX 
RNN

SRNN RSS NARX 
BPNN-PSO 
ELM-GWO 
LSTM 
UKF

NCR18650PF 
(Private data) 
INR-18650-
20R[4]

0 °C (INR) 
25 °C (INR) 
45 °C (INR)

CCCV 
(NCR) 
DST (NCR) 
UDDS 
(NCR) 
FUDS (INR)

MAE < 
0.33 
(NCR) 
RMSE 
< 0.49 
(NCR) 
MAE < 
0.29 
(INR) 
RMSE 
< 0.68 
(INR)

[77] RNN SRNN-NARX RMS 30 LSTM-Atten A123-
18650[1]

20 °C 
25 °C 
30 °C 
40 °C 
50 °C

DST 
US06 
FUDS

MAE < 
2.10 
RMSE 
< 2.94

[78] LSTM LSTM-NARX RSS BPNN-PSO 
LS-SVM 
LSTM

18650 
(Private data)

20 °C UDDS 
DST

MAE < 
0.72 
RMSE 
< 0.78 
MAPE 
< 1.28

[79] LSTM 
with 
Attention

LSTM-AM NRSS SVM 
SRNN 
LSTM 
SVM-PF 
SRNN-PF 
LSTM-PF 
LSTM-OP 
BDLSTM

INR-18650-
20R[4] 
NCR-
PF18650[70] 

0 °C (INR) 
25 °C (INR) 
45 °C (INR) 
0 °C (NCR) 
10 °C (NCR) 
25 °C (NCR) 

US06 
DST 
FUDS 
US06 
HWFET 

RMSE 
< 1.02 
(INR) 
MAE < 
0.24 
(NCR) 
+ 

[80] PSO-
LSTM

LSTM NRSS EKF 
LSTM 
PSO-LSTM 
(without noise)

Private data 25 °C CC 
UDDS

MAE < 
0.43 
RMSE 
< 0.58

[81] GA-GRU GRU RMM 
LSTM

US18650VTC 
(Private data)

0 °C 
10 °C 
20 °C 
30 °C 
45 °C

DST 
FUDS 
US06 
BJDST 

MAE < 
0.28 
RMSE 
< 0.22 
MAX < 
2.06

[82] LSTM LSTM NRSS 50 SRNN 
SVR 
RF

NCR-
PF18650[70] 

0 °C 
10 °C 
25 °C

UDDS 
NN

MAE = 
0.63 
(Ave.) 

[83] LSTM LSTM NRSS 1 UKF A123-18650 DST 
FUDS 
US06

MAE < 
2.45

[84] DBLSTM SBLSTM NRSS 100 GRU 
LSTM 
Resnet 
VGG 
MLP

INR-18650-
20R[4]

0 °C 
10 °C 
25 °C

FUDS 
US06

RMSE 
< 0.75

LSTM 
SVMELMBPNN 
RBFNN 
GNN 
EKF 

RMSE 
< 1.9 
(INR) 
MAE < 
2.2 

[85] NAG-Bi-
GRU

BiGRU NRMS INR-18650-
20R[4] 
LG 18650-
HG2[71] 

0 °C 
25 °C 
45 °C

FUDS (INR) 
LA92 (LG) 
UDDS (LG)
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UKF 
PF 
CKF 
AWCPF 
and their 
improved 
methods

(INR) 
RMSE 
< 1.40 
(LG) 
MAE < 
1.13 
(LG) 
MAX < 
5 (LG)

[86] PG-
BiGRU

BiGRU NRSS LSTM 
GRU 
BiGRU 
PIO-BIGRU

NCR-
PF18650[70] 

0 °C 
10 °C 
25 °C

UDDS 
NN

RMSE 
< 1.83 
MAE < 
1.70

[87] SBLSTM SBLSTM NRSS 1 SBSRNN 
SBGRU 

NCR-
PF18650[70] 
INR-18650-
20R[4] 

0 °C 
10 °C 
25 °C

US06 
HWFET 

MAE < 
1.2 
(NCR) 
MAX < 
6 
(NCR) 
MAE < 
3 (INR) 
MAX < 
6 (INR)

[88] BiLSTM-
PANN

BiLSTM MRSS 30 FNN 
LSTM 
GRU 
BiLSTM 
LSTM-SA 
BiLSTM-ED 
and some 
with PANN

INR-18650-
20R[4] 

0 °C 
25 °C 
45 °C

FUDS 
DST 
US06

RMSE 
< 2.13

[89] LSTM 
with 
stress

LSTM NRSS 100 pouch-type 
(Private data)

Train: Test 
1:3 
1:1 
3:1

RMSE 
< 5 
(1:3) 
RMSE 
< 4 
(3:1)

[90] OPSLTSM LSTM NRSS 1000 TCN 
RF 
SVM 
LSTM 
GRU 
CWRNN 
PCA

NCR-
PF18650[70]

0 °C 
10 °C 
25 °C

US06 
HWFET 
UDDS

RMS < 
2.14

[91] MSFGRU GRU NRMS 360 LR 
LSTM 
GRU 
Transformer 
PatchTST

EV-driven 
data 
(Private data)

MAE < 
0.61

[92] LSTM-TL LSTM NR AEKF 
SVM

NCM data 30 °C UDDS MAE < 
5.8 
RMSE 
< 3.9

[93] RNNs-TL RNNs NRSS 30 LSTM 
BiLSTM 
GRU 
BiGRU 
different TL 
improvements

LG 18650-
HG2[71] 
INR-18650-
20R[4] 
PoliMi 
(Private data)

-20 °C 
-10 °C 
0 °C (INR) 
10 °C 
25 °C (INR) 
35 °C (PM) 
45 °C (INR)

UDDS 
US06 
LA92 
DST 
FUDS 
BJDST

MAE = 
1.5 
(INR, 
TL5) 
MAE = 
2.2 
(PM, 
TL6) 
MAE = 
1.1 (LG)

SOC: State of charge; RNN: recurrent neural network; SRNN: simple recurrent neural network; NRSS: non-recursive single-step; NCA: nickel-
cobalt-aluminum oxide; NARX: nonlinear autoregressive model with exogenous inputs; RSS: recursive single-step; PSO: particle swarm 
optimization; ELM: extreme learning machine; GWO: grey wolf optimizer; LSTM: long short-term memory; UKF: unscented kalman filter; RMSE: 
root mean square error; SVM: support vector machine; EKF: extended kalman filter; GRU: gated recurrent unit; SVR: support vector regression; 
MLP: multilayer perceptron; GNN: graph neural network; CKF: cubature kalman filter; BiLSTM: bidirectional long short-term memory networks; 
ED: encoder-decoder; TCN: temporal convolutional network; PCA: pearson correlation; EV: electric vehicles; FNN: feedforward neural network.
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Figure 4. Structure of RNN and its variants: (A) RNN; (B) LSTM; (C) GRU. RNN: Recurrent neural network; LSTM: long short-term 
memory; GRU: gated recurrent unit.
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SRNNs are designed to process sequential input by sharing the same set of parameters across time steps and 
iteratively updating the hidden states, enabling memory functionality. In each RNN unit, the input array, 
combining the historical hidden state ht-1 and input vector xt, undergoes linear transformation and 
nonlinear activation based on the Tanh function, producing the hidden state for the current time step ht. 
The ht dimension, determined by the preset hidden layer size, may not align with the required output 
dimension, necessitating an MLP for decoding the hidden state to generate the final network output.

As the most basic RNN, the effectiveness of SRNN in SOC estimation has been extensively confirmed. 
Liu et al. developed a single-step, non-recursive SOC estimator using SRNN[25]. Lipu et al. applied this 
method to LiNi1−x−yCoxMnyO2 (NCM) and LiNi1−x−yCoxAlyO2 (NCA) batteries and proposed a 
hyperparameter optimization technique using the firefly algorithm[75]. After the hyperparameter 
optimization, SRNN performed MLP in predictive accuracy on two datasets. The inherent recursive nature 
of RNNs makes them ideal for recursive SOC estimation, inspiring numerous early studies in this area. Liu 
et al. developed a NARX-based SOC estimator using SRNN and used the value of impedance as an input 
variable[74]. Wang et al. employed a sliding window approach to incorporate multiple historical 
measurements, leveraging the memory of RNN to capture time-varying patterns[76]. They improved this 
method with a dynamic window size that adapts to data fluctuations, reducing the maximum RMSE to 
0.34%, outperforming the fixed window approach. Sadykov et al. showed that SRNN estimators based on 
recursive strategies had half the error rate of non-recursive models when handling untrained driving 
dynamics[77]. While the dynamic window length in the model of Wang et al. is unspecified, judging from the 
lengths of comparison models of 225 and 450, it likely exceeds 100[76]. Considering that the total length of 
the training samples is only 3,000, with each estimation using about 1/30 of the total data processed per 
estimation, its feasibility could be limited in certain contexts.

SRNNs face a major limitation in retaining short-term important information. While the hidden state ht 
generated by SRNN at time step t should reflect earlier input changes, deep or long sequences of SRNN 
experience issues due to activation functions such as tanh reaching saturation zone. In this state, their 
derivative approach zero, causing gradients to diminish during backpropagation. As the network deepens, 
weights in the earlier layers update minimally and are overshadowed by new information. Conversely, when 
the derivative of the activation function exceeds 1, particularly in the non-saturated region of the activation 
function, weight updates can be excessively fast. In long sequences, large gradients can escalate significantly 
through multiple layers, leading to the exploding gradient problem. Both issues hinder the effective training 
and application of SRNNs.

To overcome the limitations of SRNNs, LSTM and GRU are introduced, which incorporate gated 
mechanisms, regulating information flow within NNs through “gates” that control data transmission. An 
LSTM unit features three gates and, as opposed to the computations in SRNN, those in an LSTM unit retain 
a hidden state ht with short-term memory and add a context vector or cell state ct for long-term memory. 
Upon receiving the input for a given time step, the unit updates the long-term memory ct using the Input 
gate and Forget gate. Specifically, the Input gate computes an input weight vector based on the current 
input xt and the previous hidden state ht-1, determining the relevance of the input data to be stored in the cell 
state ct. The Forget gate generates a forgetting weight vector, determining through a dot product, while 
holding information in the cell state ct should be discarded or forgotten. After updating the long-term 
memory ct, the Output gate retrieves the short-term memory ht needed for output. It computes a third 
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weight vector using the current input xt and the previous hidden state ht-1, and then multiplies the output 
weight by the long-term memory ct to generate the final output ht.

The solution to vanishing and exploding gradient issues with gated mechanisms is simple: minimize the 
number of times the gradient passes through nonlinear layers and regulate their derivatives of nonlinear 
layers within a suitable range. In LSTM, the cell state is directly transmitted to subsequent layers without 
alteration, enabling identity mapping. Consequently, this mechanism facilitates smoother information flow 
in deep networks, addressing the vanishing and exploding gradient problems. Identity mapping preserves 
long-term memories even with long sequences, while the gated mechanism filters irrelevant information 
and retains valuable data, effectively addressing memory coverage issues. The gated mechanism controls 
information flow through weights calculated by the sigmoid activation function, which adjusts gate 
openness between 0 and 1. This regulation helps keep gradients within a manageable range. With a 
maximum derivative of 0.25, the sigmoid function limits the scale of weight updates, preventing excessively 
large changes in weights even when gradients are large.

LSTM introduces significantly more learnable parameters than SRNN, complicating training. To address 
this issue, GRU, a simplified variant of LSTM and a form of RNN, maintains the use of gated mechanisms 
to tackle gradient problems and long-term memory limitations while simplifying the structure of LSTM to 
include only two gates. In the Update Gate, the weights are computed based on the current input xt and the 
prior hidden state ht-1, determining the retention or replacement of the previous state. Similarly, the Reset 
gate calculates weights to control the influence of the prior hidden state on the current candidate state, 
generating short-term memory through the generation of the candidate hidden state ht. Finally, this short-
term memory is integrated into the long-term memory ht.

In GRU networks, the long-term memory ht, akin to the cell state ct in LSTM, is managed differently. In 
contrast to LSTM, which outputs short-term information while keeping the cell state hidden, GRU outputs 
all information across periods. This simplification arises from two assumptions. First, GRU believes that 
historical long-term memories can be retained and updated without distinguishing short-term memories. 
Secondly, when LSTM updates the cell state, the input increment and the legacy of the historical cell state 
are in a zero-sum relationship, so there is no need to calculate two sets of weights separately. As a result, 
GRU combines these gates into a single update gate, reducing parameter complexity and accelerating 
convergence. With fewer parameters, faster convergence, and improved efficiency, GRU has become a 
widely used technique in SOC estimation tasks.

LSTM and GRU, two prominent RNN variants, are commonly used in deep SOC estimators. Abbas et al. 
designed LSTM-based SOC estimators using the NARX model of hyperparameters such as input delay, 
feedback delay, and hidden layer size[95]. They proposed a Bayesian regularization optimization approach, 
which outperformed the “trainlm” training function in accuracy. Wei et al. improved the error reduction to 
within 0.78%[78]. Chemali et al. and Li et al. developed single-step non-recursive SOC estimators using 
LSTM, demonstrating excellent accuracy of LSTM in SOC estimation compared to SRNN[79,96]. They also 
found that increasing the scale of the LSTM hidden layer enhanced estimation accuracy. Li et al., Jiao et al. 
and Duan et al. achieved comparable results using GRU[97-99]. Key LSTM parameters, such as hidden layer 
size, learning rate, and iteration count, were crucial to these outcomes. Ren et al. developed a PSO-based 
optimization algorithm to align LIB data characteristics with the network topology[80]. They also introduced 
random noise in the input layer during the training to enhance the network’s resistance to interference. The 
resulting PSO-LSTM network outperformed others, achieving a 0.43% reduction in MSE for isothermal 
estimation. Chen et al. applied genetic algorithms to optimize GRU hyperparameters, achieving an 
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impressive RMSE of 0.07%[81]. Ma et al. employed a sliding window technique to develop an LSTM-based 
SOC estimator[82]. In contrast to the work by Wang et al., Ma et al. significantly reduced the window length, 
with the optimal length set to just 50 seconds, resulting in a slight decrease in estimation accuracy but still 
within an acceptable range[76,82].

Certain variations are also commonly used in SOC estimation, primarily stack-RNNs and bidirectional 
RNNs (BiRNNs). Stack-RNNs compute hidden layer states for sequential inputs repeatedly, using the 
output from the upper layer in subsequent iterations. BiRNNs, on the other hand, process both forward and 
reverse sequences of inputs simultaneously, combining the resulting hidden states using a sigmoid function. 
The Stack-BiLSTM merges both variations, with the bidirectional layer enabling the model to capture 
temporal features from both directions, while the stacked layer distributes parameters to prevent excessively 
large single hidden layer dimensions, enhancing the nonlinear processing of input data[87].

Yang et al. first applied Stack-LSTM to SOC estimation, developing a single-step continuous estimator that 
outperformed UKF in accuracy[83]. However, deviations appeared post-tests at 60% and 80% SOC states after 
the 250 s, and significant errors arose when the voltage mode fluctuated. Hannan et al. introduced a Stack-
GRU-based estimator, achieving an RMSE error metric of 0.65%, surpassing Stack-LSTM[84]. Zhang et al. 
validated BiLSTM as a viable SOC estimator, though its RMSE remained below 2.5%[85]. Yang et al. 
optimized BiLSTM parameters with Bayesian optimization algorithms[100]. Chen et al. enhanced BiGRU 
hyperparameters using an improved pigeon-inspired genetic algorithm, yielding an RMSE estimation error 
of under 1%[86]. Bian et al. demonstrated the efficacy of Stack-BRNNs, with Stack-BiLSTM achieving 
estimation accuracies of 0.46% and 0.73% in isothermal and temperature-varying discharge tests, 
outperforming single-mechanism LSTM networks[87]. However, Ma et al. found that stacking did not 
improve the accuracy or stability of LSTM-based NARX estimators[82].

In addition to expanding the number of LSTM or GRU layers in a single unit, ensemble learning can 
estimate the same set of inputs using multiple RNN units in parallel, combining their outputs for a final 
SOC estimation value. Manoharan et al. employed this approach, with the BiLSTM-based SOC estimator, 
and achieved an RMSE under 0.74% in three dynamic discharge tests at 45 °C[88].

LSTM and GRU-based estimators outperform RNN methods. With optimized hyperparameters, their 
performance is similar; however, the GRU structure is simpler, requiring fewer training samples, and 
facilitates long-term memory updates via the Forget and Input gates. Therefore, there is no clear advantage 
between LSTM and GRU, as their performance differences are often minimal. Switching networks or 
adding bidirectional structures yields less improvement than hyperparameter tuning and stacking, with final 
outcomes dependent on the specific dataset and training methods.

Further exploration of sequence modeling strategies
SOC estimators, whether based on physical principles, models, or data-driven approaches, require specific 
parameters for different battery types with varying physicochemical compositions. However, as lithiation 
characteristics of batteries evolve with time or usage conditions, these parameters may lose effectiveness, 
causing errors in SOC estimation. Data-driven DL estimation algorithms, particularly NNs, heavily rely on 
the quality and quantity of training data, significantly increasing costs for parameter calibration compared 
to model-based methods. While RNNs are commonly used for sequence modeling, challenges remain in 
developing effective data-driven SOC estimators. Since changes in the physicochemical properties of a 
battery during charging and discharging introduce noise interference, gathering real SOC data required for 
training DL learning models for SOC is both costly and time-consuming. To overcome these issues, various 
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RNN-based strategies, akin to MLPs, have been explored for SOC estimation. Figure 5 illustrates 
improvements in sequence modeling strategies.

To address the first issue, incorporating new input variables has been suggested beyond the typical three 
input variables of current, voltage, and battery temperature to enhance deterministic measurement 
accuracy. Jiang et al. explored the relationship between battery stress and SOC, replacing the temperature 
variable with battery stress as input for Stack-LSTM, resulting in a mechanics-based SOC estimation 
approach[89]. While the improvement in accuracy was minimal, this method achieved comparable 
performance to longer input windows with shorter ones. Also, during dynamic charging and discharging 
processes, stress changes more gradually than other variables, capturing the overall effect of dynamic 
processes and reducing transient noise, thereby improving the robustness of estimators against battery 
measurements.

Due to the high cost of measuring new variables such as stress, most studies opt to derive additional input 
variables from existing ones to enhance reliability through comprehensive data. Some works focused on 
mechanistic approaches. For example, Chen et al. introduced the voltage mean of window data as an 
additional EI-LSTM (extended input LSTM) input, significantly improving the estimation accuracy during 
high-temperature dynamic discharge[101]. This concept aligns with Chemali et al., both using the mean to 
represent the charging and discharging behaviors over time[62]. Yu et al. expanded the input to the DL model 
by extracting physical variables from raw measurements using a simplified electrochemical model[102]. The 
results showed that OCV and reaction polarization resistance improved the LSTM-based SOC estimation. 
Compared to the original input model, the extended input reduced all three error metrics by over 50%, 
though this improvement remains relatively modest when compared to other studies.

A common approach to address this issue is employing ML methods to extract features from the original 
input data. For example, Wu et al. applied random forest methods to reduce the dimensionality of battery 
aging and thermoelectric characteristics before feeding the data into LSTM and GRU networks for SOC 
estimation[103]. Jayaraman et al. utilized PCA for data reduction prior to inputting it into the LSTM[90]. 
Liu et al. identified six key variables strongly correlated with SOC through Pearson correlation analysis on 
real-world driving data, then adaptively combined these features using dynamic weights before inputting 
them into the GRU network[91]. This approach effectively predicts the SOC of EV batteries within 1-5 min, 
achieving an RMSE error lower than that of the Transformer and the PatchTST network - the top 
performers in standard time-series tasks. This concept has since been expanded, leading to numerous 
studies that use DL methods for feature extraction prior to inputting data into LSTM. Liu et al. introduced 
an LSTM-based estimator that activates a specific sub-network for the current SOC stage, based on the 
previous stage’s output, while other sub-networks remain dormant[104]. This strategy focuses on the relevant 
stage characteristics, minimizing input interference. These approaches, categorized as temporal 
representation[105,106], divide the entire framework into two stages: “temporal representation” and “temporal 
prediction.” Later, as illustrated in Figure 6, these methods are superseded by autoencoders (AEs), CNNs, 
and other advanced techniques, establishing the third major class of SOC estimators based on the ED 
architecture.

Some studies demonstrated that LSTM effectively manages noise without requiring additional input 
variables. For example, Almaita et al. utilized LSTM to estimate the SOC of utility-scale LIB storage systems, 
achieving an MSE below 0.62%[107]. Despite fewer epochs, the LSTM outperformed an MLP model, reducing 
the MSE by a factor of 11 and exhibiting superior capability to capture battery dynamics. Almaita et al. 
demonstrated that the inherent noise resistance of LSTM remains effective even when transitioning from 



Page 23 of Wu et al. J. Mater. Inf. 2025, 5, 18 https://dx.doi.org/10.20517/jmi.2024.84 38

Figure 5. Sequential approaches for estimating SOC of batteries. Key strategies include RNN-based modeling (LSTM, GRU, BiLSTM, 
BiGRU), input variable optimization (battery stress, average voltage, physical variables), feature extraction (random forest, PCA), and 
model optimization (noise immunity, Encoder-Decoder structures, transfer learning). SOC: State of charge; LSTM: long short-term 
memory; GRU: gated recurrent unit; BiLSTM: bidirectional long short-term memory networks; PCA: pearson correlation; RNN: recurrent 
neural network.

Figure 6. Structure of ED based on a GRU-GRU framework. GRU: Gated recurrent unit; ED: encoder-decoder.

single cells to complex battery packs, validating its reliability as a SOC estimator[107].

Addressing the second issue, transfer learning, initially adopted in image recognition to mitigate annotation 
costs, has been successfully applied to SOC estimation. Liu et al. employed transfer learning to fine-tune 
LSTM output layer parameters using minimal data from the NCM battery, achieving accurate SOC 
estimations[92]. This method reduced the required data volume by 70%, significantly enhancing the 
practicality of deep estimators. Wang et al. utilized transfer learning for GRU-based estimators, cutting the 
training time for target batteries by nearly 4 min[108]. Eleftheriadis et al. analyzed the impact of eight different 
transfer learning techniques on four different methods for SOC estimation, such as LSTM, GRU, BiLSTM, 
and BiGRU[93]. Comparative results with trained models optimized via Bayesian hyperparameter tuning 
demonstrated that hybrid architectures and adaptive hidden state techniques are always one of the most 
effective technologies in both accuracy and computation time. Che et al. proposed a multi-task learning 
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approach for joint prediction of SOC, state of energy (SOE), and future temperature, emphasizing the role 
of transfer learning[109]. Inspired by Caruana, they employed shared layers to extract hidden features of 
different battery states and task-specific layers to achieve accurate multi-state monitoring[110]. By 
incorporating a transfer learning strategy to retrain specific NN layers, the method effectively adapts to 
varying discharge profiles, environmental temperatures, and aging conditions, significantly enhancing the 
model’s generalization across diverse application scenarios.

In conclusion, RNN-based networks offer a simple structure with significant effectiveness, particularly in 
SOC estimation. LSTM and GRU networks, with their inherent noise resistance and strong sequence 
modeling capabilities, have proven to be effective for a range of research applications. As a result, they 
remain widely applied in SOC estimation. However, despite extensive research, the limitations of RNNs 
have constrained further improvements in the accuracy of SOC estimation. Additionally, the emergence of 
ED structures in other fields has highlighted the benefits of combining various networks, leading to more 
robust performance under complex load conditions and disturbances than standalone RNNs do.

Sequence modeling techniques based on CNN
Similar to MLPs, CNNs lack inherent historical memory but can sequentially process data through the 
sliding of the receptive field, offering limited temporal functionality. On this basis, temporal convolutional 
networks (TCNs) extend CNNs by introducing causal convolution and residual links, creating efficient 
time-series prediction models. As opposed to RNNs derived from MLPs, TCNs provide memory 
capabilities with lower complexity costs and avoid vanishing or exploding gradients issues. Guo and Ma 
found that TCNs outperformed FCNN, LSTM, and GRU in robustly estimating SOC under noisy battery 
conditions[111].

CNNs offer deployment advantages due to their efficient convolutional mechanisms, with most learnable 
parameters concentrated in the convolutional kernels. In contrast to the gate structures in SRNN and its 
variants, CNNs require fewer parameters, enabling easier device-side deployment and hardware 
acceleration. For example, Guo and Li implemented a trained FCNN on FPGAs[72]. Mazzi et al. compared 
CNNs and GRUs, deploying a more accurate and less complex 1D-CNN on an STM32 embedded chip[73]. 
Using the STM32Cube AI framework, the 1D-CNN quantification model achieved an inference speed of 
0.971 ms. For complex TCNs, Pau et al. demonstrated that, although TCNs initially required the most 
MACCs and had the longest inference time on two microcontroller unit (MCUs) without hardware 
acceleration, STM32MP257F-EV1 optimization significantly improved the performance[112]. The accelerated 
parallel TCN achieved the lowest MSE and fastest inference time among tested networks, making it the 
most efficient solution for SOC estimation in EV batteries.

ED-based sequence modeling techniques
RNNs and CNNs are commonly employed for sequence modeling in SOC estimation, but their fixed 
hidden state size often exceeds the required estimation steps. To address this issue, a FC layer processes the 
final hidden state vector to generate outputs, forming an ED framework. This NNs-MLP structure enables 
flexible estimation lengths by adjusting the decoding of the output size of MLP. The ED structure effectively 
reads and generates sequences of arbitrary length, which is more challenging for traditional networks.

Viewed through the lens of information compression and restoration, stacks of multiple MLPs and CNN 
layers can be seen as simplified versions of the ED structure, despite differing design philosophies. The 
Encoder handles information compression, extracting relevant features from input data, while the Decoder 
reconstructs or predicts output using these features. ED-based estimators can be classified into CNN-CNN, 
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RNN-RNN, and CNN/AE-RNN categories, depending on the networks used in the Encoder and Decoder.

CNN-CNN and RNN-RNN
The design philosophy of CNN-CNN and RNN-RNN ED structures is similar: both use MLPs and CNNs to 
capture long-term dependencies and sequential patterns through specialized designs, with Encoding and 
Decoding performed by the same structure. This approach offers the advantage of structural consistency, 
simplifying the model design and training. It facilitates hyperparameter optimization algorithms and 
embedded deployment, as the encoder and decoder can share similar configurations.

Significant research has focused on SOC estimation using RNN-ED structures. Cui et al. applied an LSTM-
based ED model to learn the nonlinear relationship between SOC and measurable current and voltage[113]. 
Bian et al. employed BiLSTM as a recursive unit to capture temporal dependencies of sequence data in both 
the Encoder and Decoder[114], enhancing and improving estimation accuracy, as depicted in Figure 7A. 
Among various recurrent units, such as SRNN, GRU, and LSTM, the bidirectional structure typically yields 
the highest estimation accuracy, effectively capturing battery dynamics and delivering precise SOC sequence 
estimation across diverse ambient temperature conditions. Research shows that the ideal input sequence 
length improves the model’s learning capacity and prediction precision, while the model’s depth, 
determined by the number of hidden layers, also influences the final output quality. This finding was 
corroborated by Terala et al.[115]. Ma et al. enhanced the LSTM unit, introducing the PLSTM, which 
integrates state information and processes it together[116]. Using this approach, the sequence-to-sequence 
mapping with process information (SSMPI) model was developed, which leverages empirical process data 
between input sequence steps, beyond just the relationship between multi-step measurable parameters and 
SOC. It also incorporated a two-stage pre-training approach to boost the feature extraction capabilities of 
the model, enabling it to tackle challenges from diverse load configurations and fluctuating sampling 
frequencies. The first phase used an unsupervised AE pre-training technique, enhancing the model’s ability 
to learn sequence-to-sequence mappings and improve generalization. The second phase involved supervised 
training for parameter fine-tuning. Experimental results suggested that, even under complex unknown 
dynamic load profiles and varying sampling frequency rates, the SSMPI model achieved precise SOC 
estimation with certain robustness.

Research on SOC estimators using CNN-ED is limited. The work by Fan et al. was the only one to apply the 
U-Net architecture, originally designed for image segmentation to SOC estimation, as demonstrated in 
Figure 7B[117]. The convolutional layer structure of this method accommodates variable-length input data 
and produces SOC estimation of corresponding lengths. By incorporating symmetric padding convolution 
layers to minimize boundary effects and using total variation loss functions to improve smoothness and 
reduce maximum errors, the study tackled the inaccuracies of the initial estimation of traditional SOC 
estimators and enhanced both accuracy and stability across varying input lengths through the CNN 
structure.

As discussed above, the use of RNN-ED in SOC estimation significantly exceeds that of CNN-ED, primarily 
for two main reasons. First, RNNs were built on their early dominance in early sequence modeling. They 
are adept at handling temporal dependencies in sequence data, addressing challenges faced by early models 
with long sequences, which made them the dominant approach until the late 2010s. With the rise of DL 
platforms such as TensorFlow and PyTorch, RNNs remained prevalent, particularly in domains where they 
had already proven effective. Consequently, in the early 2020s, RNNs continued to be widely used in 
sequence modeling tasks. The slow adoption of new ML technologies in SOC estimation ensures that once a 
technique is established and researchers are proficient with it, its usage remains widespread for an extended 
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Figure 7. Structures of RNN-ED (A) and CNN-ED (B) SOC estimators[114,117]. Elsevier Copyright 2024. RNN: Recurrent neural network; 
CNN: convolutional neural network; ED: encoder-decoder; SOC: state of charge.

period.

The second reason is that CNN-based sequence data processing technologies emerged later, and CNN-
based ED networks were primarily focused on the image field, making their application to SOC estimation 
more complex and costly. Among CNN-EDs models such as U-Net, DeepLab v3+, and Mask R-CNN, only 
U-Net has been used for SOC estimation[117]. While CNNs are very effective in handling fixed-length data 
and can process sequences through techniques such as one-dimensional convolution, they are generally less 
suited than RNNs for capturing long-term dependencies in sequence data. In contrast to CNN-ED, RNN-
ED models are more widely employed in tasks such as SOC estimation, which require time series analysis. 
In SOC estimators based on RNN-ED, SRNN networks are no longer employed, as LSTM and GRU 
models, which incorporate gating mechanisms, have proven to overcome the defects of SRNN since 2019.

CNN/AE-RNN
In addition to the standard RNN-ED and CNN-ED architectures, the CNN/AE-RNN model is another 
widely used ED structure. Three factors drive the use of this asymmetric model in SOC estimation. First, 
ML methods for feature extraction from raw input data are highly effective[90,91,103], with some methods even 
surpassing[91] Transformer models and top implementations such as PatchTST in time series prediction. 
This “temporal representation-temporal prediction” two-stage approach is effectively carried forward in ED 
through the asymmetric structure. Using AEs, CNNs, and other NNs for temporal representation simplifies 
training and deployment within a unified framework and environment, enhancing practical network 
applications. While RNN-based estimators and their variants meet current accuracy requirements, they lack 
sufficient internal filtering capabilities, struggling to handle local disturbances during dynamic battery 
loading. This limitation leads to significant peaks in estimation errors, with MAX values substantially larger 
than MAE and RMSE. Additionally, although CNNs excel at capturing local features, RNNs, particularly 
those using gating mechanisms such as LSTM or GRU, are better suited for modeling long-distance 
dependencies. The CNN/AE-RNN structure leverages the strengths of both networks, with CNN/AE 
extracting local time-varying or spatial features and RNN capturing long-term dependencies. Alternatively, 
specialized CNNs such as TCNs can replace RNNs, forming CNN-TCN estimators (which can actually be 
classified as CNN-ED). However, this approach has not yet been explored in SOC estimation.
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Bhattacharjee et al. simplified and expanded the use of CNN in the Encoder of CNN/AE-RNN by replacing 
varying receptive fields with fixed-length fields to independently extract time-varying information across 
different channels[66]. For extracting time-varying features from a single channel, both 1D-CNN and 2D-
CNN can be utilized. For example, Ardeshiri et al. converted battery signals into multi-channel images, 
applied 2D-CNN for feature extraction and then employed stacked bidirectional LSTM networks 
(SBiLSTM) to capture temporal sequence dependencies, achieving precise SOC estimation under varying 
ambient temperatures[118]. Bian et al. introduced a multi-channel CNN (MCNN) utilizing 1D-CNNs for 
multi-scale feature extraction and fusion, followed by BiLSTM-based bidirectional time learning in the 
decoder stage, as demonstrated in Figure 8[65]. This approach effectively captures local invariant 
characteristics and time dependencies in battery data, demonstrating superior SOC estimation performance 
across multiple public LIB datasets under both stable and fluctuating ambient temperatures. Shen et al. 
developed the source-free temperature transfer network (SFTTN) framework for passive SOC estimation, 
leveraging pre-trained active models and target data through a 2D-CNN-BiLSTM network to overcome 
challenges of distribution differences and data scarcity in cross-domain scenarios[119]. Extensive experiments 
confirmed that SFTTN outperforms or matches other methods in both fixed-temperature and cross-domain 
SOC estimation under varying ambient temperatures.

The use of AEs as encoders, similar to CNN, is aimed at feature extraction and denoising. Chen et al. 
applied a denoising AE (DAE) in the encoder to extract key data features, reduce noise, and expand the 
measurement dimensionality of battery data[120]. They then used the processed data to train a GRU-RNN, 
improving the accuracy and robustness of SOC estimation. The DAE enhanced the ability of GRU to 
capture the nonlinear relationship between the data sequence and SOC. Savargaonkar et al. proposed a SOC 
estimator based on uncorrelated sparse AE with LSTM (USAL)[121]. This method leverages sparse AE and 
LSTM’s strengths, with the AE in USAL generating effective SOC encoding while reducing multicollinearity 
to identify significant long and short-term features, aiding LSTM in efficiently modeling time-series data.

ED-based SOC estimators enhance estimation accuracy and robustness, but their network components face 
limitations due to spatial and temporal constraints. In the ED structure, the encoder compresses the entire 
input sequence into a fixed-length context vector, which must carry sufficient information for the decoder 
to generate output. However, for long sequences, a single vector may not encapsulate all necessary details, 
creating an information bottleneck. While LSTMs can form long-term memories, they may struggle to 
capture distant dependencies. Similarly, CNNs, which use a sliding window approach, are restricted by the 
local receptive field and mainly capture local information, whereas global information is crucial in SOC 
estimation. Additionally, RNNs face challenges with network interpretability. These issues can be mitigated 
by incorporating an important structure.

Summary
Table 5 summarizes various studies on SOC estimation of LIBs using ED structures, with detailed 
references, model names, model architectures, evaluation methods, window sizes, benchmark comparisons, 
battery types, battery operating temperatures, test profiles, and error ranges for each approach. This 
provides a comprehensive framework for assessing the performance of different methods and provides key 
insights into the challenges of ED modeling and potential future development.

This review has traced the evolution of SOC estimators, initially without attention mechanisms. Network 
structures have advanced from MLP to CNN/RNN, and then later to ED networks combining both CNN 
and RNN, resulting in increased complexity, more learnable parameters, and improved overall accuracy. 
Early attention-based models augment existing networks to address memory decay, while later research 
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Table 5. Comparison of SOC estimation methods using ED structures

Reference Model 
name

Model 
structure/Strategy

Estimation 
mode

Window 
size

Compared 
models Dataset Temperature 

(°C) TestProfile Error 
(%)

[113] ED LSTM-LSTM-FC NRSS 50 LSTM 
GRU

INR-18650-
20R[4]

0 °C 
25 °C 
45 °C

FUDS 
DST 
US06

MAE < 
0.69 
RMSE < 
0.86

[114] BLSTM-
ED

BLSTM-BLSTM NRMS 40 SRNN-ED 
GRU-ED 
LSTM-ED

NCR-
PF18650[70]

-20 °C 
-10 °C 
0 °C 
10 °C 
25 °C

US06 
HWFET

MAE < 
2.87 
MAX < 
6.39

[116] SSMPL PLSTM-PLSTM NRMS 10 LSTM satellite battery 
(Private data) 
INR-18650-
20R[4]

0 °C 
25 °C 
45 °C

FUDS 
US06 
BJDST

MAE < 
1.45

[117] U-Net U-Net 
(CNN-ED)

NRMS EKF 
RNN

NCR-
PF18650[70]

-20 °C 
-10 °C 
0 °C 
10 °C 
25 °C 
10 °C -25 °C 
-20 °C -10 °C

US06 MAE < 
1.1 
RMSE < 
1.4 
MAX < 
7.4 
MAE < 
1.2 
(v.t.) 
RMSE < 
1.5 
(v.t.) 
MAX < 
5.0 
(v.t.)

[118] CNN-
SBLSTM

CNN-SBLSTM NRSS 20 NCR-
PF18650[70] 
Lishen 
LP2770102AC 
(Private data)

0 °C 
25 °C 

US06 
HWFET

MAE < 
0.54 
MAX < 
3.39

[65] MCNN-
BLSTM

CNN-BLSTM NRMS 128 MCNN-
BSRNN 
MCNN-
BGRU 
MCNN-
LSTM 
MLP 
GRU 
LSTM 
LSTM-ED 
SVM 
CNN-GRU 
CNN-LSTM

NCR-
PF18650[70] 
INR-18650-
20R[4] 
A123-18650[1] 

-20 °C 
-10 °C 
0 °C 
10 °C 
25 °C 
10 °C -25 °C 
-20 °C -10 °C

LA92 (NCR) 
UDDS (NCR) 
BJDST (INR) 
US06 (INR) 
FUDS (INR) 
DST (A123) 
US06 (A123) 
FUDS (A123)

MAE < 
1.01 
(NCR) 
RMSE < 
1.61 
(NCR) 
MAX < 
5.27 
(NCR) 
MAE = 
0.98 
(NCR, 
v.t.) 
MAE < 
1.08 
(INR) 
RMSE < 
1.39 
(INR) 
MAX < 
3.04 
(INR) 
MAE < 
0.82 
(A123) 
RMSE < 
1.36 
(A123) 
MAX < 
2.53 
(A123)

GRU 
LSTM 
AUKF 

NCR-
PF18650[70] 
LG 18650-

-20 °C 
-10 °C 
0 °C 

Other temp 
to 25 °C 
Constant 

MAE = 
4.17 
(temp 

[119] SFTTN CNN-LSTM-FC 
With TL

NRSS 256
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EIS-GPR HG2[71] 
A123-18650[1]

10 °C 
25 °C 
30 °C 
40 °C 
50 °C

temp to vary 
NCR to LG 
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Figure 8. Proposed MCNN-BRNN architecture for SOC estimation[65]. (A) Multiscale learning; (B) Intercorrelation learning; (C) 
Bidirectional learning; (D) Estimation. Elsevier Copyright 2024. MCNN: Multi-column convolutional neural network; BRNNs: 
bidirectional recurrent neural network; SOC: state of charge; LIB: lithium-ion battery.

introduces Transformer models with attention layers for SOC estimation, achieving strong performance in 
time series tasks. Despite this obstruction, many studies still integrate these models with Transformers to 
enhance SOC estimation, a trend likely to persist.

Early SOC estimation research focused on MLP and RNN, establishing three basic modeling approaches for 
practical SOC estimation tasks. Later studies incorporated true value inputs from standard time series 
predictions, but these models lack practical relevance and are difficult to compare with existing studies. 
Therefore, when building deep SOC estimators, it is essential to critically assess the three modeling 
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strategies mentioned in the “SOC estimation task design” section, as they remain fundamental in the short 
term.

The initial phase of research encompassed a wide range of training methods, including hyperparameter 
optimization through advanced intelligent optimization algorithms, rapid multi-battery and multi-scenario 
model generation based on transfer learning, and the “unsupervised pre-training” along with “supervised 
fine-tuning”[116] approach. These strategies not only enhance modeling accuracy and stability but also 
accelerate the creation of deep estimators for new estimation, reducing the need for extensive data collection 
and lengthy training periods. Despite these advancements, practical deployment of SOC estimators still 
faces significant challenges, particularly when applied across varying battery chemistries and pack 
configurations, such as lithium-ion, nickel-metal hydride (NiMH), and lead-acid batteries, which exhibit 
unique OCV-SOC characteristics. For instance, LIBs typically show nonlinear OCV-SOC relationships with 
distinct plateau regions, while NiMH and lead-acid batteries may have more linear profiles. These 
differences are further complicated by environmental factors, including temperature fluctuations and aging 
effects, which alter the OCV-SOC curve over time and under different operating conditions[125].

In battery packs, the issue of cell inconsistencies becomes particularly prominent. Factors such as 
manufacturing differences, uneven aging, and varying usage conditions lead to disparities in individual cell 
SOCs, which propagate estimation errors at the pack level. Some methodologies, including fuzzy adaptive 
federated filtering[125] and GPR[60], have been developed to address these challenges. These approaches 
leverage multi-source data fusion and adaptive estimation frameworks to improve accuracy and fault 
tolerance in complex systems. However, achieving universally robust SOC estimation frameworks that 
effectively address these cross-chemistry and cross-configuration challenges remains an open research 
question.

SUMMARY AND OUTLOOK
This work primarily reviews the research progress in SOC estimation of LIBs, focusing on both traditional 
ML techniques and DL-based methods. In traditional ML, we reviewed the application and limitations of 
KNN, Decision trees, SVM, ELM, and GPR for SOC estimation. While effective in certain contexts, these 
methods require extensive feature engineering and are sensitive to parameter choices, ultimately becoming 
computationally intensive with large datasets. Their performance is often hindered by battery aging and 
nonlinear dynamics. In contrast, DL technology and methods, particularly sequence models such as RNN, 
LSTM, and GRU, have shown significant promise in advancing SOC estimation. These networks 
autonomously extract features and identify complex patterns and relationships in the data, outperforming 
traditional methods in accuracy and reliability. Additionally, ED-based networks enhance SOC estimation 
by integrating various network architectures to capture both local and global information. Future research 
directions for ML methods in SOC estimation are outlined in Figure 9.

Distributed training
The methods for SOC estimation, as reviewed in this work, rely on traditional centralized learning 
approaches, which require substantial amounts of data from battery operation, typically gathered from 
controlled laboratory environments. However, real-world battery usage scenarios are much more complex, 
with dynamic, multi-dimensional changes. To improve model generalization and adaptability, one must 
collect data from batteries operating under diverse conditions for training and prediction. Although this 
approach enhances model accuracy, it introduces challenges such as high data transmission volumes, 
elevated transmission costs, and data privacy concerns. Frequent data transmission can also cause 
interference and distortion, compromising the accuracy of SOC estimation. To mitigate these issues, 
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Figure 9. Potential research directions for SOC estimation of LIBs. (A) Distributed training; (B) Embedding of physical information; (C) 
Dynamic neural network integration; (D) Development of standard paradigms. SOC: State of charge; LIB: lithium-ion battery; ML: 
machine learning.

distributed training presents a promising solution. In this method, only model parameters are exchanged 
and updated on the server side, eliminating the need to transmit extensive raw data. This method reduces 
transmission volume and minimizes interference risks. With advancements in edge computing, distributed 
training enhances local computing power, enabling model training at the source of data generation. 
Federated learning (FL), a distributed training approach, allows multiple participants to approach models 
while preserving data privacy and security. In this framework, one can locally train models and only share 
updates, minimizing data transfer and enhancing security. Additionally, FL accommodates the 
heterogeneous nature of battery data, improving the model’s adaptability across various batteries and 
application scenarios. This method offers considerable promise for the research of SOC estimation and has 
been recently used to enhance traditional NNs for battery SOH estimation. Lv et al. combined artificial NNs 
(ANNs) with FL to predict LIB SOH in real-world scenarios[126]. Their local ANN model outperformed the 
widely used LSTM model, proving more suitable for EVs while minimizing the need for extensive data 
uploads. Wong et al. employed an LSTM-based ED structure for LIB SOH prediction, demonstrating that 
their decentralized model performed similarly to centralized approaches[127]. The success of FL highlights its 
potential for SOC estimation, offering innovative approaches to improve accuracy while preserving data 
privacy and minimizing transmission. By integrating FL with NNs such as ANNs and LSTM, precise battery 
status predictions can be achieved without extensive data transfer. These research advancements suggest 
that future SOC estimation may increasingly rely on distributed learning methods to enhance performance 
while reducing reliance on data transmission.

Physical information embedding
A key issue in the research literature on SOC estimation of LIBs is that existing models often neglect the 
internal physical and chemical mechanisms of batteries. Although data-driven approaches, such as DL, have 
advanced in modeling the complex nonlinear relationships of battery state, they generally lack an intuitive 
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grasp of the underlying physical processes. This limitation reduces model generalization and leads to 
significant degradation in performance, especially when the battery conditions change due to aging or 
varying operational environments. Moreover, these models usually require extensive labeled data for 
training, which may be impractical and costly. Recently, the rise of AI for Science has highlighted physical 
information embedding as a promising approach. By incorporating the physical and electrochemical 
properties of batteries into data-driven models, this method enhances both accuracy and robustness. It not 
only improves the understanding of battery behavior but also aids in data-limited scenarios by relying on 
fundamental physical principles rather than solely on data. For example, embedding electrochemical 
parameters or state equations[128] into the models offers prior knowledge, enabling more precise predictions 
when data is scarce. Incorporating physical information enhances model adaptability, enabling it to address 
challenges such as battery aging and varying operating conditions more effectively. Battery aging, 
characterized by the changes in capacity, internal resistance, and other key parameters impacted by complex 
physical and chemical changes, can be better predicted by embedding the aging mechanisms into the model, 
resulting in a more accurate SOC estimation. Additionally, batteries exhibit varying behaviors under 
different operating conditions, including various temperatures, charge/discharge rates, and load conditions. 
Embedding physical information enables the model to account for the variations, improving its reliability 
and performance across diverse operating conditions, reducing reliance on extensive training data, and 
thereby lowering experimental costs and data collection requirements. This approach is particularly 
beneficial for advancing new battery technologies and optimizing existing battery systems. For example, 
Nascimento et al. introduced a hybrid physical-NN method for LIBs, integrating known discharge physics, 
such as the Nernst and Butler-Volmer equations, with flexible ML to enhance uncertainty quantification 
and improve consistency with experimental data[129]. Future research should focus on integrating physical 
information with data-driven models to enhance SOC estimation across varying battery states and 
operating conditions, including developing advanced algorithms for the seamless incorporation of physical 
information and data-designing architectures that accurately reflect the physical and chemical 
characteristics of batteries. Additionally, utilizing physical information to improve model interpretability 
can make SOC estimation more transparent and reliable, fostering trust among engineers and researchers to 
understand the model’s predictions. These advancements will enable the creation of precise and robust 
models for SOC estimation, providing essential support and designing BMS.

Integration of DNN
Recent research on battery SOC estimation has heavily utilized NN methods. However, most studies 
concentrated on refining model architecture or specific network design, often neglecting a deeper 
theoretical explanation of their operational mechanisms. This “building block” approach creates challenges. 
Without theoretical guidance, determining the optimal network configuration is difficult, leading 
researchers to rely on empirical adjustments, such as increasing network layers or neurons, to improve data 
fitting. This empirical approach often introduces challenges, such as deeper networks complicating training 
and increasing the risk of overfitting. Therefore, achieving both computational efficiency and model 
accuracy in network design requires careful exploration of optimal parameter configuration. However, most 
studies fail to provide these configurations or justify the choice of specific parameters, leaving future 
research without a clear direction. DNNs[130] offer a potential solution, advancing the research of SOC 
estimation through their abilities to adaptively adjust their structure and parameters based on input data 
during the inference phase, providing greater flexibility than traditional static networks. In contrast, static 
networks maintain fixed configurations post-training, which may be suboptimal in practical applications 
due to limited representational ability and inflexible resource allocation. DNNs, however, allocate 
computational resources efficiently by activating specific modules as needed. For example, in SOC 
estimation, dynamic networks can adapt to changes in battery usage conditions, optimizing both inference 
and energy efficiency while maintaining accuracy. Accurate SOC estimation necessitates a model with 
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robust representational capacity to predict charge/discharge and lifespan effectively. The architecture design 
of static networks is constrained by fixed parameters, limiting their ability to adapt to complex inputs. In 
contrast, DNNs enhance expressive ability by dynamically adjusting the network depth or activating certain 
specific modules as needed. One of the advantages of DNNs in SOC estimation is their adaptability to 
varying conditions. In contrast to static networks, which need frequent parameter adjustments, DNNs can 
flexibly adjust their structure during inference, ensuring an optimal balance between accuracy and efficiency 
across diverse environments. DNNs are compatible with existing NN technologies and can seamlessly 
incorporate various advanced DL technologies. Current SOC estimation methods using CNN and RNN 
have shown practical success, but their static structures restrict model optimization for specific tasks. 
Integrating dynamic techniques could potentially improve the performance of these models.

Establishment of standard paradigms
Finally, a key issue in the current ML methods, particularly in SOC estimation of batteries, is the limited 
comparability of reported results. This discrepancy arises because different research groups use proprietary 
datasets for model training and testing, with varying dataset quality and non-standardized evaluation 
methods. The lack of standardized datasets and evaluation methods makes it difficult to compare the 
advantages and disadvantages of different approaches, hindering the in-depth research of the academic 
community. Therefore, establishing a unified evaluation framework for SOC estimation is crucial, offering a 
consistent benchmark for fair performance comparison across methods using the same datasets and 
metrics. This not only facilitates the identification of optimal technologies but also ensures fair and 
transparent model comparisons. An effective evaluation framework should encompass key metrics such as 
accuracy, stability, and efficiency. Accuracy measures how closely the SOC estimation values of the model 
align with true values under varying conditions; stability assesses the robustness of the model to data 
fluctuations and environmental changes; and efficiency evaluates the processing speed and resource usage 
of the model. Evaluating these indicators across various environmental conditions, such as temperature 
variations, enables a thorough assessment of model performance. In addition, this evaluation standard 
should allow for the identification of the strengths and weaknesses of different methods, thereby facilitating 
the selection of the most appropriate model. The field of SOC estimation can benefit from the best practices 
of other domains. For instance, in image recognition and natural language processing, fully established 
state-of-the-art (SOTA) models serve as benchmarks, reflecting the latest advancements and offering a clear 
target for new research to catch up.

DECLARATIONS
Authors’ contributions
Conceived and designed the article: Li, Y.; Yang, F.
Collected and analyzed data: Wu, Y.; Bai, D.
Developed programmers and performed data visualization: Wu, Y.; Bai, D.; Zhang, K.
Drafted manuscript: Wu, Y.
Reviewed and edited the manuscript: Zhang, K.; Li, Y.; Yang, F.
Supervised the project and provided financial support: Li, Y.; Yang, F.; Zhang, K.
All authors reviewed the results and approved the final version of the manuscript.

Availability of data and materials
The data that support the findings of this study are available from the corresponding author upon 
reasonable request.



Page 34 of Wu et al. J. Mater. Inf. 2025, 5, 18 https://dx.doi.org/10.20517/jmi.2024.8438

Financial support and sponsorship
Li, Y. is grateful for the support from the Natural Science Foundation of Shanghai under grant (No.
24ZR1425400). Zhang, K. is grateful for the support from the National Natural Science Foundation of China
under grant (No. 12372173) and the Natural Science Foundation of Shanghai under grant (No.
23ZR1468600).

Conflicts of interest
Li, Y. and Yang, F. are Guest Editors of the special issue “Machine Learning for Materials Development
and State Prediction in Lithium-ion Batteries” but were not involved in any steps of editorial processing, 
notably including reviewer selection, manuscript handling, or decision-making. The other authors declare 
that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
© The Author(s) 2025.

REFERENCES
Xing, Y.; He, W.; Pecht, M.; Tsui, K. L. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various 
ambient temperatures. Appl. Energy. 2014, 113, 106-15.  DOI

1.     

Ng, K. S.; Moo, C.; Chen, Y.; Hsieh, Y. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of 
lithium-ion batteries. Appl. Energy. 2009, 86, 1506-11.  DOI

2.     

He, H.; Xiong, R.; Fan, J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an 
experimental approach. Energies 2011, 4, 582-98.  DOI

3.     

Zheng, F.; Xing, Y.; Jiang, J.; Sun, B.; Kim, J.; Pecht, M. Influence of different open circuit voltage tests on state of charge online 
estimation for lithium-ion batteries. Appl. Energy. 2016, 183, 513-25.  DOI

4.     

He, L.; Guo, D. An improved coulomb counting approach based on numerical iteration for SOC estimation with real-time error 
correction ability. IEEE. Access. 2019, 7, 74274-82.  DOI

5.     

Liu, P.; Xu, R.; Liu, Y.; Lin, F.; Zhao, K. Computational modeling of heterogeneity of stress, charge, and cyclic damage in composite 
electrodes of Li-ion batteries. J. Electrochem. Soc. 2020, 167, 040527.  DOI

6.     

Xu, R.; Yang, Y.; Yin, F.; et al. Heterogeneous damage in Li-ion batteries: experimental analysis and theoretical modeling. J. Mech. 
Phys. Solids. 2019, 129, 160-83.  DOI

7.     

Ng, M.; Zhao, J.; Yan, Q.; Conduit, G. J.; Seh, Z. W. Predicting the state of charge and health of batteries using data-driven machine 
learning. Nat. Mach. Intell. 2020, 2, 161-70.  DOI

8.     

Hossain, L. M.; Hannan, M.; Hussain, A.; et al. Data-driven state of charge estimation of lithium-ion batteries: algorithms, 
implementation factors, limitations and future trends. J. Clean. Prod. 2020, 277, 124110.  DOI

9.     

Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE. Trans. Inf. Theory. 1967, 13, 21-7.  DOI10.     
Salzberg, S. L. C4.5: programs for machine learning by j. ross QuinLan. Morgan Kaufmann Publishers, Inc., 1993. Mach. Learn. 
1994, 16, 235-40.  DOI

11.     

Hearst, M.; Dumais, S.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE. Intell. Syst. Appl. 1998, 13, 18-28.  DOI12.     
Huang, G.; Zhu, Q.; Siew, C. Extreme learning machine: theory and applications. Neurocomputing 2006, 70, 489-501.  DOI13.     
Talluri, T.; Chung, H. T.; Shin, K. Study of battery state-of-charge estimation with kNN machine learning method. IEIESPC. 2021, 
10, 496-504.  DOI

14.     

Song, S.; Zhang, X.; Gao, D.; et al. A hierarchical state of charge estimation method for lithium-ion batteries via xgboost and kalman 
filter. In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, Canada, October 11 - 14, 2020; 
IEEE Press; pp 2317-22.  DOI

15.     

Antón JC, García Nieto PJ, Blanco Viejo C, Vilán Vilán JA. Support vector machines used to estimate the battery state of charge. 
IEEE. Trans. Power. Electron. 2013, 28, 5919-26.  DOI

16.     

Dou, J.; Ma, H.; Zhang, Y.; et al. Extreme learning machine model for state-of-charge estimation of lithium-ion battery using salp 
swarm algorithm. J. Energy. Storage. 2022, 52, 104996.  DOI

17.     

https://dx.doi.org/10.1016/j.apenergy.2013.07.008
https://dx.doi.org/10.1016/j.apenergy.2008.11.021
https://dx.doi.org/10.3390/en4040582
https://dx.doi.org/10.1016/j.apenergy.2016.09.010
https://dx.doi.org/10.1109/access.2019.2921105
https://dx.doi.org/10.1149/1945-7111/ab78fa
https://dx.doi.org/10.1016/j.jmps.2019.05.003
https://dx.doi.org/10.1038/s42256-020-0156-7
https://dx.doi.org/10.1016/j.jclepro.2020.124110
https://dx.doi.org/10.1109/tit.1967.1053964
https://dx.doi.org/10.1007/bf00993309
https://dx.doi.org/10.1109/5254.708428
https://dx.doi.org/10.1016/j.neucom.2005.12.126
https://dx.doi.org/10.5573/ieiespc.2021.10.6.496
https://dx.doi.org/10.1109/smc42975.2020.9283051
https://dx.doi.org/10.1109/tpel.2013.2243918
https://dx.doi.org/10.1016/j.est.2022.104996


Page 35 of Wu et al. J. Mater. Inf. 2025, 5, 18 https://dx.doi.org/10.20517/jmi.2024.84 38

Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning representations by back-propagating errors. Nature 1986, 323, 533-6.  DOI18.     
Lecun, Y.; Boser, B.; Denker, J. S.; et al. Backpropagation applied to handwritten zip code recognition. Neural. Comput. 1989, 1, 
541-51.  DOI

19.     

Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U. S. A. 
1982, 79, 2554-8.  DOI  PubMed  PMC

20.     

Hannan, M. A.; Lipu, M. S. H.; Hussain, A.; Saad, M. H.; Ayob, A. Neural network approach for estimating state of charge of 
lithium-ion battery using backtracking search algorithm. IEEE. Access. 2018, 6, 10069-79.  DOI

21.     

Bhattacharyya, H.S.; Yadav, A.; Choudhury, A.B.; Chanda, C.K. Convolution neural network-based SOC estimation of Li-ion battery 
in EV applications. In 2021 5th International Conference on Electrical, Electronics, Communication, Computer Technologies and 
Optimization Techniques (ICEECCOT), Dublin, Ireland, August 30-September 01, 2023; IEEE, 2023; pp 587-92.  DOI

22.     

23.     Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural. Comput. 1997, 9, 1735-80.  DOI  PubMed
Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv
2014, arXiv:1412.3555.  DOI

24.     

Liu, Z.; Jia, W.; Liu, T.; Chang, Y.; Li, J. State of charge estimation of lithium-ion battery based on recurrent neural network. In 2020 
Asia Energy and Electrical Engineering Symposium (AEEES), IEEE, 2020; pp 742-6.  DOI

25.     

Cheng, M.; Lee, Y.; Liu, M.; Sun, C. State-of-charge estimation with aging effect and correction for lithium�ion battery. IET. Electr. 
Syst. Transp. 2015, 5, 70-6.  DOI

26.     

Tian, J.; Xiong, R.; Shen, W. A review on state of health estimation for lithium ion batteries in photovoltaic systems. eTransportation 
2019, 2, 100028.  DOI

27.     

Tian, J.; Chen, C.; Shen, W.; Sun, F.; Xiong, R. Deep learning framework for lithium-ion battery state of charge estimation: recent 
advances and future perspectives. Energy. Storage. Mater. 2023, 61, 102883.  DOI

28.     

Ghassani, F.; Abdurohman, M.; Putrada, A.G. Prediction of smarthphone charging using K-nearest neighbor machine learning. In 
2018 Third Int Conf Inform Comput ICIC, Palembang, Indonesia, October 17-18, 2018; IEEE, 2018; pp. 1-4.  DOI

29.     

Hu, C.; Jain, G.; Zhang, P.; Schmidt, C.; Gomadam, P.; Gorka, T. Data-driven method based on particle swarm optimization and k-
nearest neighbor regression for estimating capacity of lithium-ion battery. Appl. Energy. 2014, 129, 49-55.  DOI

30.     

Jiang, F.; Yang, J.; Cheng, Y.; et al. An aging-aware soc estimation method for lithium-ion batteries using xgboost algorithm. In 2019 
IEEE Int Conf Progn Health Manag ICPHM, San Francisco, USA, June 17-20, 2019; IEEE, 2019; pp. 1-8.  DOI

31.     

Liu, X.; Li, K.; Wu, J.; He, Y.; Liu, X. An extended Kalman filter based data-driven method for state of charge estimation of Li-ion 
batteries. J. Energy. Storage. 2021, 40, 102655.  DOI

32.     

Chen, W.; Cai, M.; Tan, X.; Wei, B. Parameter identification and state-of-charge estimation for Li-ion batteries using an improved 
tree seed algorithm. IEICE. Trans. Inf. &. Syst. 2019, E102.D, 1489-97.  DOI

33.     

Wang, Q.; Luo, Y.; Han, X. Research on estimation model of the battery state of charge in a hybrid electric vehicle based on the 
classification and regression tree. Math. Comput. Modell. Dyn. Syst. 2019, 25, 376-96.  DOI

34.     

Antón J, García Nieto P, de Cos Juez F, Sánchez Lasheras F, González Vega M, Roqueñí Gutiérrez M. Battery state-of-charge 
estimator using the SVM technique. Appl. Math. Modell. 2013, 37, 6244-53.  DOI

35.     

Wei, K.; Wu, J.; Ma, W.; Li, H. State of charge prediction for UAVs based on support vector machine. J. Eng. 2019, 2019, 9133-6.  
DOI

36.     

Li, J.; Ye, M.; Meng, W.; Xu, X.; Jiao, S. A novel state of charge approach of lithium ion battery using least squares support vector 
machine. IEEE. Access. 2020, 8, 195398-410.  DOI

37.     

Sheng, H.; Xiao, J. Electric vehicle state of charge estimation: nonlinear correlation and fuzzy support vector machine. J. Power. 
Sources. 2015, 281, 131-7.  DOI

38.     

Li, R.; Xu, S.; Li, S.; et al. State of charge prediction algorithm of lithium-ion battery based on PSO-SVR cross validation. IEEE. 
Access. 2020, 8, 10234-42.  DOI

39.     

Stighezza, M.; Bianchi, V.; De, M. I. FPGA implementation of an ant colony optimization based SVM algorithm for state of charge 
estimation in Li-ion batteries. Energies 2021, 14, 7064.  DOI

40.     

Ipek, E.; Eren, M.K.; Yilmaz, M. State-of-charge estimation of li-ion battery cell using support vector regression and gradient 
boosting techniques. In 2019 Int Aegean Conf Electr Mach Power Electron ACEMP 2019 Int Conf Optim Electr Electron Equip 
OPTIM, Istanbul, Turkey, August 27-29, 2019; IEEE, 2019; pp 604-9.  DOI

41.     

Song, Q.; Wang, S.; Xu, W.; Shao, Y.; Fernandez, C. A novel joint support vector machine - cubature kalman filtering method for 
adaptive state of charge prediction of lithium-ion batteries. Int. J. Electrochem. Sci. 2021, 16, 210823.  DOI

42.     

Xie, F.; Wang, S.; Xie, Y.; Fernandezb, C.; Li, X.; Zou, C. A novel battery state of charge estimation based on the joint unscented 
kalman filter and support vector machine algorithms. Int. J. Electrochem. Sci. 2020, 15, 7935-53.  DOI

43.     

Hu, J.; Hu, J.; Lin, H.; et al. State-of-charge estimation for battery management system using optimized support vector machine for 
regression. J. Power. Sources. 2014, 269, 682-93.  DOI

44.     

45.     Hansen, T.; Wang, C. Support vector based battery state of charge estimator. J. Power. Sources. 2005, 141, 351-8.  DOI
Densmore, A.; Hanif, M. Modeling the condition of lithium ion batteries using the extreme learning machine. In 2016 IEEE PES
PowerAfrica, Livingstone, Zambia, June 28-July 03, 2016; IEEE, 2016; pp. 184-8.  DOI

46.     

Jiao, M.; Wang, D.; Yang, Y.; Liu, F. More intelligent and robust estimation of battery state-of-charge with an improved regularized 
extreme learning machine. Eng. Appl. Artif. Intell. 2021, 104, 104407.  DOI

47.     

https://dx.doi.org/10.1038/323533a0
https://dx.doi.org/10.1162/neco.1989.1.4.541
https://dx.doi.org/10.1073/pnas.79.8.2554
http://www.ncbi.nlm.nih.gov/pubmed/6953413
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC346238
https://dx.doi.org/10.1109/access.2018.2797976
https://dx.doi.org/10.1109/UPEC57427.2023.10294352
https://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://dx.doi.org/10.48550/arXiv.1412.3555
https://dx.doi.org/10.1109/aeees48850.2020.9121545
https://dx.doi.org/10.1049/iet-est.2013.0007
https://dx.doi.org/10.1016/j.etran.2019.100028
https://dx.doi.org/10.1016/j.ensm.2023.102883
https://dx.doi.org/10.1109/iac.2018.8780497
https://dx.doi.org/10.1016/j.apenergy.2014.04.077
https://dx.doi.org/10.1109/icphm.2019.8819416
https://dx.doi.org/10.1016/j.est.2021.102655
https://dx.doi.org/10.1587/transinf.2019edp7015
https://dx.doi.org/10.1080/13873954.2019.1655654
https://dx.doi.org/10.1016/j.apm.2013.01.024
https://dx.doi.org/10.1049/joe.2018.9201
https://dx.doi.org/10.1109/access.2020.3033451
https://dx.doi.org/10.1016/j.jpowsour.2015.01.145
https://dx.doi.org/10.1109/access.2020.2964852
https://dx.doi.org/10.3390/en14217064
https://dx.doi.org/10.1109/acemp-optim44294.2019.9007188
https://dx.doi.org/10.20964/2021.08.26
https://dx.doi.org/10.20964/2020.08.83
https://dx.doi.org/10.1016/j.jpowsour.2014.07.016
https://dx.doi.org/10.1016/j.jpowsour.2004.09.020
https://dx.doi.org/10.1109/PowerAfrica.2016.7556597
https://dx.doi.org/10.1016/j.engappai.2021.104407


Page 36 of Wu et al. J. Mater. Inf. 2025, 5, 18 https://dx.doi.org/10.20517/jmi.2024.8438

Wang, Z.; Yang, D. State-of-charge estimation of lithium iron phosphate battery using extreme learning machine. 2015. 6th. Int. 
Conf. Power. Electron. Syst. Appl. PESA.  IEEE 2015; pp 1-5.  DOI

48.     

Chin, C.; Gao, Z. State-of-charge estimation of battery pack under varying ambient temperature using an adaptive sequential extreme 
learning machine. Energies 2018, 11, 711.  DOI

49.     

Zhao, X.; Qian, X.; Xuan, D.; Jung, S. State of charge estimation of lithium-ion battery based on multi-input extreme learning 
machine using online model parameter identification. J. Energy. Storage. 2022, 56, 105796.  DOI

50.     

Zhang, B.; Ren, G. Li-ion battery state of charge prediction for electric vehicles based on improved regularized extreme learning 
machine. WEVJ. 2023, 14, 202.  DOI

51.     

Zhang, C.; Wang, S.; Yu, C.; Xie, Y.; Fernandez, C. Novel improved particle swarm optimization-extreme learning machine 
algorithm for state of charge estimation of lithium-ion batteries. Ind. Eng. Chem. Res. 2022, 61, 17209-17.  DOI

52.     

Du, J.; Liu, Z.; Wang, Y. State of charge estimation for Li-ion battery based on model from extreme learning machine. Control. Eng. 
Pract. 2014, 26, 11-9.  DOI

53.     

Ozcan, G.; Pajovic, M.; Sahinoglu, Z.; Wang, Y.; Orlik, P.V.; Wada, T. Online state of charge estimation for lithium-ion batteries 
using Gaussian process regression. In IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, 
Italy, October 23-26, 2016; IEEE, 2016; pp 998-1003.  DOI

54.     

Ozcan, G.; Pajovic, M.; Sahinoglu, Z.; Wang, Y.; Orlik, P.V.; Wada, T. Online battery state-of-charge estimation based on sparse 
gaussian process regression. In 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, USA, July 17-21 2016; 
IEEE, 2016; pp 1-5.  DOI

55.     

Sahinoglu, G. O.; Pajovic, M.; Sahinoglu, Z.; Wang, Y.; Orlik, P. V.; Wada, T. Battery state-of-charge estimation based on regular/
recurrent gaussian process regression. IEEE. Trans. Ind. Electron. 2018, 65, 4311-21.  DOI

56.     

Chen, X.; Chen, X.; Chen, X. A novel framework for lithium-ion battery state of charge estimation based on Kalman filter Gaussian 
process regression. Int. J. Energy. Res. 2021, 45, 13238-49.  DOI

57.     

Lee, K.; Lee, W.; Kim, K. K. Battery state-of-charge estimation using data-driven Gaussian process Kalman filters. J. Energy. 
Storage. 2023, 72, 108392.  DOI

58.     

Yi, Y.; Xia, C.; Shi, L.; et al. Lithium-ion battery expansion mechanism and Gaussian process regression based state of charge 
estimation with expansion characteristics. Energy 2024, 292, 130541.  DOI

59.     

Deng, Z.; Hu, X.; Lin, X.; Che, Y.; Xu, L.; Guo, W. Data-driven state of charge estimation for lithium-ion battery packs based on 
Gaussian process regression. Energy 2020, 205, 118000.  DOI

60.     

Plett, G. L. Battery management systems: battery modeling. Artech, 2015. https://ieeexplore.ieee.org/document/9100168 (accessed 
2025-02-22).

61.     

Chemali, E.; Kollmeyer, P. J.; Preindl, M.; Emadi, A. State-of-charge estimation of Li-ion batteries using deep neural networks: a 
machine learning approach. J. Power. Sources. 2018, 400, 242-55.  DOI

62.     

How, D. N. T.; Hannan, M. A.; Lipu, M. S. H.; Sahari, K. S. M.; Ker, P. J.; Muttaqi, K. M. State-of-charge estimation of Li-ion 
battery in electric vehicles: a deep neural network approach. IEEE. Trans. Ind. Appl. 2020, 56, 5565-74.  DOI

63.     

Jung, G.E; Baek, J.; Liu, J.; et al. The precision SOC estimation method of LiB for EV applications using ANN. In 2021 International 
Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, Republic of, October 20-22, 
2021; IEEE, 2021; pp 1052-4.  DOI

64.     

Bian, C.; Yang, S.; Liu, J.; Zio, E. Robust state-of-charge estimation of Li-ion batteries based on multichannel convolutional and 
bidirectional recurrent neural networks. Appl. Soft. Comput. 2022, 116, 108401.  DOI

65.     

Bhattacharjee, A.; Verma, A.; Mishra, S.; Saha, T. K. Estimating state of charge for xEV batteries using 1D convolutional neural 
networks and transfer learning. IEEE. Trans. Veh. Technol. 2021, 70, 3123-35.  DOI

66.     

Hannan, M. A.; How, D. N. T.; Lipu, M. S. H.; et al. SOC estimation of Li-ion batteries with learning rate-optimized deep fully 
convolutional network. IEEE. Trans. Power. Electron. 2021, 36, 7349-53.  DOI

67.     

Li, J.; Jiang, Z.; Jiang, Y.; Song, W.; Gu, J. The state of charge estimation of lithium-Ion battery based on battery capacity. J. 
Electrochem. Soc. 2022, 169, 120539.  DOI

68.     

Mohanty, P. K.; Jena, P.; Padhy, N. P. Continuous wavelet transform based CNN model for EV battery state of charge estimation.
In 2023. IEEE. 3rd. International. Conference. on. Smart. Technologies. for. Power,. Energy. and. Control. (STPEC), 2023; 1-5. DOI

69.     

Kollmeyer, P. Panasonic 18650PF Li-ion battery data. Mendeley. Data. 2018, 3, 2018.  DOI70.     
Kollmeyer, P.; Vidal, C.; Naguib, M.; Skells, M. LG 18650HG2 Li-ion battery data and example deep neural network xEV SOC 
estimator script. Mendeley. Data. 2020, 3, 2020.  DOI

71.     

Guo, W.; Li, J. A battery SOC prediction method based on GA-CNN network and its implementation on FPGA. Computer. 
engineering. and. technology.Singapore, Springer, 2019; pp 78-90.  DOI

72.     

Mazzi, Y.; Ben, S. H.; Gaga, A.; Errahimi, F. State of charge estimation of an electric vehicle’s battery using tiny neural network 
embedded on small microcontroller units. Intl. J. of. Energy. Research. 2022, 46, 8102-19.  DOI

73.     

Liu, V.T.; Sun, Y.K.; Lu, H.Y.; Wang, S.K. State of charge estimation for lithium-ion battery using recurrent neural network. In 2018 
IEEE International Conference on Advanced Manufacturing (ICAM), Yunlin, Taiwan, November 16-18, IEEE, 2018; pp 376-9.  DOI

74.     

Lipu, M.S.H.; Hannan, M.A.; Hussain, A.; Saad, M.H.M.; Ayob, A.; Muttaqi, K.M. Lithium-ion battery state of charge estimation 
method using optimized deep recurrent neural network algorithm. In 2019 IEEE Industry Applications Society Annual Meeting, 
Baltimore, USA, September 29-October 03, 2019; IEEE, 2019; pp 1-9.  DOI

75.     

https://dx.doi.org/10.1109/pesa.2015.7398906
https://dx.doi.org/10.3390/en11040711
https://dx.doi.org/10.1016/j.est.2022.105796
https://dx.doi.org/10.3390/wevj14080202
https://dx.doi.org/10.1021/acs.iecr.2c02476
https://dx.doi.org/10.1016/j.conengprac.2013.12.014
https://dx.doi.org/10.1109/iecon.2016.7793002
https://dx.doi.org/10.1109/pesgm.2016.7741980
https://dx.doi.org/10.1109/TIE.2017.2764869
https://dx.doi.org/10.1002/er.6649
https://dx.doi.org/10.1016/j.est.2023.108392
https://dx.doi.org/10.1016/j.energy.2024.130541
https://dx.doi.org/10.1016/j.energy.2020.118000
https://ieeexplore.ieee.org/document/9100168
https://dx.doi.org/10.1016/j.jpowsour.2018.06.104
https://dx.doi.org/10.1109/tia.2020.3004294
https://dx.doi.org/10.1109/ictc52510.2021.9620997
https://dx.doi.org/10.1016/j.asoc.2021.108401
https://dx.doi.org/10.1109/tvt.2021.3064287
https://dx.doi.org/10.1109/tpel.2020.3041876
https://dx.doi.org/10.1149/1945-7111/acadaa
https://dx.doi.org/10.1109/stpec59253.2023.10430817
https://dx.doi.org/10.17632/wykht8y7tg.1
https://dx.doi.org/10.17632/cp3473x7xv.3
https://dx.doi.org/10.1007/978-981-15-1850-8_7
https://dx.doi.org/10.1002/er.7713
https://dx.doi.org/10.1109/AMCON.2018.8615025
https://dx.doi.org/10.1109/ias.2019.8912322


Page 37 of Wu et al. J. Mater. Inf. 2025, 5, 18 https://dx.doi.org/10.20517/jmi.2024.84 38

Wang, Q.; Gu, H.; Ye, M.; Wei, M.; Xu, X. State of charge estimation for lithium-ion battery based on NARX recurrent neural 
network and moving window method. IEEE. Access. 2021, 9, 83364-75.  DOI

76.     

Sadykov, M.; Haines, S.; Walker, G.; Holmes, D. W. Feed-forward state of charge estimation of LiFePO4 batteries using time-series 
machine learning prediction with autoregressive models. J. Energy. Storage. 2024, 100, 113516.  DOI

77.     

Wei, M.; Ye, M.; Li, J. B.; Wang, Q.; Xu, X. State of charge estimation of lithium-ion batteries using LSTM and NARX neural 
networks. IEEE. Access. 2020, 8, 189236-45.  DOI

78.     

Chemali, E.; Kollmeyer, P. J.; Preindl, M.; Ahmed, R.; Emadi, A. Long short-term memory networks for accurate state-of-charge 
estimation of Li-ion batteries. IEEE. Trans. Ind. Electron. 2018, 65, 6730-9.  DOI

79.     

Ren, X.; Liu, S.; Yu, X.; Dong, X. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM. Energy 
2021, 234, 121236.  DOI

80.     

Chen, J.; Lu, C.; Chen, C.; Cheng, H.; Xuan, D. An improved gated recurrent unit neural network for state-of-charge estimation of 
lithium-ion battery. Appl. Sci. 2022, 12, 2305.  DOI

81.     

Ma, L.; Hu, C.; Cheng, F. State of charge and state of energy estimation for lithium-ion batteries based on a long short-term memory 
neural network. J. Energy. Storage. 2021, 37, 102440.  DOI

82.     

Yang, F.; Song, X.; Xu, F.; Tsui, K. State-of-charge estimation of lithium-ion batteries via long short-term memory network. IEEE. 
Access. 2019, 7, 53792-9.  DOI

83.     

Hannan, M. A.; How, D. N. T.; Mansor, M. B.; Hossain, L. M. S.; Ker, P.; Muttaqi, K. State-of-charge estimation of Li-ion battery 
using gated recurrent unit with one-cycle learning rate policy. IEEE. Trans. on. Ind. Applicat. 2021, 57, 2964-71.  DOI

84.     

Zhang, Z.; Dong, Z.; Lin, H.; et al. An improved bidirectional gated recurrent unit method for accurate state-of-charge estimation. 
IEEE. Access. 2021, 9, 11252-63.  DOI

85.     

Chen, L.; Song, Y.; Lopes, A. M.; Bao, X.; Zhang, Z.; Lin, Y. Joint estimation of state of charge and state of energy of lithium-ion 
batteries based on optimized bidirectional gated recurrent neural network. IEEE. Trans. Transp. Electrific. 2024, 10, 1605-16.  DOI

86.     

Bian, C.; He, H.; Yang, S. Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion 
batteries. Energy 2020, 191, 116538.  DOI

87.     

Manoharan, A.; Sooriamoorthy, D.; Begam, K.; Aparow, V. R. Electric vehicle battery pack state of charge estimation using parallel 
artificial neural networks. J. Energy. Storage. 2023, 72, 108333.  DOI

88.     

Jiang, B.; Tao, S.; Wang, X.; Zhu, J.; Wei, X.; Dai, H. Mechanics-based state of charge estimation for lithium-ion pouch battery using 
deep learning technique. Energy 2023, 278, 127890.  DOI

89.     

Jayaraman, R.; Thottungal, R. Accurate state of charge prediction for lithium-ion batteries in electric vehicles using deep learning and 
dimensionality reduction. Electr. Eng. 2024, 106, 2175-95.  DOI

90.     

Liu, H.; Liang, F.; Hu, T.; Hong, J.; Ma, H. Multi-scale fusion model based on gated recurrent unit for enhancing prediction accuracy 
of state-of-charge in battery energy storage systems. JJ. Mod. Power. Syst. Clean. Energy. 2024, 12, 405-14.  DOI

91.     

Liu, Y.; Shu, X.; Yu, H.; et al. State of charge prediction framework for lithium-ion batteries incorporating long short-term memory 
network and transfer learning. J. Energy. Storage. 2021, 37, 102494.  DOI

92.     

Eleftheriadis, P.; Giazitzis, S.; Leva, S.; Ogliari, E. Transfer learning techniques for the lithium-ion battery state of charge estimation. 
IEEE. Access. 2024, 12, 993-1004.  DOI

93.     

Lipton, Z. C.; Berkowitz, J.; Elkan, C. A critical review of recurrent neural networks for sequence learning. arXiv 2015, arXiv:1506. 
00019.  DOI

94.     

Abbas, G.; Nawaz, M.; Kamran, F. Performance comparison of NARX & RNN-LSTM neural networks for LiFePO4 battery state of 
charge estimation. In 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, 
Pakistan, January 08-12, 2019; IEEE, 2019; pp 463-8.  DOI

95.     

Li, C.; Xiao, F.; Fan, Y.; Yang, G.; Zhang, W. A recurrent neural network with long short-term memory for state of charge estimation 
of lithium-ion batteries. In 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference 
(ITAIC), Chongqing, China, May 24-26, 2019; IEEE, 2019; pp 1712-6.  DOI

96.     

Li, C.; Xiao, F.; Fan, Y. An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with 
gated recurrent unit. Energies 2019, 12, 1592.  DOI

97.     

Jiao, M.; Wang, D.; Qiu, J. A GRU-RNN based momentum optimized algorithm for SOC estimation. J. Power. Sources. 2020, 459, 
228051.  DOI

98.     

Duan, W.; Song, C.; Peng, S.; Xiao, F.; Shao, Y.; Song, S. An improved gated recurrent unit network model for state-of-charge 
estimation of lithium-ion battery. Energies 2020, 13, 6366.  DOI

99.     

Yang, B.; Wang, Y.; Zhan, Y. Lithium battery state-of-charge estimation based on a bayesian optimization bidirectional long short-
term memory neural network. Energies 2022, 15, 4670.  DOI

100.     

Chen, J.; Zhang, Y.; Wu, J.; Cheng, W.; Zhu, Q. SOC estimation for lithium-ion battery using the LSTM-RNN with extended input 
and constrained output. Energy 2023, 262, 125375.  DOI

101.     

Yu, H.; Zhang, L.; Wang, W.; et al. State of charge estimation method by using a simplified electrochemical model in deep learning 
framework for lithium-ion batteries. Energy 2023, 278, 127846.  DOI

102.     

Wu, X.; Li, M.; Du, J.; Hu, F. SOC prediction method based on battery pack aging and consistency deviation of thermoelectric 
characteristics. Energy. Rep. 2022, 8, 2262-72.  DOI

103.     

Liu, D.; Wang, S.; Fan, Y.; Fernandez, C.; Blaabjerg, F. An optimized multi-segment long short-term memory network strategy for 104.     

https://dx.doi.org/10.1109/access.2021.3086507
https://dx.doi.org/10.1016/j.est.2024.113516
https://dx.doi.org/10.1109/access.2020.3031340
https://dx.doi.org/10.1109/tie.2017.2787586
https://dx.doi.org/10.1016/j.energy.2021.121236
https://dx.doi.org/10.3390/app12052305
https://dx.doi.org/10.1016/j.est.2021.102440
https://dx.doi.org/10.1109/access.2019.2912803
https://dx.doi.org/10.1109/tia.2021.3065194
https://dx.doi.org/10.1109/access.2021.3049944
https://dx.doi.org/10.1109/tte.2023.3291501
https://dx.doi.org/10.1016/j.energy.2019.116538
https://dx.doi.org/10.1016/j.est.2023.108333
https://dx.doi.org/10.1016/j.energy.2023.127890
https://dx.doi.org/10.1007/s00202-023-02227-1
https://dx.doi.org/10.35833/mpce.2023.000726
https://dx.doi.org/10.1016/j.est.2021.102494
https://dx.doi.org/10.1109/access.2023.3337215
https://dx.doi.org/10.48550/arXiv.1506.00019
https://dx.doi.org/10.1109/ibcast.2019.8667172
https://dx.doi.org/10.1109/itaic.2019.8785770
https://dx.doi.org/10.3390/en12091592
https://dx.doi.org/10.1016/j.jpowsour.2020.228051
https://dx.doi.org/10.3390/en13236366
https://dx.doi.org/10.3390/en15134670
https://dx.doi.org/10.1016/j.energy.2022.125375
https://dx.doi.org/10.1016/j.energy.2023.127846
https://dx.doi.org/10.1016/j.egyr.2022.01.056


Page 38 of Wu et al. J. Mater. Inf. 2025, 5, 18 https://dx.doi.org/10.20517/jmi.2024.8438

power lithium-ion battery state of charge estimation adaptive wide temperatures. Energy 2024, 304, 132048.  DOI
Fawaz H, Forestier G, Weber J, Idoumghar L, Muller P. Deep learning for time series classification: a review. Data. Min. Knowl. 
Disc. 2019, 33, 917-63.  DOI

105.     

106.     Kazemi, S. M.; Goel, R.; Eghbali, S.; et al. Time2Vec: learning a vector representation of time. arXiv1907, arXiv: 1907.05321.  DOI
Almaita, E.; Alshkoor, S.; Abdelsalam, E.; Almomani, F. State of charge estimation for a group of lithium-ion batteries using long
short-term memory neural network. J. Energy. Storagee. 2022, 52, 104761.  DOI

107.     

Wang, Y.; Chen, Z.; Zhang, W. Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-
based transfer learning. Energy 2022, 244, 123178.  DOI

108.     

Che, Y.; Zheng, Y.; Wu, Y.; et al. Battery states monitoring for electric vehicles based on transferred multi-task learning. IEEE. 
Trans. Veh. Technol. 2023, 72, 10037-47.  DOI

109.     

Caruana, R. Multitask learning. Mach. Learn. 1997, 28, 41-75.  DOI110.     
Guo, S.; Ma, L. A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation. 
Energy 2023, 263, 125872.  DOI

111.     

Pau, D. P.; Aniballi, A. Tiny machine learning battery state-of-charge estimation hardware accelerated. Appl. Sci. 2024, 14, 6240.  
DOI

112.     

Cui, S.; Yong, X.; Kim, S.; Hong, S.; Joe, I. An LSTM-based encoder-decoder model for state-of-charge estimation of lithium-ion 
batteries. Intelligent. Algorithms. in. Software. Engineering.Silhavy, R., Eds.; Cham, Springer International Publishing, 2020; pp 178-
88.  DOI

113.     

Bian, C.; He, H.; Yang, S.; Huang, T. State-of-charge sequence estimation of lithium-ion battery based on bidirectional long short-
term memory encoder-decoder architecture. J. Power. Sources. 2020, 449, 227558.  DOI

114.     

Terala, P. K.; Ogundana, A. S.; Foo, S. Y.; Amarasinghe, M. Y.; Zang, H. State of charge estimation of lithium-ion batteries using 
stacked encoder-decoder Bi-directional LSTM for EV and HEV applications. Micromachines 2022, 13, 1397.  DOI  PubMed  PMC

115.     

Ma, L.; Wang, Z.; Yang, F.; et al. Robust state of charge estimation based on a sequence-to-sequence mapping model with process 
information. J. Power. Sources. 2020, 474, 228691.  DOI

116.     

Fan, X.; Zhang, W.; Zhang, C.; Chen, A.; An, F. SOC estimation of Li-ion battery using convolutional neural network with U-Net 
architecture. Energy 2022, 256, 124612.  DOI

117.     

Ardeshiri, R.R.; Ma, C. State of charge estimation of lithium-ion battery using deep convolutional stacked bidirectional LSTM. In 
2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), Kyoto, Japan, June 20-23, 2021; IEEE, 2021; pp 1-6.  
DOI

118.     

Shen, L.; Li, J.; Zuo, L.; Zhu, L.; Shen, H. T. Source-free cross-domain state of charge estimation of lithium-ion batteries at different 
ambient temperatures. IEEE. Trans. Power. Electron. 2023, 38, 6851-62.  DOI

119.     

Chen, J.; Feng, X.; Jiang, L.; Zhu, Q. State of charge estimation of lithium-ion battery using denoising autoencoder and gated 
recurrent unit recurrent neural network. Energy 2021, 227, 120451.  DOI

120.     

Savargaonkar, M.; Oyewole, I.; Chehade, A.; Hussein, A. A. Uncorrelated sparse autoencoder with long short-term memory for state-
of-charge estimations in lithium-ion battery cells. IEEE. Trans. Automat. Sci. Eng. 2024, 21, 15-26.  DOI

121.     

Bakas, S.; Akbari, H.; Sotiras, A.; et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels 
and radiomic features. Sci. Data. 2017, 4, 170117.  DOI  PubMed  PMC

122.     

Severson, K. A.; Attia, P. M.; Jin, N.; et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy. 
2019, 4, 383-91.  DOI

123.     

Diao, W.; Saxena, S.; Pecht, M. Accelerated cycle life testing and capacity degradation modeling of LiCoO2-graphite cells. J. Power. 
Sources. 2019, 435, 226830.  DOI

124.     

Hu, L.; Hu, X.; Che, Y.; Feng, F.; Lin, X.; Zhang, Z. Reliable state of charge estimation of battery packs using fuzzy adaptive 
federated filtering. Appl. Energy. 2020, 262, 114569.  DOI

125.     

Lv, X.; Cheng, Y.; Ma, S.; Jiang, H. State of health estimation method based on real data of electric vehicles using federated learning. 
Int. J. Electrochem. Sci. 2024, 19, 100591.  DOI

126.     

Wong, K. L.; Tse, R.; Tang, S.; Pau, G. Decentralized deep-learning approach for lithium-ion batteries state of health forecasting 
using federated learning. IEEE. Trans. Transp. Electrific. 2024, 10, 8199-212.  DOI

127.     

Li, C.; Cui, N.; Wang, C.; Zhang, C. Reduced-order electrochemical model for lithium-ion battery with domain decomposition and 
polynomial approximation methods. Energy 2021, 221, 119662.  DOI

128.     

Nascimento, R. G.; Corbetta, M.; Kulkarni, C. S.; Viana, F. A. Hybrid physics-informed neural networks for lithium-ion battery 
modeling and prognosis. J. Power. Sources. 2021, 513, 230526.  DOI

129.     

Han, Y.; Huang, G.; Song, S.; Yang, L.; Wang, H.; Wang, Y. Dynamic neural networks: a survey. IEEE. Trans. Pattern. Anal. Mach. 
Intell. 2022, 44, 7436-56.  DOI

130.     

https://dx.doi.org/10.1016/j.energy.2024.132048
https://dx.doi.org/10.1007/s10618-019-00619-1
https://dx.doi.org/10.48550/arXiv.1907.05321
https://dx.doi.org/10.1016/j.est.2022.104761
https://dx.doi.org/10.1016/j.energy.2022.123178
https://dx.doi.org/10.1109/tvt.2023.3260466
https://dx.doi.org/10.1023/a:1007379606734
https://dx.doi.org/10.1016/j.energy.2022.125872
https://dx.doi.org/10.3390/app14146240
https://dx.doi.org/10.1007/978-3-030-51965-0_15
https://dx.doi.org/10.1016/j.jpowsour.2019.227558
https://dx.doi.org/10.3390/mi13091397
http://www.ncbi.nlm.nih.gov/pubmed/36144020
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504128
https://dx.doi.org/10.1016/j.jpowsour.2020.228691
https://dx.doi.org/10.1016/j.energy.2022.124612
https://dx.doi.org/10.1109/isie45552.2021.9576245
https://dx.doi.org/10.1109/tpel.2023.3251568
https://dx.doi.org/10.1016/j.energy.2021.120451
https://dx.doi.org/10.1109/tase.2022.3222759
https://dx.doi.org/10.1038/sdata.2017.117
http://www.ncbi.nlm.nih.gov/pubmed/28872634
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685212
https://dx.doi.org/10.1038/s41560-019-0356-8
https://dx.doi.org/10.1016/j.jpowsour.2019.226830
https://dx.doi.org/10.1016/j.apenergy.2020.114569
https://dx.doi.org/10.1016/j.ijoes.2024.100591
https://dx.doi.org/10.1109/tte.2024.3354551
https://dx.doi.org/10.1016/j.energy.2020.119662
https://dx.doi.org/10.1016/j.jpowsour.2021.230526
https://dx.doi.org/10.1109/tpami.2021.3117837

