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Abstract
Aim: A growing body of literature reports on prediction models for patient-reported outcomes of spine surgery, 
carrying broad implications for use in value-based care and decision making. This review assesses the performance 
and transparency of reporting of these models.

Methods: We queried four studies reporting the development and/or validation of prediction models for patient-
reported outcome measures (PROMs) following elective spine surgery with performance metrics such as the area 
under the receiver operating curve (AUC) scores. Adherence to transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis (TRIPOD-AI) guidelines was assessed. One representative model was 
selected from each study.

Results: Of 4,471 screened studies, 35 were included, with nine development, 24 development and evaluation, and 
two evaluation studies. Sixteen machine learning models and 19 traditional prediction models were represented. 
Oswestry disability index (ODI) and modified Japanese Orthopaedic Association (mJOA) scores were most 
commonly used. Among 29 categorical outcome prediction models, the median [interquartile range (IQR)] AUC 
was 0.79 [0.73, 0.84]. The median [IQR] AUC was 0.825 [0.76, 0.84] among machine learning models and 0.74 
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[0.71, 0.81] among traditional models. Adherence to TRIPOD-AI guidelines was inconsistent, with no studies 
commenting on healthcare inequalities in the sample population, model fairness, or disclosure of study protocols or 
registration.

Conclusion: We found considerable variation between studies, not only in chosen patient populations and outcome 
measures, but also in their manner of evaluation and reporting. Agreement about outcome definitions, more 
frequent external validation, and improved completeness of reporting may facilitate the effective use and 
interpretation of these models.

Keywords: Patient reported outcomes, predictive modeling, accuracy, machine learning

INTRODUCTION
Patient-reported outcome measures (PROMs) have been widely adopted across surgical subspecialties, 
including spine surgery, as the gold-standard method of assessing surgical success by incorporating the 
patient perspective. In comparison to traditional outcome measures such as reoperation and readmission 
rates, PROMs aim to capture nuanced aspects of the patient experience, including pain levels, functional 
improvement, and overall satisfaction with treatment. Accordingly, PROMs are becoming ubiquitous in 
care delivery and assessment and have been used in a variety of applications, ranging from use in value-
based healthcare models and assessment of institution- and surgeon-level outcomes to clinical applications 
evaluating individual pre- and postoperative patient symptom status and prediction of surgical outcomes[1-5].

Implementing PROMs into standard clinical practice has presented several challenges. The collection of 
PROMs, whether in a research setting or as part of routine practice, requires significant resources in cost 
and time, leading to limited completeness in the collection of PROM data[1]. Interpretability also poses a 
significant limitation, as PROMs rely on subjective reporting of symptoms and their severity, whose 
perception necessarily varies from patient to patient for any single value and can vary widely over time with 
postoperative changes. A wide range of instruments are used in spine surgery alone, each with variable 
degrees of validation in psychometric properties including validity and reliability, complicating data 
comparison across individuals or groups[6,7]. Examples of commonly used PROMs in the evaluation of 
degenerative spine disease include the Oswestry disability index (ODI), modified Japanese Orthopaedic 
Association (mJOA) Scale, and patient reported outcomes measurement information system (PROMIS) 
scales[8]. Efforts have been made to identify the PROM instruments that are most appropriate and applicable 
to the assessment of spine surgery outcomes[6,7,9].

Given the importance of these measures to determine surgical success and their strong association with 
reimbursement and performance assessment models, many have built prediction models leveraging patient-
reported outcome (PRO) as both outcomes and predictors; however, these models have classically been 
plagued by inter and intrapatient variability and often had only moderate quality performance. Machine 
learning has gained prominence as a set of approaches for developing such predictive models with potential 
improvements to predictive performance. These models highlight possible benefits to patient selection, 
decision making, and adverse event prevention that carry broad implications for patient-centered care. In 
the future, predictive models such as these may be used to help inform decision making between patients 
and physicians regarding the expected risks and benefits of surgery. Predictive models have already been 
developed to identify surgical indications, predict postoperative complications, and evaluate outpatient 
suitability for a range of spinal conditions[10]. In the context of these developments, it is important to assess 
trends in completeness of reporting for these predictive models, as well as to evaluate the risk of bias in 
handling challenges such as incomplete or missing data. Furthermore, in an age where machine learning is 
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being applied in several novel contexts, we aimed to summarize the impact of the rise of machine learning 
on predictive model performance and to identify avenues for future development of these models to 
improve our ability to identify candidates who have the best chances of attaining a benefit from surgery.

In this review, we summarize the existing predictive models for questionnaire-based PROMs outcomes of 
spine surgery, characterizing the PROMs commonly used for prediction as well as patterns in transparent 
reporting of model development and validation. We evaluate whether the application of machine learning 
in recent years has been accompanied by improvements in predictive performance for PROM outcomes.

METHODS
Search strategy
This systematic review was registered in the International Prospective Register of Systematic Reviews 
(PROSPERO ID: CRD42024536045) guidelines[11]. PubMed, Embase, Web of Science, and Scopus databases 
were queried to identify original publications describing prediction models for PROM outcomes following 
elective spine surgery published between January 1, 2010, and April 1, 2024. Queries were developed for 
each database with different domains of medical subject heading terms representing spine surgery, 
predictive models, and PROMs combined with “AND”, and related words within each domain combined 
with “OR” [Supplementary Appendix 1]. Studies identified from these database searches were assessed for 
duplicates and then screened by two separate reviewers (HL, DS). The remaining full texts were assessed for 
eligibility. Disagreements over inclusion were resolved through consensus or through consultation with 
another author (SM). Additional searches were performed through a review of the referenced work of 
included articles.

Eligibility criteria
Studies were considered for inclusion if they described the development and/or validation of prediction 
models for PROM outcomes following elective spine surgery. Only studies that reported performance 
metrics for predictive models [e.g., the area under the receiver operating curve (AUC) for binary 
classification models] and assessed questionnaire-based PROMs (e.g., PROMIS, ODI, mJOA) as predicted 
outcomes were included. Studies were screened out if they included regression analyses without assessing 
their utility in a predictive model (e.g., studies that highlighted risk factors from multivariate analyses 
without commenting on or reporting model performance in the abstract). Where multiple studies met the 
above criteria and reported predictive models developed on identical or overlapping data, only the most 
recent such study was selected for inclusion.

Data extraction
Two separate authors (HL, DS) reviewed included studies and extracted details, including year and journal 
of publication, type of study (development and/or evaluation of a model), type of prediction model 
(machine learning vs. traditional approaches; specific models used), patient population, predicted outcomes, 
sample size, number of predictors, performance metrics assessed, handling of missing data, and adherence 
to items of the transparent reporting of a multivariable prediction model for individual prognosis or 
diagnosis (TRIPOD-AI) guidelines[12]. Disagreements were resolved first through consensus or by 
consultation with another author (SM).

To avoid overrepresentation of studies with multiple models in quantitative analyses, individual models 
were selected from those studies reporting multiple models (whether for multiple patient populations/
subsets, multiple outcome definitions, model types) with the following method: the eligible model 
(predicting a questionnaire-based PROMs outcome) was selected for analysis that was presented by the 
authors as the best performing model, or if no individual model was designated in such a manner, the 
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model exhibiting greatest performance in discrimination was selected for categorical outcome prediction 
models, or the one explaining the greatest proportion of variation in continuous outcome prediction 
models.

Studies were designated as reporting development only if no methods of internal or external validation were 
reported beyond reporting performance on training data, evaluation only if an existing model was applied 
to new data, and both development and evaluation if model development and either internal or external 
development were reported. Methods of external validation were considered to include validation using an 
external dataset or a dataset consisting of test data from distinct centers from those used in training. 
Methods of internal validation were considered to include cross-validation (k-fold or leave-one-out), 
bootstrapping with resampling, temporal validation, or holdout test data from the same data sources as used 
in training. Studies were considered to report only evaluation on development data if performance metrics 
were only reported for the data points used in the training of models (i.e., without methods such as cross-
validation, or bootstrapping).

While TRIPOD-AI may be used to guide study design and reporting in prediction model studies, its aims 
also include uses for the evaluation of published studies. Adherence to TRIPOD-AI items was recorded as 
“Yes”, “No”, or “Not applicable”, with the last designation applied where an item was either not applicable 
to the study type as specified in the TRIPOD-AI guidelines or conditional on aspects of study design not 
applicable to the study or model. Acknowledgment or mention of following TRIPOD guidelines (either the 
prior 2015 TRIPOD guidelines or 2024 TRIPOD-AI guidelines) was also recorded[12,13].

Synthesis and analysis
Extracted data were tabulated for each included study. The distribution of predictive performance in 
discrimination, in the form of AUC, was assessed through median and interquartile range (IQR) and 
compared between models using machine learning vs. traditional methods for categorical prediction 
outcomes. These distributions were visualized with boxplots overlaid with scores from individual studies, 
designated as being derived from either external validation, internal validation, or training data. For studies 
reporting multiple scores for a predictive model, one representative score was selected for the model in the 
following order of preference by the method of evaluation: external validation, internal validation, and 
lastly, training data. Given the broad scope of models included in this review, with variations in patient 
populations and definitions of predicted outcomes, these distributions were presented to characterize broad 
trends, without further application of statistical tests to compare performance between models of the 
machine learning or traditional model categories. Adherence to TRIPOD-AI guidelines was represented 
with bar graphs denoting the proportion of models compliant with each item of the guidelines. In addition, 
TRIPOD-AI adherence was visualized with models grouped by their type (machine learning or traditional 
model), and whether the study mentioned adherence to either the TRIPOD 2015 or TRIPOD-AI 2024 
guidelines.

For each study, a summary adherence score for the TRIPOD-AI guidelines was calculated as 100% times the 
number of items graded “Yes” divided by the sum of items graded “Yes” or “No” (i.e., items graded “Not 
applicable” were excluded). The distribution of these scores was represented through median and IQR.

Risk of bias was assessed through reporting of missing data handling (TRIPOD-AI item 11), effective 
sample size (using a threshold of 10 development data points for each predictor/level), and reporting of 
calibration.
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Figure 1. PRISMA flow diagram. *Studies reporting earlier versions of models trained on the same dataset were excluded, and the most 
recent publication evaluating model performance was included for review. PRISMA: Preferred reporting items for systematic reviews 
and meta-analyses.

Ethics, funding, conflicts of interest
Given the absence of any patient contact or study interventions for this systematic review, permission from 
the institutional review board was not required. This analysis was not supported by any funding, and the 
authors reported no additional disclosures or conflicts of interest.

RESULTS
Database search and study identification
Search queries identified 4,471 records from four databases, of which 2,324 were removed as duplicates. 
Screening by title and abstract of the remaining 2,147 records yielded 69 records for full-text screening, all 
of which were retrievable at the time of review. The application of selection criteria yielded 35 studies and 
their representative models. A flowchart depicting the search and review process is shown in Figure 1.

Study characteristics
The characteristics of the included studies and their selected representative models are shown in Table 1. Of 
the 35 included studies, nine reported only model development, 24 reported both model development and 
evaluation, and two reported only evaluation (external validation) of previously developed models. 16 
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Table 1. Characteristics of included studies

First author 
and year Population Outcome Model type

Development 
and/or 
evaluation; 
method

Sample size Predictors 
(N)

Performance 
metrics Online calculator

Berg, 2024[24] Lumbar discectomya Categorical: 1-year ODI 
improvement ≥ 22 ptsb

ML: XGBc DE; 5-fold regional 
cross-validation

22,707 (total), (internal-
external cross-validation 
with 5-fold regional cross-
validation)

25 AUC, PPV, NPV https://huggingface.
co/spaces/
martingorosito/
aidspine_hdsurgery_
calculator*

Carreon, 2024[29] Elective lumbar spine 
surgery

Categorical: 1-year ODI 
improvement > 0 pts

T: logistic 
regressiond

E; external dataset; 
temporal validation

8,105 (external dataset), 
24,755 (temporal 
validation)

15 AUC https://statcomp2.app.
vumc.org/app_0

Pedersen, 
2024[30]

Surgical decompression for 
LSS

Categorical: 1-year ODI 
improvement ≥ 14 pts

ML: MARSc DE; independent 
test set (N = 228)

6,585 (total), 6,357 
(development), 228 
(testing)

7 AUC, Brier score, 
sensitivity, 
specificity, PPV, 
NPV

Halicka, 2023[31] Surgical decompression 
with or without fusion for 
LDH and/or LSS

Categorical: COMI improvement ≥ 
2.2 pts, baseline to last available 
follow-up (collected 3, 12, 24 
months)

T: logistic 
regressiond

DE; temporal 
validation

4,307 (total), 2,691 
(development),1,616 
(testing)

34 AUC, Brier score, 
sensitivity, 
specificity, 
Nagelkerke R2

Matsukura, 
2023[32]

Surgery for cervical 
myelopathy due to OPLL

Categorical: mJOA recovery rate 
{2-year mJOA improvement/[(17 
- preoperative JOA) * 100]} ≥ 
52.8

T: logistic 
regression

D; evaluated on 
development data

395 6 AUC

Rushton, 2023[33] LSF Categorical: 6-week ODI 
improvement ≥ 14.3 pts

T: logistic 
regressionc

DE; temporal 
validation

1,200 (total), 600 
(development), 600 
(testing)

27 AUC

Geere, 2023[34] Surgical decompression 
with or without fusion for 
LDH and/or LSSa

Categorical: 1-year ODI ≤ 22 pts T: thresholded 
linear regressionc

DE; temporal 
validation

1,416 (total) 1,228 
(development), 188 
(testing)

18 AUC https://spinepredictor.
webflow.io/

Zhang, 2023[35] Surgery for CSMa Categorical: 2-year mJOA 
improvement ≥ 2 pts

ML: SVMc DE; LOOCV 50 Unspecified AUC, accuracy

Chen, 2023[36] Tubular microdiscectomy 
for LDH

Categorical: 1-year treatment 
improvement rate for lumbar 
spine JOA score {[(post-
treatment score - pre-treatment 
score) ÷ (full score 29 - pre-
treatment score)] × 100%} > 
60%

T: logistic 
regression

DE; bootstrapping 273 5 AUC https://fabinlin.
shinyapps.io/
DynNomapp/

Jaja, 2023[15] Surgical decompression, 
cervical, with or without 
fusiona

Categorical: Dichotomized 2-year 
recovery trajectory of mJOA, 
derived by nonlinear GBTM

T: logistic 
regression

DE; bootstrapping 757 11 AUC sensitivity, 
specificity

https://huggingface.co/spaces/martingorosito/aidspine_hdsurgery_calculator
https://huggingface.co/spaces/martingorosito/aidspine_hdsurgery_calculator
https://huggingface.co/spaces/martingorosito/aidspine_hdsurgery_calculator
https://huggingface.co/spaces/martingorosito/aidspine_hdsurgery_calculator
https://huggingface.co/spaces/martingorosito/aidspine_hdsurgery_calculator
https://statcomp2.app.vumc.org/app_0
https://statcomp2.app.vumc.org/app_0
https://spinepredictor.webflow.io/
https://spinepredictor.webflow.io/
https://fabinlin.shinyapps.io/DynNomapp/
https://fabinlin.shinyapps.io/DynNomapp/
https://fabinlin.shinyapps.io/DynNomapp/
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Sundaramoorthy, 
2023[16]

Conservative treatment or 
interlaminar 
sequestrectomy for low 
back pain

Continuous: 5-month ODI 
improvement

ML: deep neural 
networkc

DE; 10-fold cross-
validation

70 12 MAE

Staartjes, 2022[14] LSF for degenerative 
pathology

Categorical: 1-year ODI 
improvement ≥ 15 pts or 1-year 
COMI improvement ≥ 2.2 pts

ML: elastic net-
regularized GLM

DE; holdout test set 
(3/11 centers)

1,115 (total), 730 
(development), 269 
(testing)

10 AUC, accuracy, 
sensitivity, 
specificity, PPV, 
NPV

https://neurosurgery.
shinyapps.io/fuseml/

Dong, 2022[37] LIF for degenerative lumbar 
spondylolisthesisa

Categorical: 2-week ODI 
improvement ≥ 60%

ML: SVMc DE; 10-fold cross-
validation

157 9 AUC, accuracy, 
precision, 
confusion matrix

Pedersen, 
2022[38]

Lumbar discectomy Categorical: 1-year EQ-5D 
improvement ≥ 0.17 pts

ML: SVMd DE; holdout test set 
(15%)

1,968 (total), 1,673 
(development), 295 
(testing)

16 AUC, accuracy, 
specificity, 
sensitivity, PPV, 
NPV

Coric, 2022[39] Lumbar total disc 
replacement

Categorical: 7-year ODI > 17.63 
(mean in trial cohort)

T: logistic 
regressionc

DE; holdout 
(nonrandomized 
from trial) test set (
N = 52)

334 (total), 283 
(development), 52 
(testing)

5 AUC

Purohit, 2022[40] Lumbar spine surgery for 
degenerative disease

Categorical: 6-month mODI 
improvement > 0 pts

ML: RFc DE; holdout test set 
(20%)

180 (total), 144 
(development), 36 
(testing)

24 AUC http://134.209.148.
167:5000*

Wirries, 2022[17] Conservative treatment or 
microscopically or 
endoscopically assisted 
interlaminar or translaminar 
sequestrectomy for LDH

Continuous: 6-month ODI 
improvement

ML: decision 
treec

DE; 10-fold cross-
validation

123 19 MAE

Khan, 2021[41] Surgical decompression for 
DCM

Categorical: 1-year mJOA 
improvement ≥ 0 pts

ML: SVMc DE; holdout test set 
(20%)

702 (total), 562 
(development), 140 
(testing)

Unspecified AUC, accuracy, 
sensitivity, 
specificity 

Budiono, 2021[42] L5/S1 ALIF for DDD Categorical: ODI improvement ≥ 
20 pts, at least 8 months 
postoperatively

T: logistic 
regression

D; evaluated on 
development data

68 4 AUC, sensitivity, 
specificity

Werner, 2021[43] Lumbar microdiscectomy, 
medium-risk group (34 pts 
> baseline ODI ≥ 29pts)a

Categorical: 12-month ODI ≥ 47 T: logistic 
regression

DE; holdout test set 
(30%)

3,796 (total), 2,772 
(development), 1,024 
(testing)

11 AUC

Pilato, 2021[44] Surgery for CSM Categorical: postoperative (6-12 
month) mJOA improvement ≥ 6 
pts

T: logistic 
regression

D; evaluated on 
development data

76 9 AUC

Karhade, 2021[45] 1- or 2-level posterior 
decompression for lumbar 
disc herniation or lumbar 
spinal stenosis

Categorical: 1-year PROMIS-PF 
improvement ≥ 2 pts

ML: elastic-net 
penalized logistic 
regressionc

DE; holdout test set 
(30%)

759 (total), 532 
(development), 227 
(testing)

23 AUC, Brier score https://sorg-apps.
shinyapps.io/promis_
pld_mcid/*

Categorical: 6-month ODI D; evaluated on AUC, sensitivity, Berjano, 2021[25] Lumbar arthrodesis ML: RFc 1,243 5

https://neurosurgery.shinyapps.io/fuseml/
https://neurosurgery.shinyapps.io/fuseml/
http://134.209.148.167:5000
http://134.209.148.167:5000
https://sorg-apps.shinyapps.io/promis_pld_mcid/
https://sorg-apps.shinyapps.io/promis_pld_mcid/
https://sorg-apps.shinyapps.io/promis_pld_mcid/
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improvement ≥ 12.7 pts development data specificity

Zhang, 2021[46] Surgical treatment for CSMa Categorical: long-term follow-up (
≥ 3 years) mJOA ≥ 16 pts

ML: SVMc DE; holdout test set 
(N = 41)

151 (total), 110 
(development), 41 
(testing)

237 AUC, accuracy, 
precision, 
sensitivity, 
specificity

Quddusi, 2020[47] LSF Categorical: 1-year ODI 
improvement ≥ 15 pts

T: logistic 
regression

E; external dataset 100 4 AUC, Brier score https://becertain.org/
spine-lumbar-fusion-
outcomes-calculator

Ford, 2020[19] Lumbar discectomy Continuous: 6-month ODI 
improvement

T: linear 
regression

D; evaluated on 
development data

97 11 R2

Rundell, 2020[20] Laminectomy with fusion 
for LDH, spondylolisthesis, 
and stenosisa

Continuous: 1-year ODI T: logistic 
regression

DE; bootstrapping 1,918 4 R2, overfitting-
corrected c-index

https://statcomp2.app.
vumc.org/
lumbar12mby3m/

Staub, 2020[18] Decompression surgery for 
LDH

Continuous: 1-year COMI T: linear 
regression

DE; temporal 
validation

1,608 (total), 1,244 
(development), 364 
patients (testing)

15 R2, MAE, mean 
bias, RSME

https://linkup.kws.ch/
prognostic

Siccoli, 2019[48] Surgical decompression for 
LSS

Categorical: 6-week ODI 
improvement ≥ 30%

ML: best 
performing 
(unspecified) 
model of several 
testedc

DE; holdout test set 
(30%)

173 (total), 121 
(development), 52 
(testing)

15 AUC, accuracy

Merali, 2019[49] Surgical treatment of CSM Categorical: 1-year mJOA 
improvement ≥ 2 pts

ML: RFc DE; holdout test set 
(30%)

583 (total), 408 
(development), 175 
(testing)

108 AUC, accuracy 
sensitivity

Staartjes, 2019[50] Single-level tubular 
microdiscectomy for LDH

Categorical: 1-year ODI 
improvement ≥ 30%

ML: deep neural 
networkc

DE; holdout test set 
(20%)

422 (total), 338 
(development), 68 
(testing)

20 AUC, accuracy

De la Garza 
Ramos, 2019[51]

Surgery for moderate-to-
severe cervical myelopathy

Categorical: 2-year mJOA ≥ 18 pts T: logistic 
regression

D; evaluated on 
development data

251 12 AUC

Rubery, 2019[52] Lumbar discectomya Categorical: PROMIS PF 
improvement ≥ 3.75 pts, at least 
40 days postoperatively

T: logistic 
regression

D; evaluated on 
development data

78 12 AUC

Debnath, 2018[21] Surgical repair of lumbar 
pars defect in young 
sporting individuals

Continuous: ODI improvement, at 
least 2 years postoperatively

T: logistic 
regressionc

D; evaluated on 
development data

52 6 R2

Nouri, 2015[53] Decompression surgery for 
DCMa

Categorical: 1-year mJOA ≥ 16 pts T: logistic 
regression

D; evaluated on 
development data

99 6 AUC

aStudy included models for different patient populations; bStudy included models for different outcomes (e.g., different PROMs); cStudy included models of different types within the same category (ML, T); dStudy 
included both ML and T models. To avoid overrepresentation of studies with multiple models in quantitative analyses, individual models were selected from those studies reporting multiple models (whether for 
multiple patient populations/subsets, multiple outcome definitions, model types) with the following method: the eligible model (predicting a questionnaire-based PROMs outcome) was selected for analysis that was 
presented by the authors as the best performing model, or if no individual model was designated in such a manner, the model exhibiting greatest performance in discrimination was selected for categorical outcome 
prediction models or the one explaining the greatest proportion of variation in continuous outcome prediction models. *Deprecated link at the time of publication. ODI: Oswestry disability index; ML: machine 

https://becertain.org/spine-lumbar-fusion-outcomes-calculator
https://becertain.org/spine-lumbar-fusion-outcomes-calculator
https://becertain.org/spine-lumbar-fusion-outcomes-calculator
https://statcomp2.app.vumc.org/lumbar12mby3m/
https://statcomp2.app.vumc.org/lumbar12mby3m/
https://statcomp2.app.vumc.org/lumbar12mby3m/
https://linkup.kws.ch/prognostic
https://linkup.kws.ch/prognostic
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learning; XGB: extreme gradient boosting; DE: development and evaluation; AUC: area under the curve; PPV: positive predictive value; NPV: negative predictive value; T: traditional model; E: evaluation; MARS: 
multivariate adaptive regression spline; LDH: lumbar disc herniation; LSS: lumbar spinal stenosis; COMI: core outcomes measures index; OPLL: ossification of the posterior longitudinal ligament; mJOA: modified 
Japanese Orthopaedic Association; D: development; LSF: lumbar spinal fusion; CSM: cervical spondylotic myelopathy; SVM: support vector machine; GBTM: group-based trajectory modeling; MAE: mean absolute 
error; GLM: generalized linear models; LIF: lumbar interbody fusion; EQ-5D: RF: random forest; DCM: degenerative cervical myelopathy; ALIF: anterior lumbar interbody fusion; DDD: degenerative disc disease; 
PROMIS-PF: Patient-reported outcomes measurement information system-physical function; PROMs: patient-reported outcome measures.

machine learning-based and 19 traditional prediction models were represented among the selected models from the included studies. Machine learning model 
types represented included neural network, random forest, decision tree, support vector machine, extreme gradient boosting, and multivariate adaptive 
regression splines, elastic net-regularized general linear model, and elastic-net-penalized logistic regression. Traditional models included multivariable logistic 
and linear regression. Of these models, six predicted a continuous outcome, and 29 predicted a binary categorical outcome.

Various PROMs were represented in the outcomes defined among selected models. Three models included the core outcome measures index (COMI), one 
included the EuroQol-5 dimensions (EQ-5D), 10 included the mJOA (or lumbar spine Japanese Orthopaedic Association) score, 20 included the ODI, and two 
included PROMIS-physical function. Of note, one model incorporated both ODI and COMI into the same predicted outcome[14]. There was considerable 
variation in the manner of outcome categorization, with studies choosing, for example, different thresholds for postoperative improvement or absolute score 
attainment, and different time points of postoperative assessment (including specified time points as well as baseline-to-last available follow-up). One study 
derived a dichotomized recovery trajectory outcome developed with nonlinear group-based trajectory modeling[15]. Models were developed for a range of 
variously defined patient populations. Nine models were developed for patients with cervical spine pathology, and 26 models were developed for patients with 
lumbar spine pathology. All models included patients undergoing surgery - however, two models also included conservatively treated patients in their defined 
patient populations[16,17].

Predictive performance
Binary categorical outcome prediction models included AUC as a measure of discrimination. Beyond this, considerable variation in the measures of predictive 
performance was reported, both for categorical and continuous outcome prediction models. Metrics reported included sensitivity, specificity, positive 
predictive value, negative predictive value, accuracy, Brier score, R2, and mean absolute error (MAE), among others.

Categorical outcome prediction models reported median [IQR] AUC values of 0.79 [0.73, 0.84]. Of these 29 models, machine learning models reported median 
[IQR] AUC values of 0.825 [0.76, 0.84], while traditional models reported median [IQR] AUC values of 0.74 [0.71, 0.81]. Note that these distributions include 
values derived from external validation, internal validation, and performance on training data - for studies reporting multiple such scores, one representative 
score was selected in the following order of preference: external validation, internal validation, and training data. These distributions are shown by model 
category alongside the individual represented scores in Figure 2.
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Figure 2. Predictive performance (AUC) of machine learning vs. traditional models. Boxplots show the distribution of discrimination 
scores (AUC) for categorical outcome prediction models, grouped by model type. Plots show median, IQR, and whiskers extending to 
smallest and largest values within 1.5 × IQR from the quartiles, overlaid with scores from each selected model from included studies. For 
studies reporting multiple scores for a predictive model, one representative score was selected for the model in the following order of 
preference by the method of evaluation: external validation, internal validation, and lastly, training data. Machine learning models (N = 
14): AUC median [IQR]: 0.825 [0.76, 0.84]. Traditional models (N = 15): AUC median [IQR]: 0.74 [0.71, 0.81]. Total (N = 29): AUC 
median [IQR]: 0.79 [0.730, 0.84]. AUC: The area under the receiver operating curve, IQR: interquartile range.

The six continuous outcome prediction models included did not show consistent performance metric 
reporting. Three models reported MAE - 5.82[16], 8.68[17], 2.04[18], and four models reported R2 - 0.32[19], 
0.247[20], 0.17[18], 0.809[21].

Methods of evaluation/validation
Of the 26 studies reporting model evaluation for selected models, three studies reported external validation, 
and 23 reported internal validation. Methods of external validation included validation with an external 
dataset, as well as validation with holdout test data from distinct centers from those used in training. 
Methods of internal validation included cross-validation (k-fold or leave-one-out), bootstrapping with 
resampling, temporal validation, or holdout test data from the same data sources as used in training. In nine 
studies, performance was only reported on development data.

TRIPOD-AI adherence
TRIPOD-AI item-level adherence for each item, along with a description of each item and notes on the 
manner of adherence grading, is shown in Table 2. Ten items showed 100% “Yes” grading (3a, 3b, 5a, 6c, 8a, 
9b, 12e, 20b). When “Not applicable” was removed, nine additional items showed 100% “Yes” grading (8c, 
9c, 12a, 12b, 12d, 12f, 23b), although six of these items were defined in a way that studies were likely to be 
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Table 2. TRIPOD-AI item-level adherence

Section/topic Item Development/ 
evaluation Description Notes on adherence 

assessment Adherence

Title and abstract

Title 1 D; E Identify the study as developing or evaluating the performance of a multivariable prediction model, the 
target population, and the outcome to be predicted

Y: 21 (60.0%), N: 14 
(40.0%), NA: 0 
(0.0%)

Abstract 2 D; E See TRIPOD + AI for abstracts checklist Y: 15 (42.9%), N: 20 
(57.1%), NA: 0 
(0.0%)

Introduction

3a D; E Explain the healthcare context (including whether diagnostic or prognostic) and rationale for 
developing or evaluating the prediction model, including references to existing models

Y: 35 (100.0%), N: 0 
(0.0%), NA: 0 
(0.0%)

3b D; E Describe the target population and the intended purpose of the prediction model in the context of the 
care pathway, including its intended users (e.g., healthcare professionals, patients, public)

Y: 35 (100.0%), N: 0 
(0.0%), NA: 0 
(0.0%)

Background

3c D; E Describe any known health inequalities between sociodemographic groups Y: 0 (0.0%), N: 35 
(100.0%), NA: 0 
(0.0%)

Objectives 4 D; E Specify the study objectives, including whether the study describes the development or validation of a 
prediction model (or both)

Y: 34 (97.1%), N: 1 
(2.9%), NA: 0 
(0.0%)

Methods

5a D; E Describe the sources of data separately for the development and evaluation datasets (e.g., randomized 
trial, cohort, routine care or registry data), the rationale for using these data, and representativeness of 
the data

Y: 35 (100.0%), N: 0 
(0.0%), NA: 0 
(0.0%)

Data

5b D; E Specify the dates of the collected participant data, including start and end of participant accrual; and, if 
applicable, end of follow-up

Y: 30 (85.7%), N: 5 
(14.3%), NA: 0 
(0.0%)

6a D; E Specify key elements of the study setting (e.g., primary care, secondary care, general population), 
including the number and location of centers

Y: 34 (97.1%), N: 1 
(2.9%), NA: 0 
(0.0%)

6b D; E Describe the eligibility criteria for study participants Y: 34 (97.1%), N: 1 
(2.9%), NA: 0 
(0.0%)

Participants

6c D; E Give details of any treatments received, and how they were handled during model development or 
evaluation, if relevant

Y: 35 (100.0%), N: 0 
(0.0%), NA: 0 
(0.0%)

Data preparation 7 D; E Describe any data pre-processing and quality checking, including whether this was similar across 
relevant sociodemographic groups

Y: 30 (85.7%), N: 5 
(14.3%), NA: 0 
(0.0%)
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8a D; E Clearly define the outcome that is being predicted and the time horizon, including how and when 
assessed, the rationale for choosing this outcome, and whether the method of outcome assessment is 
consistent across sociodemographic groups

Y: 35 (100.0%), N: 0 
(0.0%), NA: 0 
(0.0%)

8b D; E If outcome assessment requires subjective interpretation, describe the qualifications and demographic 
characteristics of the outcome assessors

NA if no subjective assessment of 
outcome described

Y: 0 (0.0%), N: 0 
(0.0%), NA: 35 
(100.0%)

Outcome

8c D; E Report any actions to blind assessment of the outcome to be predicted NA if no outcome blinding 
described

Y: 5 (14.3%), N: 0 
(0.0%), NA: 30 
(85.7%)

9a D Describe the choice of initial predictors (e.g., literature, previous models, all available predictors) and 
any pre-selection of predictors before model building

Y: 31 (88.6%), N: 2 
(5.7%), NA: 2 
(5.7%)

9b D; E Clearly define all predictors, including how and when they were measured (and any actions to blind 
assessment of predictors for the outcome and other predictors)

Y: 35 (100.0%), N: 0 
(0.0%), NA: 0 
(0.0%)

Predictors

9c D; E If predictor measurement requires subjective interpretation, describe the qualifications and 
demographic characteristics of the predictor assessors

NA if no subjective assessment of 
predictors described

Y: 2 (5.7%), N: 0 
(0.0%), NA: 33 
(94.3%)

Sample size 10 D; E Explain how the study size was arrived at (separately for development and evaluation), and justify that 
the study size was sufficient to answer the research question. Include details of any sample size 
calculation

Y: 5 (14.3%), N: 30 
(85.7%), NA: 0 
(0.0%)

Missing data 11 D; E Describe how missing data were handled. Provide reasons for omitting any data Y: 21 (60.0%), N: 14 
(40.0%), NA: 0 
(0.0%)

12a D Describe how the data were used (e.g., for development and evaluation of model performance) in the 
analysis, including whether the data were partitioned, considering any sample size requirements

Y: 33 (94.3%), N: 0 
(0.0%), NA: 2 
(5.7%)

12b D Depending on the type of model, describe how predictors were handled in the analyses (functional 
form, rescaling, transformation, or any standardization)

Y: 33 (94.3%), N: 0 
(0.0%), NA: 2 
(5.7%)

12c D Specify the type of model, rationale2, all model-building steps, including any hyperparameter tuning, 
and method for internal validation

Y: 25 (71.4%), N: 8 
(22.9%), NA: 2 
(5.7%)

12d D; E Describe if and how any heterogeneity in estimates of model parameter values and model performance 
was handled and quantified across clusters (e.g., hospitals, countries). See TRIPOD-Cluster for 
additional considerations3

NA if no heterogeneity in 
estimates described

Y: 3 (8.6%), N: 0 
(0.0%), NA: 32 
(91.4%)

12e D; E Specify all measures and plots used (and their rationale) to evaluate model performance (e.g., 
discrimination, calibration, clinical utility) and, if relevant, to compare multiple models

Y: 35 (100.0%), N: 0 
(0.0%), NA: 0 
(0.0%)

12f E Describe any model updating (e.g., recalibration) arising from the model evaluation, either overall or for 
particular sociodemographic groups or settings

NA if no model updating 
described

Y: 1 (2.9%), N: 0 
(0.0%), NA: 34 
(97.1%)

For model evaluation, describe how the model predictions were calculated (e.g., formula, code, object, Y: 26 (74.3%), N: 1 

Analytical methods

12g E
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application programming interface) (2.9%), NA: 8 
(22.9%)

Class imbalance 13 D; E If class imbalance methods were used, state why and how this was done, and any subsequent methods 
to recalibrate the model or the model predictions

NA if no class imbalance 
measures described

Y: 7 (20.0%), N: 0 
(0.0%), NA: 28 
(80.0%)

Fairness 14 D; E Describe any approaches that were used to address model fairness and their rationale Y: 0 (0.0%), N: 35 
(100.0%), NA: 0 
(0.0%)

Model output 15 D Specify the output of the prediction model (e.g., probabilities, classification). Provide details and 
rationale for any classification and how the thresholds were identified

Y: 33 (94.3%), N: 0 
(0.0%), NA: 2 
(5.7%)

Training vs. evaluation 16 D; E Identify any differences between the development and evaluation data in healthcare settings, eligibility 
criteria, outcome, and predictors

NA if evaluated through 
bootstrapping, leave-one-out 
cross-validation, development 
data

Y: 11 (31.4%), N: 11 
(31.4%), NA: 13 
(37.1%)

Ethical approval 17 D; E Name the institutional research board or ethics committee that approved the study and describe the 
participant-informed consent or the ethics committee waiver of informed consent

Y: 26 (74.3%), N: 9 
(25.7%), NA: 0 
(0.0%)

Open science

Funding 18a D; E Give the source of funding and the role of the funders for the present study Y: 31 (88.6%), N: 4 
(11.4%), NA: 0 
(0.0%)

Conflicts of interest 18b D; E Declare any conflicts of interest and financial disclosures for all authors Y: 34 (97.1%), N: 1 
(2.9%), NA: 0 
(0.0%)

Protocol 18c D; E Indicate where the study protocol can be accessed or state that a protocol was not prepared Y: 0 (0.0%), N: 35 
(100.0%), NA: 0 
(0.0%)

Registration 18d D; E Provide registration information for the study, including register name and registration number, or state 
that the study was not registered

Y: 0 (0.0%), N: 35 
(100.0%), NA: 0 
(0.0%)

Data sharing 18e D; E Provide details of the availability of the study data Y: 7 (20.0%), N: 28 
(80.0%), NA: 0 
(0.0%)

Code sharing 18f D; E Provide details of the availability of the analytical code Y: 3 (8.6%), N: 32 
(91.4%), NA: 0 
(0.0%)

Patient and public involvement

Patient and public 
involvement

19 D; E Provide details of any patient and public involvement during the design, conduct, reporting, 
interpretation, or dissemination of the study or state no involvement

Y: 1 (2.9%), N: 34 
(97.1%), NA: 0 
(0.0%)

Results
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20a D; E Describe the flow of participants through the study, including the number of participants with and 
without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful

Y: 34 (97.1%), N: 1 
(2.9%), NA: 0 
(0.0%)

20b D; E Report the characteristics overall and, where applicable, for each data source or setting, including the 
key dates, key predictors (including demographics), treatments received, sample size, number of 
outcome events, follow-up time, and amount of missing data. A table may be helpful. Report any 
differences across key demographic groups

Y: 35 (100.0%), N: 0 
(0.0%), NA: 0 
(0.0%)

Participants

20c E For model evaluation, show a comparison with the development data of the distribution of important 
predictors (demographics, predictors, and outcome)

NA if evaluated through 
bootstrapping, leave-one-out 
cross-validation, development 
data

Y: 11 (31.4%), N: 11 
(31.4%), NA: 13 
(37.1%)

Model development 21 D; E Specify the number of participants and outcome events in each analysis (e.g., for model development, 
hyperparameter tuning, model evaluation)

Y: 32 (91.4%), N: 3 
(8.6%), NA: 0 
(0.0%)

Model specification 22 D Provide details of the full prediction model (e.g., formula, code, object, application programming 
interface) to allow predictions in new individuals and to enable third-party evaluation and 
implementation, including any restrictions to access or re-use (e.g., freely available, proprietary)

Y if any included online 
calculators allowing for the use of 
the model

Y: 15 (42.9%), N: 18 
(51.4%), NA: 2 
(5.7%)

23a D; E Report model performance estimates with confidence intervals, including for any key subgroups (e.g., 
sociodemographic). Consider plots to aid presentation

Y: 29 (82.9%), N: 6 
(17.1%), NA: 0 
(0.0%)

Model performance

23b D; E If examined, report results of any heterogeneity in model performance across clusters. See TRIPOD 
Cluster for additional details

NA if no heterogeneity in model 
performance described

Y: 2 (5.7%), N: 0 
(0.0%), NA: 33 
(94.3%)

Model updating 24 E Report the results from any model updating, including the updated model and subsequent performance NA if no model updating 
described

Y: 0 (0.0%), N: 0 
(0.0%), NA: 35 
(100.0%)

Discussion

Interpretation 25 D; E Give an overall interpretation of the main results, including issues of fairness in the context of the 
objectives and previous studies

Y: 35 (100.0%), N: 0 
(0.0%), NA: 0 
(0.0%)

Limitations 26 D; E Discuss any limitations of the study (such as a non-representative sample, sample size, overfitting, 
missing data) and their effects on any biases, statistical uncertainty, and generalizability

Y: 34 (97.1%), N: 1 
(2.9%), NA: 0 
(0.0%)

27a D Describe how poor quality or unavailable input data (e.g., predictor values) should be assessed and 
handled when implementing the prediction model

Y: 1 (2.9%), N: 32 
(91.4%), NA: 2 
(5.7%)

27b D Specify whether users will be required to interact in the handling of the input data or use of the model, 
and what level of expertise is required of users

Y: 2 (5.7%), N: 31 
(88.6%), NA: 2 
(5.7%)

Usability of the model in 
the context of current 
care

27c D; E Discuss any next steps for future research, with a specific view to the applicability and generalizability 
of the model

Y: 35 (100.0%), N: 0 
(0.0%), NA: 0 
(0.0%)

The complete checklist may be found at https://www.tripod-statement.org/wp-content/uploads/2019/12/TRIPODAI_checklist.pdf. TRIPOD-AI: Transparent reporting of a multivariable prediction model for 

https://www.tripod-statement.org/wp-content/uploads/2019/12/TRIPODAI_checklist.pdf
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individual prognosis or diagnosis[12]; D: development, E: evaluation; Y: yes, N: no, NA: not applicable.

graded “Yes” for mentioning an applicable aspect of study methodology or otherwise “NA” - these adherence grading approaches are also detailed in Table 2. 
Two items showed 100% “Not applicable” grading (8b, 24), and four items showed 100% “No” grading (3c, 14, 18c, 18d).

For each study, an adherence score was calculated, shown in Supplementary Table 1, with a median [IQR] adherence score of 69% [64%, 73.5%]. Item-level 
TRIPOD-AI adherence is also visualized in bar graph form in Supplementary Figure 1. Item-level adherence is compared between studies with selected 
machine learning models and those with traditional models in Figure 3. Item-level adherence is compared between studies mentioning TRIPOD 2015 or 
TRIPOD-AI 2024 guideline adherence in Supplementary Figure 2.

Risk of bias
Fourteen of 35 studies did not report details of missing data handling. Ten of the 33 studies reporting development with or without internal/external validation 
showed a ratio of development sample size to number of predictors/levels below 10. Calibration was reported in 18 of 35 studies, and decision curve analysis in 
three studies. Twenty-two of 35 studies failed at least one of these criteria for risk of bias.

Availability of prediction models for application
Ten studies provided online calculators for models developed and/or assessed. In addition to these studies, seven studies provided sufficient detail (e.g., 
formula/equation) of prediction models for outside use or reported availability of models for use.

DISCUSSION
We identified 35 studies reporting the development or evaluation of prediction models for questionnaire-based PROMs outcomes following elective spine 
surgery. This study reviews a growing body of literature reporting on prediction models, which continue to take on increasing importance, given implications 
for uses in reimbursement, physician evaluation, and patient-level decision making. In recent years, these predictive models have also more frequently taken 
advantage of machine learning methods, although traditional approaches continue to be used. We characterize patterns in the defined prediction tasks (patient 
population, outcome definition), models utilized, transparency of reporting, and risk of bias among these studies. Our study highlights a considerable degree of 
variability, not only in predictive performance but also in the completeness of prediction model reporting. These prediction models have been developed for a 
range of prediction tasks across variously defined patient populations and predicted outcomes, limiting the extent to which model performance may be 
compared head-to-head for a given task.

In addition to variation in the methodology of model design, the range of performance metrics available for these studies was variable beyond the reporting of 
discrimination in categorical outcome prediction models, with many studies missing calibration and/or decision curve analysis, and variable performance 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/ais4042-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/ais4042-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/ais4042-SupplementaryMaterials.pdf
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Figure 3. TRIPOD-AI adherence: machine learning vs. traditional models. ML: machine learning prediction model (N = 16); T: traditional 
statistical prediction model (N = 19); TRIPOD-AI: Transparent reporting of a multivariable prediction model for individual prognosis or 
diagnosis.

measures reported across continuous outcome prediction models. Among categorical outcome prediction 
models reporting AUC, we found the group of machine learning models to exhibit higher median (IQR) 
AUC values than the group of models developed with traditional methods. This comparison, however, 
should be understood in the context of each model varying in its prediction tasks (patient population, 
predicted outcome definition, and time point), sample size, number of predictors, and the setting of 
performance evaluation (external validation, internal validation, evaluation on training data). In addition, 
discrimination alone does not suffice to fully characterize the predictive performance of a model, and the 
meaning and utility of an individual score must be understood in the context of the assigned predictive task 
and the model applications under consideration. Nevertheless, our findings appear to indicate that both 
machine learning and traditional approaches can produce useful models, with considerable overlap between 
model types in the distribution of reported discriminative capacity, and AUC scores across both categories 
in ranges that have been characterized as suboptimal to outstanding in clinical applications[22].

Reported model performance should also be contextualized in terms of the completeness of reporting and 
the potential risk of bias. Particularly where models have yet to be externally or internally validated, 
predictive models carry the risk of overestimating performance through a number of potential pitfalls, 
including overfitting. This risk is heightened when the available sample size for the development of a model 
is low in proportion to the number of predictors incorporated into a given model - machine learning 
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models, in particular, carry the potential for overfitting through greater flexibility in modeling of predictor 
and outcome relationships that may represent patterns seen only in the training dataset and which may 
poorly generalize to other datasets. These concerns are illustrated by the variability we observed in 
predictive performance between models evaluated with training data, internal validation, and external 
validation. Although external validation was only reported for a few models, we noted a pattern of worse 
model performance in the examples of external validation with both machine learning and traditional 
methods, with scores for model discrimination falling at or below the 25th percentile for respective model 
types. Transparency of reporting in the development and evaluation of prediction models is also critical to 
maintaining interpretability, which may already be compromised in machine learning models due to the 
opacity of model decision-making processes[23]. This underscores the necessity for model transparency - 
ensuring that models are both powerful and interpretable enhances their reliability and applicability in 
clinical settings.

TRIPOD + AI is a recently updated set of guidelines for prediction model reporting[12]. This study is among 
the first to evaluate the transparency of predictive model reporting with these updated guidelines. While 
past studies may have relied on the 2015 TRIPOD guidelines available at the time, the newer guidelines are 
intended to serve as a more comprehensive tool. This review may provide insight into current model 
performance and reporting practices, as well as highlighting the updated guidelines to promote greater 
consistency in reporting at the study design and writing stage, where we believe it may yield the greatest 
utility. Taking these guidelines into consideration in the early stages of study design allows for thoughtful 
incorporation of measures to address problems of missing data, consider analyses of heterogeneity, and 
decide on an appropriate method of assessing model performance, whether that may include external 
validation or otherwise.

While the TRIPOD-AI guidelines include a checklist of items intended for use by authors in the 
development/evaluation and reporting of prediction models, the aims of the guidelines also include their 
use assessment of transparency and consistency of prediction model reporting[12]. We found four items (3c, 
14, 18c, 18d) to be missing (graded “No”) in every included study - these items encompassed description of 
known healthcare inequalities in the sample population, comments on model fairness, and disclosure of 
study protocols or registrations. Twenty percent of reported models included comments on the availability 
of the analytical code for the model (item 18f) and only one study included descriptions of patient and 
public involvement in the model development or testing process (item 19). Comparing machine learning 
models to traditional models, we found that sample size justification (item 10) and statements on data 
availability (item 18f) were more often missing among machine learning models than among traditional 
models. Overall, the adherence to the TRIPOD-AI guidelines was inconsistent and incomplete across 
studies, including among studies that had mentioned following either the prior TRIPOD 2015 or more 
recent TRIPOD-AI guidelines.

Nevertheless, TRIPOD items are not interchangeable, and the implications for incomplete reporting may 
vary considerably between items. For instance, TRIPOD item 11 involves the description of missing data 
handling - a complete case analysis may meet or fail completeness of this item not based on measures taken 
to address missing data, but based on whether such measures or the absence thereof were described 
appropriately. As a tool designed around transparency in reporting rather than on robustness of study 
design, this focus on the adequacy of reporting may be appropriate, but for this reason, it is important to 
consider the definitions of these items when interpreting item-level adherence, which may not capture the 
full scope of a given problem. In the case of missing data, completeness of PROMs data presents a particular 
challenge, with unavailable data for many patients and the associated risk of excluding patients without 
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complete data, resulting in the underrepresentation of these patients in predictive model development and 
evaluation[1].

Some TRIPOD items were also found in this review to be difficult to assess from the perspective of a reader 
or reviewer, as they were conditional on knowledge that may only have been available to authors during the 
study design or analysis phase. In addition, many TRIPOD items include several components (e.g., item 2 
for abstracts), and some of these items may have been better suited for consultation during the writing of a 
publication rather than as tools for post-hoc evaluation of a publication, particularly given that the most 
recent guidelines were not available to most authors of the studies included in this review. While we 
assessed an adherence score for the studies reviewed for the purposes of aggregate analysis, we found the 
utility of the TRIPOD-AI tool in the assessment of individual studies to lie primarily in identifying 
particular gaps in reporting to contextualize findings and enable further evaluation, rather than in the 
reduction of reporting in a study to a single score.

One of the paramount challenges for comparative assessment of prediction model performance lies in the 
variability of outcome reporting, which impedes the ability to compare aggregated data and appropriately 
assess the clinical utility of one model over another. Even for similarly defined populations of surgical 
patients, the use of a variety of PROMs exacerbates this challenge. Where the same PROMs are used, studies 
may vary in their incorporation into outcome definitions - for instance, studies may define treatment 
success by different time points or thresholds for minimal clinically important differences (MCIDs). One 
study might define MCID as achieving a 22-point improvement in ODI scores, whereas another might set a 
threshold of 12.7 points[24,25]. These variations underscore an opportunity for discussion on the 
standardization of such PROM-based definitions of treatment success. While such standardization would 
face considerable logistical obstacles, it would enhance interpretability and enable more effective 
comparative assessments, not only within the prediction model literature but also across the broader body 
of literature on surgical outcomes.

Several included studies had not yet reported validation beyond performance on training data, and we 
found a paucity of reported external validation of models, mirroring trends observed in other systematic 
reviews[26]. External validation, in particular, will remain critical for assessing the generalizability of models 
to different countries, healthcare systems, and institutional methods of predictor measurement[27]. Methods 
of incorporating external validation may include applying existing models to new datasets - alternatively, 
external validation may be integrated alongside the development of new models to be reported together. In 
both cases, collaboration between institutions, as well as utilization of publicly available datasets where 
appropriate, will help to promote more widespread external validation.

Limitations
This review has several limitations. Firstly, our broad inclusion criteria encompassed a broad range of 
models - varying in model type, patient population, and predicted outcome, among many other 
characteristics. This heterogeneity limits the appropriate comparisons that can be made between models. In 
addition, we chose to incorporate only the best-performing eligible model from each included study for our 
analysis - while this approach avoids the overrepresentation of individual datasets or studies in quantitative 
comparisons, it also reduces the breadth of models represented. This study was also limited in scope to 
those analyses that included prediction models of questionnaire-based outcomes, with the understanding 
that prediction models may improve the utility of PROMs. This focus, however, excludes studies reporting 
prediction models for other types of outcomes, such as visual analog scales for pain, or quantified rates of 
adverse events. In addition, our review excludes studies that assess machine learning model performance for 
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non-prediction tasks - for example, a recently published model that assesses vertebral body fractures on CT 
imaging[28]. Studies meeting inclusion criteria may have been missed in our search strategy, although we 
believe the use of separate queries of four databases may have mitigated some of this risk. Studies included 
in our review may also have been subject to publication bias, with more poorly performing models less 
likely than better-performing models to be published. This may have resulted in overestimates of 
performance in the distribution of performance metrics across our pool of included studies. This study may 
best be regarded as a review of the current landscape of prediction models and their reporting, rather than 
as definitive aggregate evidence in favor of selecting one model type or another for a given prediction task.

In conclusion, this study highlights the current state of predictive modeling for PROM-based outcomes of 
elective spine surgery, with a focus on the variation between machine learning and traditional regression 
models. We noted considerable variation in patterns of model development, not only in chosen patient 
populations and outcome measures but also in their manner of evaluation. We found 22/35 studies lacking 
in at least one domain in risk of bias assessment (missing data handling, sample size-predictor ratio, 
calibration), and noted median [IQR] adherence to TRIPAD-AI guideline components of 69% [64%, 73.5%]. 
Future studies stand to benefit from referring to guidelines such as these in order to improve transparency 
and completeness of model reporting. There remains a considerable opportunity for improved consistency 
in reporting as well as in possible standardization of outcome definitions to enable meaningful model 
comparisons. Future efforts should also be directed toward external validation of existing models to enable 
better characterization of model generalizability. Such developments may facilitate the application of this 
growing body of literature toward effective clinical uses.
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