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Abstract
Potassium-ion batteries (PIBs) have attracted significant attention as a complement to lithium-ion and sodium-ion 
batteries (SIBs). PIBs can theoretically provide higher specific energy and power density than SIBs due to lower 
standard electrode potential of K/K+ and faster K+ ion diffusion, maintaining the benefits of low-cost and 
sustainability. However, research on PIBs is in its infancy; therefore, further efforts are necessary to enhance their 
performance and position them as a competitive technology. In this perspective, the remaining challenges and 
possible strategies to advance the development of PIBs are presented.
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STATE-OF-THE-ART
To achieve climate neutrality, the number of renewable energy sources and clean energy carriers should 
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significantly increase, reducing the dependence on fossil fuel consumption. In parallel, novel efficient 
energy storage solutions must be developed for grid and household applications along with the 
implementation of sustainable and smart technologies in transportation systems. The electric vehicle 
industry is growing considerably, as are stationary energy storage systems (EES), which will become a key 
facet towards the realization of a sustainable society. Environmentally friendly, efficient, and powerful 
energy storage devices are required. In this context, batteries are a key technology, with lithium-ion batteries 
(LIBs) being the preferred choice for electromobility due to their high energy density. However, they utilize 
toxic (i.e., cobalt) or critical raw materials, i.e., cobalt, natural graphite, and lithium[1]. As a consequence, the 
feasibility of LIBs for application in large-scale renewable EES is uncertain. This necessitates the 
development of alternative EES composed of earth-abundant elements that meet the cost, sustainability, 
availability, and good performance metrics.

Sodium-ion batteries (SIBs) are a competitive technology because they are environmentally friendly, 
sustainable, and cost-effective[2]. Sodium-based electro-active materials are made from non-critical raw 
materials, such as manganese- and iron-based layered oxides or Prussian Blue analogs (PBAs) as cathodes 
and biowaste-derived hard carbon anodes[3]. In addition, aluminum can be used as anode current collector 
because sodium does not alloy with aluminum at low potential[4]. The main challenge of SIBs is to enhance 
their energy and power density to be more competitive with LIBs. Experimental energy densities of 711 
W·h·kg-1 and more than 1,450 W·h·kg-1 have recently been reported for LIBs at the cell level (with practical 
batteries around 350 W·h·kg-1)[5]. Nevertheless, Contemporary Amperex Technology Co., Limited (CATL) 
announced the commercialization of SIBs with 160 W·h·kg-1 and more than 2,000 cycles by 2023[6].

In theory, potassium-ion batteries (PIBs) can achieve superior energy and power densities than SIBs, 
considering their lower standard electrode potential and faster ion diffusion[7]. Austin-based PIB startup 
Group 1 aims for a large-scale launch of PIB production by 2027 due to comparable energy density to 
lithium iron phosphate (LFP)-based LIBs[8]. For the research-based development of PIBs, further advances 
are necessary in electrode and electrolyte design, understanding of the interfacial chemistry, and 
manufacturing potassium full cells to enhance their viability.

POTASSIUM-ION BATTERY ADVANTAGES
The main expected advantages of PIBs in comparison to other technologies, such as LIBs and SIBs, include 
affordability and environmental friendliness resulting from the material replacement in PIBs vs. LIBs, along 
with higher power density, high energy density, and safety of PIBs vs. SIBs due to the more negative voltage 
of reduction of K metal [Figure 1][9,10]. However, these properties are not supported by experimental data. In 
fact, the current performance and safety of PIBs are inferior to that of both LIBs and SIBs [Figure 1]. Recent 
energy density calculations hardly reach 160 W·h·kg-1 for PIBs[11]. Regarding the inferior safety of PIBs, the 
literature points out the highest reactivity of K metal with respect to Li and Na. While it is understood that 
PIBs do not contain metallic K, the risk of metal plating on the anode exists for low-voltage anode materials 
when using high currents, making PIBs less safe. Nevertheless, research on PIBs is still in its infancy; thus, 
the potential for them to become a feasible technology remains open.

Low-cost and environmentally friendly technology
PIBs can be made with abundant and non-critical raw materials, such as aluminum, iron, manganese, 
potassium, etc., avoiding the use of critical raw and scarce elements (i.e., lithium, cobalt, copper, nickel, 
natural graphite) used in LIBs[1]. An aluminum current collector can also be used in both electrodes because 
potassium does not alloy with aluminum to thermodynamically form intermetallic compounds, thus 
reducing battery cost and weight[12]. For example, in the case of SIBs, 55% and 3% of battery mass and cost 
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Figure 1. Radar plot of electrochemical, sustainability, and cost properties of (A) LIBs (red: LFP-based and purple: lithium nickel 
manganese cobalt oxides (NMC)-based LIBs), (B) SIBs, and (C) PIBs (cyan dots: theoretical values and blue line: experimental 
values)[9,10].

reduction can be obtained by replacing 10 µm thick copper with 15 µm thick aluminum[13]. A similar 
outcome could be expected for PIBs.

Potential high power and energy density
PIBs could provide high power densities because K+ ions diffuse faster than Li+ and Na+ ions in liquid 
electrolytes[14]. This is due to weaker Lewis acidity and Coulombic interactions with the anions and solvents. 
The K+ ion exhibits smaller Stokes radii (3.6 Å) in propylene carbonate (PC) than Na+ and Li+ ions (i.e., 4.6 Å 
and 4.8 Å, respectively). In addition, the K+ ion shows lower desolvation energy; thus, PIBs might exhibit 
enhanced rate capability. Nevertheless, the K+ ion diffusion in the electrolyte is not the only factor to be 
considered. Indeed, the power capability is still poor compared to LIBs and SIBs due to the limited K+ ion 
kinetics within the electro-active materials.

Moreover, PIBs could also be considered high energy density batteries, mainly due to the low standard 
electrode potential of K/K+ (-2.93 V vs. SHE), even lower than Li/Li+ in organic electrolytes[14], leading to 
high operating average voltages.

Potassium metal reactivity
A controversial opinion remains in the research field regarding the safety properties of PIBs due to the 
higher reactivity of K metal than Li or Na. However, the lower standard electrode potential of K/K+ 
compared with Li/Li+ and Na/Na+ could reduce the chances of K metal plating due to overpotential at low 
voltages. In addition, the higher reactivity of K metal (compared to Li and Na metal) may have a positive 
impact, similar to the way metallic AI reacts when it comes into contact with oxygen[15]. This reaction 
facilitates easy interaction with the liquid electrolyte, rapidly forming a coherent solid electrolyte interphase 
(SEI) to protect the electrode surface from further decomposition reactions.

CHALLENGES OF POTASSIUM-ION BATTERIES
Although PIBs possess several advantages, the experimental results are far from the theoretical properties. 
Consequently, several challenges must be overcome for their practical implementation [Figure 2].

Low K+ ion diffusion and poor K+ ion reaction kinetics
It is expected that PIBs possess a high rate capability due to the weak Lewis acidity and small Stokes radii in 
solvents. However, poor ion diffusivity and kinetically limited reactions are commonly reported in electro-
active materials with small tunnels or interlayer cavities, such as polyanion compounds and layered 
oxides[16,17]. The main reason is the larger ionic radius of unsolvated potassium in comparison to lithium and 
sodium. As examples, K+ ions can be poorly inserted in polyanion compounds, i.e., olivine phase 
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Figure 2. Challenges of PIBs and possible strategies to resolve the issues.

Li1-xKxFePO4 (0 < x < 0.03)[16], while in P3-layered oxides, they usually show slow K+ ion mobility at high 
voltages, inducing rapid capacity fading[17].

Larger volume changes upon K+ ion (de)insertion/(de)intercalation
The large size of the K+ ion also induces poor long-term stability due to the large volume change upon 
cycling. Therefore, large cavity electro-active materials must be designed to improve the structural stability 
and extend the lifetime of PIBs.

The anode of choice for PIBs is graphite due to the possibility of intercalating K+ ions and forming KC8, 
which delivers a reversible capacity of 279 mAh g-1[18]. However, the large volume expansion of graphite after 
potassiation (61%), which is six times larger than for lithiation, results in relatively fast capacity decay. 
Similar behavior is observed for K-based layered oxide cathodes, where the large volume expansion upon 
cycling induces permanent structural changes, high hysteresis, and poor cycling stability[19].

In-situ investigations of electrode materials during battery operation can provide very useful information 
with respect to structural transitions or changes in the oxidation state of transition metals and are 
particularly informative with respect to the crystallographic volumetric expansions[7,20].

Side reactions, electrolyte consumption, SEI formation
The commonly used liquid electrolytes of LIBs and SIBs, i.e., carbonate- or ether-based solvents, are 
unstable at low potential. Furthermore, the high reactivity of K metal with liquid electrolytes easily induces 
electrolyte decomposition, delivering low Coulombic efficiencies. In addition, the formed SEI is often 
unstable, increasing polarization and reducing long-term stability. Many studies have demonstrated the 
importance of electrode-electrolyte formulation to avoid unfavorable side reactions and achieve good 
electrochemical performances. For example, potassium bis(fluorosulfonyl)imide (KFSI) salt leads to the 
formation of stable SEI due to the decomposition products of the anion and the reduction of free solvents 
due to the stronger solvation[21,22]. In contrast, the potassium hexafluorophosphate (KPF6) decomposition 
products do not stabilize the SEI.

Solvent selection is also critical; cyclic carbonates, i.e., ethylene carbonate (EC) and PC, form stable SEI and 
provide higher Coulombic efficiencies. Meanwhile, the linear carbonates (dimethyl carbonate (DMC) or 
diethyl carbonate (DEC)) are not appropriate for stabilizing the SEI, leading to poor capacity retention as 
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reported for graphite anodes and KVPO4F and KVOPO4 polyanion cathodes[23,24]. Nonetheless, SEI studies 
should also be performed on full cells since cross-contamination from very unstable SEI on metallic K may 
lead to misinterpretations.

Battery safety hazards
PIBs are considered to present safety hazards due to the high reactivity and low melting point (63 °C) of K 
metal. However, it has been reported that the heat generation during thermal runaway in PIBs is lower than 
in LIBs[25]. In addition, the K metal reactivity towards liquid electrolytes can be decreased by using 
electrolytes, such as triethyl phosphate (TEP) or trimethyl phosphate (TMP), or ionic liquids due to the 
formation of a protective layer[26,27]. Another strategy is to substitute liquid electrolytes with solid-state 
electrolytes, such as ceramics or polymers[28], which are non-flammable and could suppress/reduce dendrite 
growth.

OVERCOMING THE CHALLENGES
Electrolytes: from liquids to polymers
Research on PIB electrolytes is dominated by fluorinated organic salts dissolved in liquid carbonate or ether 
solvents, as in LIBs and SIBs. If a fire or explosion occurs, the fluorinated salt can release toxic fluoro-
organic compounds, i.e., bis(2-fluoroethyl)-ether[29] and hydrofluoric acid[30]. Moreover, ether solvents limit 
the upper voltage cut-off to < 3.8 V vs. K/K+, restricting the use of high-voltage cathode materials. The 
surface modification of active materials or the addition of electrolyte additives can reduce side reactions and 
stabilize the SEI. The electrolyte additives decompose at a higher potential than solvents, forming a stable 
SEI and preventing further side reactions. For example, it is known that vinylene carbonate (VC) and 
fluoroethylene carbonate (FEC) are good additives for lithium- and sodium-ion systems, respectively[31,32]. 
However, they significantly decrease the capacity and stability of PIBs due to the formation of high 
concentrations of insoluble KF and K2CO3, which increase the interfacial resistance and hinder K+ ion 
transport through the SEI[33]. In contrast, it has been demonstrated that sulfur-based additives, such as 
ethylene sulfate (DTD), can suppress the side reactions and form a stable SEI on graphite anodes and PBA 
cathodes[34,35].

Replacing flammable carbonate- and ether-based electrolytes could also enhance the stability of PIBs. If 
non-flammable solvents are used, the PIB safety profile is also ameliorated. TEP and TMP are well-known 
non-flammable solvents for SIBs and PIBs; they form a robust and stable SEI, enhancing cycling stability[36]. 
Ionic l iquids are another non-flammable alternative. For example, KFSI or potassium 
bis(trifluoromethanesulfonyl) imide (KTFSI) mixed with pyrrolidinium-based ionic liquid form effective 
SEI, leading to good electrochemical performance[37].

Finally, polymer electrolytes could overcome the side reactions and safety challenges of PIBs[38]. Incipient 
research in solid-state PIBs shows that the main challenges are the low ionic conductivity at room 
temperature and the interfacial charge transfer due to low wetting and compatibility. However, for example, 
Ni3S2@Ni cathode electrodes exhibit higher capacity retention in PEO-KFSI solid electrolytes than in 
carbonate-based electrolytes, suggesting further investigations on the use of solid electrolytes for long-term 
cycling PIBs[39].In addition, the ionic conductivity could be improved by adding inorganic fillers, such as Al2

O3, SiO2, etc.[40]. Moreover, mixing with additives such as carbonate solvents or ionic liquids, which result in 
gel electrolytes, can enhance ionic conductivity at room temperature and reduce the electrolyte-electrode 
charge transfer resistance[41].
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3D structure cathode materials
PBAs are the most promising materials among the families of 3D materials proposed as cathodes for PIBs, 
i.e., layered oxides, phosphates, and PBAs[42]. Their 3D open framework structure provides suitable channels 
and interstitial sites for large K+ ion diffusion, allowing faster K+ ion kinetics. One of the main drawbacks of 
layered oxide and polyanion compounds is the low K+ ion content in the structure. This is related to the 
strong K+-K+ repulsion in the interlayer and small cavities[43]. Particle morphology engineering could 
facilitate ionic transport, shortening the ion diffusion distance and allowing faster K+ ion diffusion. 
Furthermore, this engineering could be suitable for controlling the volume expansion upon cycling, 
preventing the SEI cracking upon (dis)charge, and delivering superior cycle life.

Among the PBAs, the Fe-/Mn-based Prussian White (PW), K2Mn2[Fe(CN)6][44], is the most promising. It 
exhibits the reversible insertion of two K+ ions per formula unit at a voltage of 4.0 V vs. K/K+. Cycle life 
approaches 8,000 cycles when controlling the crystallinity and defect content. However, PBAs have two 
limitations: low bulk density and low electron conductivity, originating from their structure and chemical 
bond[43], resulting in lower specific capacity and inferior performance compared to layered oxides. The low 
bulk density of PBAs is difficult to overcome. Modifying the mixing conditions of electrode components 
and using large particle sizes and additives can improve the density and homogeneity of the electrode. 
Meanwhile, metal substitution and/or carbon coating could overcome their poor electronic conductivity. 
Unfortunately, the latter strategy requires temperatures above the thermal stability of PW. One possible 
approach is a hybridization or coating of the PW active material with electronically conducting polymers, 
acting as conducting additives and binders[45].

Alternative anode materials
Graphite reversibly (de)intercalates K+ ions around 250 mAh·g-1 in liquid electrolytes[14]. However, low initial 
Coulombic efficiencies, severe capacity fading, and moderate rate capabilities are observed, related to the 
61% volume change during K+ ion (de)intercalation. In addition, the very low insertion voltage implies a 
risk of K metal plating at high C-rates, yet it remains the anode of choice for PIBs.

Other carbon-based materials can be used as anodes. For example, hard carbon anodes deliver 
~215 mAh·g-1 with negligible hysteresis due to the weaker interaction of K+ ions with the terminal functional 
groups[42]. The potassium full cell based on a hard carbon anode and K0.3MnO2 layered oxide shows 
encouraging electrochemical properties over 100 cycles with a Coulombic efficiency of 99%[46]. Nevertheless, 
hard carbons still have several limitations, such as low (initial) Coulombic efficiencies and low specific 
capacity. The former can be enhanced by optimizing the electrode-electrolyte configuration, such as 
replacing the conventional carbonate-based electrolytes with glyme, TEP, TMP, or ionic liquids, which 
might provide better electrochemical performances, as shown in SIBs[47,48]. Meanwhile, the latter can be 
addressed via structure/morphology engineering[49] or N, P, S, etc., doping. Indeed, the P-doped hard carbon 
delivers higher reversible capacity than un-doped hard carbon, which was attributed to the improved 
adsorption of K+ ions due to the P-O and P-C bonds[50,51]. One of the advantages of hard carbons as anode 
materials is that bio-waste precursors can be used[52], supporting the circular economy, recycling, and 
lowering production costs. However, hard carbons derived from bio-waste usually generate a large specific 
surface area, leading to high first cycle irreversible capacity. Therefore, to avoid highly porous hard carbons, 
the synthesis route should be controlled, i.e., pre-/post-treatments and pyrolysis parameters (temperature 
and time).

As alternative anode materials, metal oxides are interesting for high-power PIBs. In particular, titanium-
based oxides exhibit high density and low-cost. Furthermore, the K+ ion insertion typically occurs at higher 
voltages than in carbon-based anodes, enabling a fast charge without the risk of K metal plating. 
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Nanostructured layered materials prepared through hydrothermal processes followed by high-temperature 
calcination show some degree of K+ ion insertion, suggesting surface adsorption rather than bulk insertion. 
Regarding tunneled oxides, the hollandite-type structures (e.g., K0.17TiO2) enable fast bulk diffusion, 
delivering 60 mAh·g-1 at 5C[53]. Fine-tuning the metal doping in known hollandites and hexagonal bronzes 
will optimize the ionic and electron transport properties. In addition, particle morphology control could 
minimize the dimension along which K+ ions and electrons travel, enhancing the power capability.

Alloying materials (Sn, P, Bi, Sb, Pb, Ge, etc.) also represent a large class of anode materials with high 
reversible capacities and high energy densities[54]. However, they do not stand out as the most sustainable 
and abundant materials and, therefore, are not candidates for sustainable large-scale batteries. Meanwhile, 
organic electro-active materials are often produced through low-cost synthesis methods while delivering 
competitive electrochemical performance[55]. Potassium terephthalates (PETs) deliver reversible capacities of 
250 mAh·g-1 at an average voltage of 0.3 V vs. K/K+, making them suitable for use as anodes[56]. Even more 
sustainable, PETs derived from recycled plastic films show similar capacities at a slightly higher voltage of 
0.7 V vs. K/K+[57].

TOWARD SUSTAINABLE POTASSIUM-ION BATTERIES
Electrode material chemistry
PIBs can be considered sustainable and low-cost devices because electrodes can be based on non-critical raw 
materials. As a negative electrode, although potassium can be intercalated into graphite, more sustainable 
carbon-based species could be implemented, such as bio-waste-derived hard carbons. For example, Mn-/Fe-
based PW and bio-waste-derived hard carbons can be synthesized by low energy routes, i.e., PW by room 
temperature precipitation and hard carbons at a lower temperature than graphite (< 1,500 ºC)[44,52].

Electrode manufacturing
The standard electrode processing is based on a polyvinylidene difluoride (PVDF) binder, which is soluble 
in hazardous, irritating, and teratogenic N-methyl-2-pyrrolidone (NMP)[58]. Therefore, additional focus on 
alternative electrode processing using a low-cost and low-carbon footprint system should be performed 
[Figure 3A]. For example, bio-sourced aqueous binders should be employed to ensure the reuse and 
recycling of electrode materials[58]. In addition, several reported works demonstrated superior 
electrochemical performance in terms of Coulombic efficiencies and cycling using water-soluble binders, 
i.e., carboxymethyl cellulose (CMC) and sodium polyacrylate (PAANa). This enhancement has been 
attributed to the formation of an effective SEI[59].

The recycling and separation of the different components found in LIBs have yet to be standardized[60]. The 
metallurgical routes and processes employed are energy-consuming. In some cases, the waste derived from 
processes such as lixiviation, e.g., mother liquours and gaseous emissions, is harmful and far from being 
environmentally friendly. The recycling of PIBs using sustainable materials should enable the realization of 
such batteries to satisfy the requirements of a (battery) circular economy.

Advanced characterization tools to extend the lifetime of PIBs
The manufacture of reliable long-cycle life PIBs should also be targeted. The study of the stability of the 
electrode and electrolyte materials, the interfacial chemistry, relevant ion diffusion mechanisms, and the 
formation and decomposition of the SEI are important for developing high specific energy/power devices 
with extended lifetime. PIBs are still at an early stage of development; hence, little is known about the 
formation, composition, and evolution of SEI. Similar to LIBs and SIBs, advanced analytical tools are 
requisite to probe ion transport across the electrode-electrolyte interfaces. As the SEI is a nanoscale 
heterogeneous, disordered, and reactive layer, standard characterization tools are limited in their 
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Figure 3. (A) Scheme towards more sustainable PIBs. (B) A schematic showing the paths for enhancing NMR signals from chemical 
environments in the SEI through DNP from different polarizing agents: in (i), organic biradicals are used as an exogenous source of 
polarization, and in (ii), paramagnetic metal ions are introduced as dopants into the bulk of the material. In both cases, microwave 
irradiation results in polarization transfer from the unpaired electrons to the nuclei in the sample, thereby enhancing their polarization 
and making them easily detectable in NMR.

applicability. For example, solid-state nuclear magnetic resonance (ssNMR) spectroscopy might be a 
versatile technique, providing an atomic-molecular scale insight into the composition and structure of the 
electrode-electrolyte interface[61]. Leveraging the successful developments of this approach to probe 
interphases in LIBs, the nuclear magnetic resonance (NMR) methodology could also be adapted and 
developed to investigate the SEI on PIB anodes. Dynamic nuclear polarization (DNP) could be employed to 
increase the sensitivity of ssNMR to detect hidden and buried interfaces [Figure 3B][62,63]. In DNP, the large 
electron spin polarization is transferred to surrounding nuclear spins, increasing the sensitivity of their 
detection in ssNMR by up to four orders of magnitude. In combination with X-ray photoelectron 
spectroscopy (XPS) for investigating the SEI chemical composition in PIBs[64] and advanced transmission 
electron microscopy (TEM) for evaluating changes in the electrode surface structure, detailed chemical 
composition maps and structural insights into the architecture of the SEI can be gained. The correlation 
between electrochemical performance and chemical and morphological properties of the SEI will provide 
valuable information about potential strategies to enhance the lifetime of PIBs. Besides, in-situ and ex-situ 
ssNMR approaches can be employed to monitor K+ ion transport across the electrode-electrolyte interface. 
The correlation of ion exchange rates with the SEI composition can guide the choice of beneficial electrode-
electrolyte formulations.

Advanced characterization techniques and in-situ and operando experiments will be crucial to 
understanding the degradation mechanism and the correlations among structures, morphology, K+ ion 
transport, and performance. This will allow the discovery of advanced anode and cathode materials with 
enhanced K+ ion kinetics and high energy/power densities. In addition, future research directions must 
involve designing alternative electrolyte formulations (non-flammable liquid electrolytes or solid-state 
electrolytes) that enable the formation of a stable SEI and mitigate side reactions, providing extended cycle 
life. Finally, the practical potential of PIBs should be investigated by manufacturing real cells (i.e., full cells). 
Resolving these standing problems can realize PIBs as a competitive technology in the near future.
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