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Abstract
Intermetallic compounds are crucial in modern industry due to their exceptional properties, where density is 
identified as a critical parameter determining their potentiality for lightweight applications. In this study, over 
7,000 density data points are collected for binary intermetallic compounds from different crystal structures. A new 
intermetallics graph neural network (IGNN) model is developed to perform regression and classification tasks for 
density prediction. Compared to traditional machine learning models, the IGNN model demonstrated superior 
capability in capturing crystal structure and effectively addressing challenges posed by polymorphism. The 
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interpretability of the IGNN model classification process is enhanced through the t-distributed stochastic neighbor 
embedding (t-SNE) visualization method. Additionally, the IGNN model exhibited excellent performance in 
predicting the density of multicomponent complex intermetallic compounds, indicating its robustness and 
generalizability. This study presents a graph neural network (GNN) method suitable for multi-crystal structure data 
modeling, providing a novel computational framework for density prediction in intermetallic compounds. This 
advancement represents a significant contribution to this field, paving the way for more targeted material selection 
and application in lightweight technologies.

Keywords: Intermetallic compounds, density, machine learning, graph neural network

INTRODUCTION
Owing to their unique physical and chemical properties, intermetallic compounds are recognized for 
considerable application potential in modern industry, particularly in aerospace, energy, electronics, and 
automotive industries[1-3]. These compounds are usually composed of two or more metallic elements in 
defined ratios, demonstrating excellent mechanical properties, corrosion resistance, thermal stability, and 
magnetic properties through their specific crystal structures. Such attributes render intermetallic 
compounds a vital option for creating high-performance and durable materials, meeting the demands of 
modern technology for materials withstanding extreme conditions[4-6]. Density, a critical parameter of 
intermetallic compounds, is essential for their material properties and applications, and it directly influences 
the lightweight design capabilities required in many industrial applications[7-9]. For example, lightweight 
materials are required in the aerospace and automotive fields to maintain low density without sacrificing 
strength under extreme conditions, such as high temperatures and pressures, to reduce structural load and 
improve fuel efficiency while reducing greenhouse gas emissions[10,11].

Although density is crucial for the applications of intermetallic compounds, their experimental 
measurement is challenging, particularly when involving multiple metallic elements and complex crystal 
structures. Certain intermetallic compounds may not be reliably synthesized in the laboratory due to 
preparation difficulties or compound instability, increasing the difficulty and cost of experimental density 
measurement[12,13]. The efficiency of direct experimental density measurement is considered low, especially 
when large-scale compound data needs to be studied. Consequently, developing effective methods for 
density prediction holds practical significance. Density prediction via theoretical models or data-driven 
methods can reduce experimental costs and time, while also offering a reliable foundation for high-
throughput material screening and early design. However, accurate prediction of intermetallic compound 
density faces some challenges. Conventional physical models such as density functional theory (DFT) are 
known to yield accurate results on smaller datasets but are inefficient for large-scale density predictions[14,15]. 
Additionally, physical models struggle to accurately address isomers, where compounds of the same 
chemical composition exhibit significant density differences due to varying crystal structures. Such factors, 
relatively common in intermetallic compounds, further complicate and increase the difficulty of prediction.

To address these challenges, data-driven machine learning methods have been gradually introduced into the 
field of intermetallic compounds in recent years[16-18]. Researchers have employed machine learning 
algorithms to predict the physical properties of intermetallic compounds. Although these traditional 
machine learning methods have demonstrated some effectiveness in improving prediction efficiency, they 
also encounter limitations in handling complex crystal structures, particularly in capturing structural 
differences between isomers. Traditional machine learning models are generally reliant on Vegard’s law, 
which calculates the average feature representations by summing the elemental features to the properties of 
the entire compounds. However, these methods are limited, as they fail to sufficiently incorporate the 
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complex interactions between atoms.

Graph neural networks (GNNs) are recognized as powerful and flexible deep learning tools that represent 
complex information through patterns and their relationships[19]. GNNs have demonstrated excellent 
performance in material property prediction. For instance, to overcome the limitations associated with 
manual feature construction and complex transformations in crystal material design, Xie et al. developed 
the crystal graph convolutional neural networks (CGCNN) framework to learn material properties directly 
from crystal structures[20]. It demonstrated DFT-level accuracy for predicting multiple material properties, 
along with interpretable chemical insights. To enhance the accuracy and efficiency of the CGCNN in 
predicting material properties, Park et al. developed an improved version (iCGCNN) by incorporating 
Voronoi tessellation, three-body interactions, and optimized bond representations[21]. The improved model 
achieved a 20% increase in accuracy and a 2.4-fold rise in the success rate for high-throughput material 
discovery. To address challenges in predicting material properties and designing new materials in materials 
science and chemistry, Reiser et al. reviewed the fundamentals of GNNs, current applications, and potential 
in accelerating simulations, material screening, and inverse design[22].

GNNs offer a novel approach for predicting the density of intermetallic compounds. This is achieved by 
encoding the crystal structure of compounds as graph-structured data, which facilitates the learning of 
information atoms and their bonding interactions[23]. The GNN method avoids the complex feature 
engineering required by traditional methods by capturing directly the information of atoms and bonding 
relationships with explicit physical and chemical properties[24,25]. Furthermore, the GNN-based method 
extracts structural differences between crystals using input graph structure data, which consists of 
topological structures made up of atoms and bonds[26,27]. This methodology uncovers underlying 
relationships between structural characteristics and material properties, highlighting the potential of GNNs 
to enhance the accuracy and efficiency of material property predictions. However, existing GNN models 
may encounter difficulties when directly applied to intermetallic compounds with isomeric structures. 
These models are not sufficient for direct application to the density prediction of intermetallic compounds 
across different crystal structures.

In this study, a new intermetallics GNN (IGNN) is constructed to perform regression and classification 
predictions on the density of over 7,000 binary intermetallic compounds, and to compare its performance 
with traditional machine learning models. The t-distributed stochastic neighbor embedding (t-SNE) 
method is employed to visualize the IGNN’s performance in capturing differences across various crystal 
structures. Furthermore, ternary and quaternary intermetallic compound density datasets are constructed as 
test sets to validate the effectiveness of the proposed IGNN model. This work presents a novel and efficient 
approach for predicting the densities of intermetallic compounds, offering valuable insights into materials 
design and advancing the development of data-driven methods in materials science.

METHODOLOGY
Data sources and preprocessing
Density data for binary intermetallic compounds are collected using the API provided by the materials 
project website[28]. Only compounds composed of metallic elements are included, while those containing 
non-metallic elements or noble gases are excluded to ensure data quality and consistency. To guarantee 
thermodynamic stability, only compounds with an “energy above hull” value of 0 are retained. This 
selection ensures high stability and reliability for practical use, minimizing prediction errors caused by 
unstable compounds. Each downloaded data entry includes the following: Material ID, chemical formula, 
crystal system, density, and crystallographic information file (CIF). CIF is a standardized format used to 
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record the space group, unit cell parameters, atomic coordinates, and atom types of crystalline materials. 
After data collection, the raw data is cleaned and preprocessed to ensure data quality and enhance the 
model’s predictive performance. Incomplete or outlier data points are excluded, such as those without 
density or crystal structure values. A total of 7,253 binary intermetallic compound density data are gathered. 
These compounds cover seven major crystal structure types: cubic, hexagonal, monoclinic, orthorhombic, 
trigonal, tetragonal, and triclinic. The diversity of these structural types better represents the complexity of 
intermetallic compounds in practical applications, providing comprehensive training data for subsequent 
machine learning modeling.

The pie chart in Figure 1A shows the proportion of data for each crystal structure. Cubic and hexagonal 
structures are the most common, comprising 29% and 28.3% of the data, respectively. The triclinic structure 
has the fewest data points, representing only 0.5%. In addition, the periodic table in Figure 1A shows the 
frequency of elements in the intermetallic compound density dataset. The higher the frequency, the darker 
the corresponding color. The violin plot illustrates the density distributions of compounds across six crystal 
structures, as shown in Figure 1B. Each structure is represented by a distinct violin plot. The shape and 
width of each plot reflect the density distribution, and the white dots within the plots indicate the median 
density for each crystal structure.

Dataset splitting and feature construction
The dataset in this study is split using the 80/20 method, with 80% of the data used for the training set and 
the remaining 20% for the test set. Moreover, to further assess the model’s generalization capability and 
prediction accuracy on complex compounds, density data from 237 ternary and 33 quaternary intermetallic 
compounds are collected as an independent test set. These multicomponent compound samples cover 
various element combinations and complex crystal structures, enabling a more comprehensive evaluation of 
the model’s performance. This study employs several common evaluation metrics to comprehensively 
evaluate the model’s performance. These include regression metrics such as root mean square error 
(RMSE)[29], mean absolute error (MAE)[30], and the coefficient of determination (R2)[31], as well as 
classification metrics such as precision, recall, F1-score, and receiver operating characteristic (ROC) 
curves[32].

The Python library XenonPy is leveraged to introduce 58 properties of 94 elements (H to Pu), covering 
multiple aspects such as electronic structures, physicochemical properties, and microscopic geometric 
structures[33]. An additional nine features related to bond energy are included, resulting in a total of 67 
elemental features for constructing machine learning features and serving as input parameters for IGNN 
model nodes. Detailed information on the 67 element features is given in Table 1. The min-max scaling 
method is used to normalize the feature set, mapping all values between 0 and 1 to eliminate the influence of 
scale differences on model performance[34]. This process reduces the model’s sensitivity to specific numerical 
ranges, preventing adverse effects on model training caused by large data ranges. Furthermore, it preserves 
the relative distribution of the data while ensuring consistent learning efficiency across different features 
during model training.

Machine learning algorithms and GNN model
In this study, various commonly used traditional machine learning models, along with the constructed 
GNN model, are used to predict the density of binary intermetallic compounds. The traditional machine 
learning models included linear regression (LR), support vector machine (SVM), K-nearest neighbors 
(KNN), random forest (RF), and EXtreme gradient boosting (XGBoost). LR is a fundamental regression 
model that assumes a linear relationship between independent and dependent variables. Although its 
structure is simple, it can still perform effectively when the data exhibits linear characteristics. SVM 
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Figure 1. Crystal structures and density distributions of binary intermetallic compounds. (A) Distribution of the number of elements and 
compounds across different crystal structures; (B) Density distributions of compounds within seven crystal structures.

conducts classification and regression by identifying a hyperplane in the feature space that maximizes class 
separation. It is particularly effective for small datasets and capable of addressing nonlinear issues. KNN is 
an instance-based learning method that makes predictions by calculating the distance between test samples 
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Table 1. List of features used

Number Element properties Number Element properties

1 Electron binding energies 35 Gs Est Bcc latcnt

2 Nearest neighbor distance 36 Gs Est Fcc latcnt

3 Atomic concentration 37 Gs mag moment

4 Configuration energy 38 Gs volume Per

5 Cohesive energy 39 Hhi_p

6 Gram atomic volume 40 Hhi_r

7 Molar mass 41 Heat capacity mass

8 Screening percentage 42 Heat capacity molar

9 Enthalpy of vaporization 43 Icsd volume

10 Enthalpy of fusion 44 Heat of formation

11 First ionization energy 45 Lattice constant

12 Atomic radius 46 Mendeleev number

13 Atomic radius rahm 47 Melting point

14 Atomic volume 48 Molar volume

15 Atomic weight 49 Num unfilled

16 Boiling point 50 Num valance

17 Bulk modulus 51 Num d unfilled

18 C6 Gb 52 Num d valence

19 Covalent radius cordero 53 Num f unfilled

20 Covalent radius pyykko 54 Num f valence

21 Covalent radius pyykko double 55 Num p unfilled

22 Covalent radius pyykko triple 56 Num p valence

23 Covalent radius slater 57 Num s unfilled

24 Density 58 Num s valence

25 Dipole polarizability 59 Period

26 Electron negativity 60 Specific heat

27 Electron affinity 61 Thermal conductivity

28 En allen 62 Vdw radius

29 En ghosh 63 Vdw radius alvarez

30 En pauling 64 Vdw radius Mm3

31 First ion En 65 vdw_radius_uff

32 Fusion enthalpy 66 Sound velocity

33 Gs bandgap 67 Polarizability

34 Gs energy

and training samples. RF consists of multiple decision trees, each trained on different subsets of data and 
features. The final prediction is obtained by averaging the outputs or majority voting of all the trees, offering 
high robustness and noise resistance. XGBoost is an optimized implementation of gradient boosting 
decision tree, known for its precision and efficiency. It minimizes prediction errors by combining multiple 
weak learners with weighted contributions, and is capable of handling high-dimensional data and missing 
values.

The main idea in this study is to represent the crystal structure as graph structure data with nodes 
corresponding to atoms and edges corresponding to chemical bonds. The entire graph and the 
corresponding adjacency matrix are constructed based on the locations and connectivity of atoms in the 
crystal. The properties of the nodes in the graph are represented by physical and chemical properties 
inherent to the atoms, such as atomic concentration, atomic radius, and boiling point. Mathematically, let 
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G = (V, 3) be an undirected graph, where V = {v1, v2, …, vn} is the set of n nodes or vertices, and ε is the set 
of m edges. The adjacency matrix A ∈ ℝ|v|×|v| defines the topological structure of the crystal graph, and node 
feature matrix X ∈ ℝ|v|×D includes the properties of atoms. Auv ∈ A equals 1 if (u, v) ∈ ε and Auv equals 0 
otherwise. xv is the feature vector of node v, and D is the dimension size of the feature vector. Specifically, 
each node represents an atom, and the set V contains all the atoms in the crystal. Each edge connects two 
nodes and represents the existence of chemical bonding between these two atoms. The construction of the 
edges considers the distances between the atoms and the nature of the chemical bonds, which allows the 
graph-structured data to accurately capture the interactions between atoms inside the crystal.

To completely take advantage of the valuable information in crystal graph-structured data, a novel IGNN 
model is proposed for crystal property prediction based on the topological information and atomic 
properties in the crystal graph. The model can efficiently capture complex associated relationships between 
atoms based on the topological characteristics of the given crystal graph-structured data, combining with 
the atomic features from the prior knowledge and employing a message-passing mechanism for information 
aggregation, which enables entire graph representation learning to obtain the specific properties of the 
crystal graph. The method enables the automatic learning of effective representations from the basic 
compositions and topological information of crystal graph-structured data without the requirement of 
extensive human-designed feature engineering, allowing the reliable and accurate prediction of material 
properties. The architecture includes the following critical components: (1) crystal structure transformation; 
(2) node features construction; and (3) GNN-based graph representation learning.

(1) Crystal structure transformation. Let Atoms = {a1, a2, …, an} denote the set of atoms in the unit cell, 
where ai indicates the i-th atom. The distance r is assigned to identify the neighbors of each atom in the unit 
cell, determining the connectivity between the atoms. This enables the transformation of the 3D spatial 
information of the crystal into graph-structured data. The connectivity between atoms is recorded by 
constructing an adjacency matrix, ensuring that their interactions are accurately reflected in the graph. The 
relationship between atoms and their neighbors can be expressed as

where N (ai) denotes the neighbors of atom ai, Atoms is the set of all atoms in the crystal. d (ai, aj) is the 
distance between atoms ai and aj. Specifically, for each atom, neighbors are identified within 6 Å radius, 
where these atoms share a Voronoi face and the interatomic distance is shorter than the sum of the Cordero 
covalent radii to within a 0.25 Å tolerance[20,35].

(2) Node features construction. To obtain prior knowledge about the atoms, feature representations are 
constructed for each node in the crystal graph. Specifically, atomic properties are extracted as attributes of 
the nodes in the corresponding crystal graph, derived from the physical and chemical properties of the 
atoms, informed by prior knowledge. An eigenvector xi for atom ai is defined, containing multiple related 
physical and chemical properties such as atomic concentration, atomic radius, boiling point, etc. The feature 
vector can be given as follows:

where the fj (ai) denotes the j-th feature associated with atom ai and m is the total number of features. The 
feature vectors of all atoms are combined into a feature matrix X, which is defined as follows:

(1)

(2)
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The introduction of prior knowledge allows the model to effectively utilize these physical and chemical 
properties in the proposed method, thus improving the ability of the model to understand and predict 
crystal properties.

(3) GNN-based graph representation learning. GNNs are employed as a learning strategy for crystal graph-
structured data, using a multi-layer architecture designed to capture complex interactions and global 
properties between atoms in the given crystal. Specifically, Batch Normalization is utilized as a regularizer to 
alleviate the internal covariate shift problem in deep neural networks. Normalization and linear 
transformation enable the mean and variance of the input data in each layer of the network to be within a 
certain range[36]. The method of data normalization in Batch Normalization is given in

where μ and σ are statistics for the current row and are unlearnable. γ and β are the scale and shift 
parameters to be learned to control the variance and mean of yi.

After executing Batch Normalization, a linear layer is introduced to further transform the feature 
representations of the nodes, which enables the mapping of the batch-normalized feature matrix to a new 
feature space. This linear layer adjustment enhances the model’s capacity to learn higher-order feature 
representations by altering the dimensions of the features, thereby boosting the model’s expressive power. 
After obtaining the preprocessed node feature matrix, a l-layer GNN architecture is designed to discern 
complex patterns and relationships in the crystal graph-structured data. The GNN model is more expressive 
and generalizable when dealing with crystal structure data by stacking l-layer GNNs. The GNN primarily 
focuses on identifying a node aggregation function to effectively aggregate node features X, resulting in 
updated node embedding. For instance, the GCN model with the following layer-wise propagation rule:

where H(l) is the matrix of activations in the l-layer, σ is the activation function, and W is a layer-specific 
trainable weight matrix. A = A + IN is normalized adjacency matrix with added self-connections. IN is the 
identity matrix and Dii = ∑jAij.

In the spectrum domain theory, existing methods commonly utilize the convolution theorem and filtering 
operations in the spectral domain to define convolution operations, such as computing the eigen-
decomposition of the normalized Laplace matrix of a graph[19]. The graph convolution in GCN is defined as 
a first-order Chebyshev polynomial of the graph Laplace matrix, while the graph convolution adopted by 

(3)

(4)

(5)
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the topology adaptive graph convolutional network (TAGCN) method is defined as a multiplication of the 
polynomials of the graph adjacency matrix[37]. In contrast to the simplified formal spectral method that is 
equivalent to propagating vertex features in a graph employed in the GCN method, the K-localized filter is 
employed in TAGCN to explore crystal graph-structured data. Specifically, a set of receptive fields of size 
ranging from 1 to K is defined to learn localized features on graph-structured data. This approach is given in

Finally, after the k-layer feature aggregation and transformation, the features learned by the GNN are 
effectively transformed into the final density prediction results. This transformation is accomplished 
through two linear layers, interspersed with a nonlinear activation function between them, enhancing the 
model’s ability to predict complex outcomes from the graph-structured data. The learning process for 
density of crystal structure can be expressed as follows:

where y denotes the predicted density of crystal structure, and H(k) is the output feature matrix after 
obtaining k-layers of aggregation. W(1) and W(2) are the learnable weight matrices for two linear layers, and 
b(1) and b(2) are the corresponding bias vectors. According to Equation (6), the initial node features H(0) = X, 
where X represents the raw input features of the nodes in the graph. After k-layers, the final node-level 
features learned by the GNN are represented as H(k), which serves as the transformed representation 
X’= H(k).

For our method, hyperparameter optimization is conducted over 500 trials using Hyperopt optimizer, with 
80% for training and 20% for validation. Final classification accuracies are reported on the test set. All 
experiments are conducted on a Linux server with Nvidia RTX 4090 GPU (24GB memory). All methods 
and GNN basic architectures are implemented according to PyTorch 2.1.2 and basic modules of PyTorch 
Geometric 2.5.3. Key training parameters are fixed through hyperparameter optimization, including a 
learning rate of lr ≈ 0.002, weight decay w ≈ 0.003, a batch size of 512, and 512 hidden channels. AdamW is 
used as the optimizer, PowerMeanAggregation is selected for global pooling, and the model includes three 
graph convolutional layers as learners. The detailed flow chart is shown in Figure 2.

RESULTS AND DISCUSSION
Machine learning modeling for specific crystal structures
To conduct an in-depth analysis and improve the accuracy of density prediction, this study first establishes 
machine learning models based on the seven different crystal structures. This process of modeling utilizes 
the five common machine learning models mentioned above. Each crystal structure’s intermetallic 
compounds are extracted into individual data subsets. The input features selected are variables closely 
related to density, such as atomic mass, atomic radius, electronegativity difference, and lattice parameters. 
Six statistical treatments are applied to the elemental property data, such as calculating weighted averages, 
weighted variances, geometric means, harmonic means, maximum values, minimum values, and weighted 
sums. An initial feature set comprising 290 representative density features is generated, providing robust 
data support for comprehensively exploring the multifactorial influences on intermetallic compound 
density.

Figure 3 presents the performance of machine learning models in predicting density across different crystal 
structures. A bar chart in the bottom right compares the accuracy of various machine learning models 

(6)

(7)
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Figure 2. A flowchart for predicting the density of intermetallic compounds using machine learning and GNN models, involving collecting 
raw data, creating feature pools, building models, and evaluating model performance. GNN: Graph neural network.
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Figure 3. Performance comparison of machine learning models for density prediction across crystal structures. (A) Hexagonal; (B) 
Cubic; (C) Monoclinic; (D) Orthorhombic; (E) Trigonal; (F) Tetragonal. Bar charts compare the predictive accuracy of different machine 
learning models for each crystal structure, while the scatter plots show the relationship between calculated values by DFT and 
predictions from the best-performing model. DFT: Density functional theory.

within a given crystal structure. Adjacent to this, a scatter plot shows the relationship between the 
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experimental density values and those predicted by the most effective machine learning model for 
intermetallic compounds. Figure 3A shows the machine learning model predictions for the Hexagonal 
system. The bar chart indicates that among the five machine learning models, XGBoost achieves the highest 
accuracy with R2 = 0.9798, while the SVM model has the lowest accuracy with R2 = 0.8538. The scatter plot 
in Figure 3A compares XGBoost predictions with calculated values by DFT, where the points cluster closely 
around the diagonal line (y = x), demonstrating a strong agreement between the predicted and experimental 
densities. XGBoost still shows the best prediction accuracy for the cubic system, with R2 close to 0.98, as 
shown in Figure 3B. However, for the monoclinic system, R2 = 0.9825 is achieved by the RF model, which 
outperforms XGBoost, as depicted in Figure 3C. Figure 3D-F shows that XGBoost achieves the highest 
accuracy for the remaining systems including orthorhombic, trigonal, and tetragonal systems with R2 values 
of 0.9692, 0.9825, and 0.9826, respectively. From Figure 3, it can be seen that the data points for each model 
(especially XGBoost) are mostly aligned along the diagonal line, indicating that the predictions are generally 
accurate and demonstrating the potential of machine learning models for predicting the density of 
intermetallic compounds.

Machine learning modeling on aggregated crystal structures
In the above section, machine learning models are built based on data subsets for specific crystal structures, 
achieving high prediction accuracy. However, this single crystal structure-based modeling approach has 
limitations in practical applications, especially when studies require density prediction on mixed data of 
multiple crystal structures. In this section, an approach without distinguishing crystal structures is adopted, 
integrating the data from all seven crystal structures for unified modeling to explore the performance of 
traditional machine learning models on this complex dataset. The model results are shown in Figure 4A and 
B. Among the traditional machine learning models, the accuracy of simple models such as LR or KNN 
remained almost the same or slightly increased, while the prediction accuracy of complex models such as RF 
or XGBoost decreased to varying degrees. For example, the accuracy of the XGBoost model that shows 
optimal performance in the above section decreased from 0.98 to 0.9468. Figure 4C-E shows scatter plots of 
the predictions from the LR, SVM, and XGBoost models. From these images, it can be seen that the 
prediction results of the LR and SVM models are poor, with some points deviating far from the diagonal 
line. The XGBoost model has higher accuracy than the other two, but a few data points deviate significantly 
from the diagonal, reducing prediction accuracy. A review of these compounds revealed that they all have 
polymorphic forms in the dataset. For instance, the test set includes the compound In3Hg with an 
“Orthorhombic” structure and an experimental density of 1.4236 g/cm3. However, in the training set, In3Hg 
is classified under a “Hexagonal” structure with a significantly higher experimental density of 8.6732 g/cm3. 
This discrepancy likely contributes to the XGBoost model inaccurately predicting the density of In3Hg as 
7.5879 g/cm3 in the test set. The compound PuPt3, which exhibits a “Tetragonal” structure and a density of 
18.6427 g/cm3 in the training set, appears with a “Cubic” structure and a density of 19.9649 g/cm3 in the test 
set. The XGBoost prediction is 17.1343 g/cm3, aligning more closely with the training set density.

The above analysis shows that intermetallic density data for different crystal structures vary significantly. 
Directly combining all structures’ data for modeling causes traditional models to struggle in recognizing 
differences between crystal structures, which in turn affects prediction performance. In this context, The 
study introduces an IGNN model that is better suited for multi-crystal structure data, addressing the 
limitations of traditional models when applied to mixed crystal structure datasets. As illustrated in 
Figure 4A and B, the constructed IGNN model clearly outperforms traditional machine learning models, 
achieving the highest R2 value of 0.9884 and the lowest RMSE of 0.4291 g/cm3. Additionally, the scatter plot 
in Figure 4F shows that the IGNN model can utilize node information in the graph structure to 
automatically recognize differences between crystal structures and incorporate this information as input for 
modeling, enhancing its adaptability to multi-structure datasets. The prediction error for the compound 



Page 13 of Zhu et al. J. Mater. Inf. 2025, 5, 8 https://dx.doi.org/10.20517/jmi.2024.76 20

Figure 4. Performance comparison of different machine learning models and the IGNN model on the test dataset. (A and B) Comparison 
of model performance, illustrating the R2 and RMSE values of different models; (C-F) Scatter plots of predicted values vs. calculated 
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values by DFT. Dots of different colors represent various crystal structure types, with the gray diagonal line indicating perfect agreement 
between predicted values and calculated values by DFT. IGNN: Intermetallics graph neural network; R2: the coefficient of determination; 
RMSE: root mean square error; DFT: density functional theory.

In3Hg decreased from 6.16 to 3.25 g/cm3, and the error for PuPt3 reduced from 2.83 to 0.82 g/cm3.

To further assess the generalization capability of the IGNN model in handling the density of complex 
intermetallic compounds, an independent density test set for ternary and quaternary compounds is applied. 
The extended test set is more complex because the structures of ternary and quaternary compounds involve 
more types of atoms and more complex crystal structures, providing a more comprehensive examination of 
the model’s robustness across different compound types and structures. Figure 5A shows the performance 
of IGNN on the ternary compound test set, with an R2 value of 0.9852 and an RMSE of 0.3313 g/cm3, 
indicating a high prediction accuracy for the ternary system. The IGNN prediction results on the quaternary 
compound test set are shown in Figure 5B, with an R2 of 0.9694 and an RMSE of 0.3340 g/cm3. Compared to 
ternary compounds, the prediction accuracy for quaternary compounds is slightly lower, likely due to the 
higher structural complexity of quaternary compounds. From the scatter plot distribution, the IGNN 
model’s prediction results on the ternary and quaternary compound test sets are highly consistent with 
calculated values by DFT, with most data points concentrated near the ideal diagonal, indicating minimal 
deviation between predicted values and calculated values by DFT. The data points for each crystal structure 
are distributed relatively evenly, without significant deviation for any particular crystal structure. This 
suggests that the IGNN model demonstrates strong stability and generalization ability when handling 
diverse crystal structures.

Classification prediction and visualization
In studying the crystal structure and density prediction of intermetallic compounds, it is necessary not only 
to perform accurate regression predictions but also to conduct density classification analysis to explore the 
influence of different crystal structures on model classification. To gain a better understanding of the IGNN 
model’s performance in classification tasks, t-SNE is employed to visualize classification results across 
different layers of the IGNN model[38]. Additionally, a comparative analysis of the classification performance 
of IGNN and various traditional machine learning models is conducted.

t-SNE is a widely used dimensionality reduction technique that projects high-dimensional data into a two-
dimensional space, facilitating visual assessments of a model’s ability to differentiate between categories. In 
this study, t-SNE is employed to visualize the feature representations at each layer of the IGNN model 
[Figure 6]. Figure 6A presents the t-SNE visualization of the input layer. In the input layer, data points from 
various crystal systems are not yet clearly separated, suggesting that the model has not deeply separated data 
features at this initial stage. The t-SNE visualization of the normalization layer is shown in Figure 6B. 
Following normalization, the data distribution becomes more concentrated, with emerging boundaries 
between different crystal systems, suggesting initial feature refinement. The t-SNE visualization of the global 
pooling layer is shown in Figure 6C. The data points from different crystal systems demonstrate a clear 
clustering tendency, reflecting the model’s capacity to aggregate node features and capture significant 
structural differences among the crystal systems. Figure 6D displays the t-SNE visualization of the output 
layer, where data points from different crystal systems are distinctly separated, indicating a strong 
classification outcome. The features extracted at the output layer of the IGNN model possess high 
discriminative power, creating clear boundaries between data from different crystal structures in two-
dimensional space. Through the t-SNE visualization analysis of each layer in the IGNN model, a progressive 
enhancement in the model’s ability to distinguish among different crystal structures is observed as the layers 
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Figure 5. IGNN model performance on density prediction for ternary and quaternary intermetallic compounds. (A) Prediction results on 
ternary compounds; (B) Prediction results on quaternary compounds (Dots of different colors represent various crystal structure types). 
IGNN: Intermetallics graph neural network.

deepen. This systematic feature extraction and aggregation approach provides IGNN with a distinct 
advantage in complex density classification tasks.

To further verify the performance of the IGNN model in classification tasks, this study compares it with 
several traditional machine learning models, including LR, RF, KNN, XGBoost, and SVM. Figure 7A 
presents the performance comparison of these models, covering evaluation metrics such as Precision, 
Recall, F1 score, and micro-average area under the curve (AUC_micro). Compared to these traditional 
models, IGNN shows superior performance in all evaluation metrics, reaching high levels in area under the 
curve (AUC), Precision, and F1 scores. To more intuitively display the performance of each model in 
classification tasks, Figure 7B-E shows the multi-class ROC curves for the SVM, KNN, XGBoost, and IGNN 
models. The ROC curve reflects the model’s classification ability, with a larger AUC indicating stronger 
discrimination power. In Figure 7B, SVM performs decently in some categories. Due to its rigid 
classification boundaries, it lacks flexibility in multi-crystal structure classification, leading to a lower 
average AUC value and difficulty in competing with IGNN. The KNN model shows a relatively low average 
AUC score in multi-class classification, with a flatter curve, as seen in Figure 7C. Particularly in different 
crystal structure categories with close densities, KNN struggles to make accurate distinctions, demonstrating 
certain limitations. As depicted in Figure 7D, the XGBoost model shows higher AUC values in some 
categories, though its overall average AUC score remains below that of IGNN. As shown in Figure 7E, the 
ROC curves for each category in IGNN exhibit high AUC values, demonstrating its excellent classification 
ability. IGNN captures subtle differences among crystal structures using its graph structure, achieving 
superior performance in multi-class classification tasks.

From the above results, it can be concluded that the IGNN model captures complex relationships between 
atoms in crystal structures via graph-level representations, inherently understanding spatial and bonding 
configurations. Especially, for polymorphic intermetallic compounds, IGNN incorporates relevant features 
from the graph structure, and thus reduces the need for extensive feature engineering, minimizes potential 
biases, thereby enhancing the model generalization capabilities. Compared to traditional models (e.g., SVM, 
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Figure 6. t-SNE visualization of density classification predictions at different IGNN model layers. (A) Input layer; (B) Normalization layer; 
(C) Global pooling layer; (D) Output layer. Each subplot shows the output from a different layer, with data points in two-dimensional 
space colored by a crystal system. t-SNE: t-Distributed stochastic neighbor embedding; IGNN: intermetallics graph neural network.

KNN, XGBoost, etc.) that rely on fixed feature vectors, IGNN demonstrates significant advantages in 
structural awareness, feature interactions, generalization ability, and flexibility. It captures complex 
dependencies and nonlinear relationships, and exhibits superior performance across different crystal 
structures and compositions.

CONCLUSIONS
For the density regression and classification tasks of binary intermetallic compounds, several machine 
learning models are constructed to evaluate their performance on datasets with various crystal structures. 
The results indicate that traditional machine learning models perform well on datasets with single crystal 
structures, but exhibit decreased effectiveness on mixed datasets containing multiple crystal structures, 
failing to effectively capture the complex relationships among these structures. To address this limitation, 
the IGNN model, based on GNNs, is introduced and constructed. Through graph structure learning, the 
IGNN achieves higher prediction accuracy on mixed datasets with multiple crystal structures, 
demonstrating adaptability and superiority in modeling the complex density of intermetallic compounds. 
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Figure 7. Performance comparison of machine learning models and IGNN model in classification tasks. (A) Comparison of performance 
metrics for different models in classification tasks, including Precision, Recall, F1 Score, and micro-average AUC; (B-E) Multi-class ROC 
curves for different models, with larger AUC values indicating stronger classification ability. (B) SVM; (C) KNN; (D) XGBoost; (E) IGNN. 
IGNN: Intermetallics graph neural network; AUC: Area under the curve; ROC: receiver operating characteristic; SVM: support vector 
machine; KNN: K-nearest neighbors; XGBoost: EXtreme gradient boosting.

Overall, this study contributes by proposing a GNN method that is suitable for multi-crystal structure data 
modeling, providing a novel computational framework for density prediction in intermetallic compounds. 
This research offers significant advancements in the predictive modeling of intermetallic compounds, 
facilitating more efficient material design and contributing to the development of high-performance 
materials in various industrial applications.
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