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Abstract
The accuracy improvement of deep learning-based damage identification methods has always been pursued. To 
this end, this study proposes a novel damage identification method using Swin Transformer and continuous 
wavelet transform (CWT). Specifically, the original structural vibration data is first transferred to a time-frequency 
diagram by CWT, thereby capturing the characteristic information of structural damage. Secondly, the Swin 
Transformer is applied to learn the two-dimensional time-frequency diagram layer by layer and extract the damage 
information, by which the damage identification is achieved. Then, the identification accuracy of the proposed 
method is analyzed under various sample lengths and different levels of environmental noise to validate the 
robustness of this approach. Finally, the practicality of this method is verified through laboratory test. The results 
show the proposed method can effectively recognize the damage and achieve excellent accuracy even under noise 
interference. Its accuracy reaches 99.6% and 99.0% under single damage and multiple damage scenarios, 
respectively.

Keywords: Artificial intelligence, deep learning, damage identification, Swin Transformer, continuous wavelet 
transform

INTRODUCTION
Engineering structures are prone to damage in complex service environments, which can imperil the 

https://creativecommons.org/licenses/by/4.0/
https://www.oaepublish.com/ir
https://orcid.org/0000-0001-7494-298X
https://orcid.org/0000-0003-4737-5275
https://dx.doi.org/10.20517/ir.2024.13
http://crossmark.crossref.org/dialog/?doi=10.20517/ir.2024.13&domain=pdf


Page 201                                                                  Xin et al. Intell Robot 2024;4:200-15 https://dx.doi.org/10.20517/ir.2024.13

structural safety. Consequently, it is of paramount scientific significance to identify both the location and 
extent of damage using monitoring data in engineering structures[1].

Vibration-based damage identification methods[2,3] have been widely studied by many scholars in recent 
years, which can be divided into parameter-, machine learning-, and deep learning-based methods. The 
parameter-based approaches realize damage identification by extracting damage-sensitive features from the 
vibration mode, modal strain energy and other data. For example, Daneshvar et al. developed a new modal 
strain energy sensitivity function to improve damage detectability, and successfully localize and quantify 
damage under incompletely noisy modal data[4]. Pooya et al. used the absolute difference of modal strain 
energy coefficients as an indicator of damage location and applied the relationship between modal strain 
energy and modal kinetic energy to identify the damage of beam[5]. An et al. proposed a damage 
identification method for semi-rigid joints in frame structures based on additional virtual mass, which 
utilizes natural frequencies to identify the location and extent of damage[6]. Although parameter-based 
methods can be effective in identifying damage, they may not be sensitive enough to detect local damage 
and may have certain limitations.

In contrast, machine learning-based methods achieve recognition by learning labeled information and 
extracting features from it, such as random forest[7], artificial neural network (ANN)[8], and support vector 
machine (SVM)[9]. For example, Ren et al. proposed a method to identify damaged cables in cable-stayed 
bridges from the bridge deck bending strain response using SVM[10]. Farias et al. proposed the multi-particle 
collision algorithm to design an optimal ANN architecture for detecting and locating damage in plate 
structures[11]. Although machine learning-based methods can autonomously learn damage characteristics, 
they may not produce accurate results for complex nonlinear data.

Compared to machine learning, deep learning is better equipped to process large amounts of complex 
nonlinear data. The mainstream deep learning techniques currently include convolutional neural networks 
(CNNs)[12], deep neural networks (DNNs)[13], recurrent neural networks (RNNs)[14], and long short-term 
memory (LSTM)[15], which are widely used in damage recognition. For example, Fu et al. combined CNNs 
and LSTM to predict the location and severity of the bridge damage[16]. Fernandez-Navamuel et al. 
incorporated supervised learning and DNN to accurately identify damage types under different 
environments and operating conditions[17]. Sony et al. proposed a method for damage detection in full-scale 
bridges using a windowed one-dimensional CNN, which is effective for different types of damage[18]. 
Compared to the other two methods, deep learning can handle a large amount of nonlinear data and is 
more sensitive to the characteristic information of local damage. Therefore, deep learning-based methods 
are more advantageous for identifying damage in bridge structures. However, further endeavors are still 
needed to increase the accuracy of damage identification.

Swin Transformer[19] has gained popularity in various fields due to its exceptional image processing 
capabilities. For example, Üzen et al. utilized Swin Transformer to detect surface defects at the pixel level[20]. 
Xu et al. proposed a self-integrated Swin Transformer network structure, which combines the features of 
different layers of the Swin Transformer network and removes noisy points present in a single layer, thereby 
enhancing the retrieval performance[21]. The Swin Transformer is commonly utilized in various engineering 
fields. It has demonstrated excellent learning capabilities and recognition effects in processing image data. 
This can provide new ideas for improving the accuracy of structural damage identification.

In view of the shortcomings of existing research, this paper proposes a structural damage identification 
method based on Swin Transformer and continuous wavelet transform (CWT). First, the original data is 
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transferred to the image feature space through CWT. This process transforms the data into a two-
dimensional RGB image; Secondly, the Swin Transformer model is applied to process the nonlinear and 
non-stationary signals. This allows for learning from time and space features to complete model training. 
The trained model is then used to accept the test set and perform feature matching to identify damage; 
Then, the robustness of the proposed method is verified under varying sample lengths and environmental 
noise interference; Finally, the practicality of this method is verified by experimental test. The main 
contributions of this paper are summarized below:

(1) The damage identification method combining Swin Transformer and CWT is proposed to improve the 
identification accuracy. The results demonstrate the superior performance of the proposed method 
compared to several other models, indicating that the Swin Transformer model may be an effective 
approach.

(2) A comprehensive parameter analysis is performed to examine the practicability of the proposed method. 
The influence of various sampling frequencies and sample lengths on damage identification is investigated, 
as well as the effect on model recognition under noise interference. By this analysis, the practicability of the 
proposed method can be verified, and the guidance under similar scenarios may be produced.

METHODS
Swin Transformer
Figure 1 illustrates the overall architecture of Swin Transformer[19]. In “Stage 1”, the time-frequency 
diagram, with a size of [H × W × 3], is divided into non-overlapping patches with a feature dimension of 4 × 
4 × 3 = 48; then, the non-overlapping image patches are projected to an arbitrary dimension C through a 
linear embedding layer. The Swin Transformer model is applied to these patch markers, producing feature 
maps of size [H/4, W/4, C]; In “Stage 2”, the number of tokens is reduced by patch-merging layers to create 
a hierarchical representation. The patch merging layer is comparable to the pooling layer in CNNs. 
Downsampling is performed before the start of each stage to reduce the resolution, and the number of 
channels is adjusted to form a hierarchical structure. The patch merging layer concatenates the features of 
each group of 2 × 2 adjacent patches and sets the output dimension to 2C. The transformation of features is 
carried out using two consecutive Swin Transformer modules, resulting in a feature map of size [H/8, W/8, 
2C]; In “Stage 3”, the procedures akin to those delineated in “Stage 2” are reiterated, culminating in the 
generation of a feature map sized [H/16, W/16, 4C]; In “Stage 4”, the steps of “Stage 2” are repeated, 
resulting in the output of a feature map with a size of [H/32, W/32, 8C].

Swin Transformer block
The Swin Transformer block[19] replaces the standard multi-head self-attention (MSA) module in the 
traditional Transformer with a module based on a shift window. This change improves the efficiency of the 
model while maintaining the same level of accuracy. Figure 2 shows the Swin Transformer model, 
comprising a window-based MSA module (W-MSA), a shift window-based MSA module (SW-MSA), and a 
double-layer Multilayer Perceptron (MLP). The MLP layer is a common fully connected neural network 
layer. It consists of multiple fully connected layers and nonlinear activation functions. Each MSA module 
and MLP is preceded by a Layer Normalization (LN) layer, and followed by a residual connection. The LN 
layer is a normalization technique used to stabilize and accelerate the training process of neural networks. 
The calculation of two consecutive Swin Transformer blocks[19] is performed using:
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Figure 1. Swin Transformer architecture diagram.

Figure 2. Diagram of Swin transformer block. LN: Layer Normalization; W-MSA: window-based MSA module, MSA: multi-head self-
attention; MLP: Multilayer Perceptron; SW-MSA: shift window-based MSA module.

(2)

(3)

(4)

where Zl and Zl denote the output features of the (S)WMSA and MLP modules of block l, respectively.

Self-attention based on moving windows
Unlike traditional MSA, which performs complex calculations on the global image, W-MSA divides the 
image into non-overlapping windows. This method calculates each window separately, which significantly 
reduces computational complexity. However, the modeling capabilities of the system are limited due to the 
lack of cross-window connections. SW-MSA introduces cross-window connections, which increase the 
perceptual field of view through simple window shifting. This makes the effect more significant in image 
classification. Figure 3 demonstrates an efficient batch computation[19] using shift configuration to solve the 
multi-window problem caused by moving window partitions. To achieve this, the windows with different 
sizes can be combined to maintain the calculation amount. Then, the combined windows of the same size 
can be calculated and the calculation data to the original window can be transferred.

MSA[19] is performed using:

(1)
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Figure 3. Example of SW-MSA calculation. MSA: Multi-head self-attention; SW-MSA: shift window-based MSA module.

(5)

where Q, K, V ∈ RM2×d is the query matrix, key matrix, and value matrix; d is the query key dimension, and 
M2 is the number of window patches; B ∈ RM2 ×M2

 is the relative position parameter, which is introduced 
similarly to position embedding in Transformer.

Continuous wavelet transform
The CWT[22] is a method for analyzing time-frequency information at multiple scales. The CWT 
decomposes the signal into a time-scale plane by scaling and shifting the base wave, transforming the one-
dimensional vibration signal into a two-dimensional time-frequency diagram. This better represents the 
characteristics of the original signal. CWT is performed using[22]:

(6)

where U(α, β) denotes the coefficients of the wavelet function, characterizing the similarity between the 
wavelet func Ation and the original signal; α, β ∈ R (α ≠ 0) are denoted as the scale parameter and 
translation parameter, respectively; x(t) represents the original signal; ψ(t) indicates a wavelet basis function, 
and ψ(t) is the conjugate function of ψ(t).

The wavelet basis function plays a pivotal role in the wavelet transform and is defined by five key properties: 
orthogonality (or bi-orthogonality), symmetry (or linear phase), regularity, vanishing moments, and tight 
support. Consequently, the wavelet basis functions are capable of performing multi-scale decomposition of 
signals, exhibiting satisfactory localization properties in both the time and frequency domains. This enables 
the wavelet transform to effectively capture transient changes and localized features in the signal. The choice 
of wavelet basis function is crucial for CWT. Commonly used wavelet basis functions include Haar and 
Morlet. In this article, the Morlet function is selected as the wavelet basis function. Its mathematical form[23] 
is performed using:

(7)

where ω0 is the center frequency.

The proposed method
Figure 4 shows the process of the proposed damage identification method based on Swin Transformer. 
First, the initial vibration signals are collected from various damage conditions; next, sliding window is 
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Figure 4. Flowchart of the method. CWT: Continuous wavelet transform.

applied to process the original data samples and divide them into smaller segments; then, the data is 
subsequently transformed into wavelet time-frequency diagrams through CWT. The resulting diagrams are 
labeled, shuffled, and divided into training, validation, and test sets in a 6:2:2 ratio; subsequently, the Swin 
Transformer model is trained using the training and validation sets. The model automatically extracts 
temporal and spatial features from the image during training; finally, the test set is inputted into the trained 
model to perform feature matching and complete damage identification.
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Figure 5. Finite element model.

NUMERICAL VALIDATION
Finite element model
To assess the effectiveness and feasibility of the proposed method, this paper establishes a numerical model
to simulate various damage scenarios for identification. Figure 5 shows the model established by MIDAS 
finite element software. The arch structure is a single-rib rectangular cross-section arch made of C40 
concrete. The span is 6 m, with a rise of 1.25 m. The arch axis coefficient is 1.9. The correctness of the 
model has been verified. To simulate structural damage, this model employs a stiffness reduction 
approach[24]. Specifically, the overall damage of the model is achieved by reducing the elastic modulus 
of concrete throughout the entire model by a certain percentage. Six damage scenarios with different 
degrees (Reduction ratio of elastic modulus) are presented in Table 1. The time-history load function is 
then applied as an excitation to the entire bridge by adding nodal dynamic loads near the mid-span of 
the numerical model. Thus, the response of the model in each state is obtained.

Dataset acquisition
In the numerical modeling, each damage scenario was sampled at a frequency of 256 Hz, and 240 s of
acceleration time history data were collected, resulting in 61,440 data points [Figure 6]. Due to the need for
a large amount of data in deep learning training, an overlapping sliding window[24] method is used to
increase the number of samples [Figure 7]. Each window has a length of T = 512 data points, and the sliding
step size is S = 120 data points, resulting in a total of N = 500 samples.

(8)

Where N is the number of samples obtained by cropping; L is the length of the original response; T is the
length of the sliding window; S is the stride of the sliding window.

Subsequently, the one-dimensional time series data is transformed into a two-dimensional time-frequency
diagram utilizing the Morlet wavelet in CWT, which depicts the distribution of signal energy at varying
times and frequencies. Structural damage leads to alterations in the stiffness of the structure, subsequently
affecting its natural frequencies. These frequency changes are manifested in the time-frequency diagram as
the emergence or disappearance of specific frequency components. Furthermore, structural damage can
result in a redistribution of vibration energy, evident as changes in the energy concentration areas within
the time-frequency diagram. Additionally, structural damage may induce transient vibration characteristics,
which appear as anomalies in specific localized time-frequency regions of the diagram. Consequently, the
transformation of the local area of the time-frequency diagram is employed as a feature for the deep
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Table 1. Damage scenarios

Scenarios A0 A1 A2 A3 A4 A5

Damage degree Undamaged 10% 20% 30% 40% 50%

Figure 6. Raw acceleration data.

Figure 7. Schematic diagram of data processing. CWT: Continuous wavelet transform.

learning model to learn about the damage. Figure 8 illustrates the time-frequency diagrams under different 
scenarios within the same time period. It can be observed that the changes induced by the damage are quite 
evident. After completing all conversions, the time-frequency diagrams are labeled with the damage 
scenarios and then divided into training, verification, and test sets according to a ratio of 6:2:2 [Table 2].

Model training and identification results
The Pytorch deep learning framework is used to compile the model. Model training and result identification 
are completed using a Windows 10 computer with an Intel Core i5-9300H CPU, GeForce GTX 1660-Ti 
GPU, and 16.00 GB of memory. The learning rate of the model is set to 0.005, batch size is 8, and epoch is 
100, with weight decay of 1e-5 to prevent overfitting. The Swin Transformer model progressively extracts 
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Table 2. Details of damage scenarios and division of samples

Scenarios Damage degree Training sets Validation set Testing set Total

A0 Undamaged 300 100 100 500

A1 10% 300 100 100 500

A2 20% 300 100 100 500

A3 30% 300 100 100 500

A4 40% 300 100 100 500

A5 50% 300 100 100 500

Figure 8. Time-frequency diagram of each scenario.

multi-scale features from images through a hierarchical structure. At each layer, the Swin Transformer 
partitions the input image using a sliding window mechanism and performs self-attention computations 
within each window. The self-attention mechanism allows the model to focus on important regions of the 
images, capturing changes in frequency and energy distribution in the time-frequency diagrams caused by 
structural damage, thereby completing the model training. After processing through multiple layers, the 
Swin Transformer aggregates the extracted features and performs classification through a fully connected 
layer, ultimately outputting the damage recognition results.

To demonstrate the superiority of the Swin Transformer used in this method, a comparison was made with 
InceptionV3, ResNet50, and CNN. Figure 9 shows the accuracy and loss curves of these deep learning 
models during the training process. From the figure, it can be observed that, except for CNN, the training 
performances of Swin Transformer, InceptionV3, and ResNet50 are quite good, with both accuracy and loss 
eventually converging. Although the accuracy and loss curves of the Swin Transformer on the training set 
do not fit as well as those of InceptionV3 and ResNet50, the curves on the validation set fit better than those 
of InceptionV3 and ResNet50. This indicates that the Swin Transformer does not overfit during the training 
process and has strong generalization capabilities. Therefore, it can be concluded that the Swin Transformer 
outperforms the other models in terms of performance. On the other hand, the accuracy and loss curves of 
CNN, both on the training and validation sets, do not converge, indicating that CNN is unsuitable for the 
dataset used in this method.

To evaluate the recognition effect of this model, accuracy, precision, recall, and F1 indicators are selected. 
The test results of the model are presented in Table 3.

(9)

(10)
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Table 3. The results of model test

Model Accuracy (%) Precision Recall F1

Swin Transformer 95.50 0.9553 0.9550 0.9549

InceptionV3 90.50 0.9116 0.9050 0.9054

ResNet50 89.00 0.9029 0.8900 0.8912

CNN 70.50 0.6927 0.7050 0.6925

CNN: Convolutional neural network.

Figure 9. Training results. (A) Accuracy of training set; (B) Loss of training set; (C) Accuracy of validation set; (D) Loss of validation set. 
CNN: Convolutional neural network.

(11)

(12)

Where TP denotes true positive, i.e., the number of samples that are actually positive and are predicted to be 
positive; TN stands for true negative, which is the number of samples that are actually negative and are 
predicted to be negative; FP represents false positive, i.e., the number of samples that are actually negative 
but are predicted to be positive; FN points to false negative, which is the number of samples that are actually 
positive but predicted to be negative.

The test results in Table 3 further demonstrate the superiority of the Swin Transformer. With an accuracy of 
95.5%, the Swin Transformer significantly outperforms InceptionV3, ResNet50, and CNN. Although 
InceptionV3 and ResNet50 also achieve decent recognition results, with accuracies around 90%, the Swin 
Transformer substantially improves the accuracy of damage identification. Additionally, the confusion 
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Figure 10. Confusion matrices. (A) Confusion matrix of Swin Transformer; (B) Confusion matrix of InceptionV3; (C) Confusion matrix 
of ResNet50;(D) Confusion matrix of CNN. CNN: Convolutional neural network.

matrix in Figure 10 shows that the Swin Transformer misclassifies only a small number of samples, whereas 
InceptionV3, ResNet50, and CNN misclassify relatively more samples, with CNN having the poorest 
recognition performance.

Robustness analysis
The feasibility and effectiveness of this method are demonstrated by the time history response data of the 
finite element model. Next, a robustness analysis was conducted to test the practical application potential of 
the model in terms of damage identification performance.

Sample length analysis
To investigate the effect of sampling frequency and sample length on damage identification, data is 
extracted for 240 and 120 s at sampling frequencies of 256 and 512 Hz, respectively. The data is divided into 
sample lengths of 256, 512, and 1,024.

Table 4 illustrates that the proposed method exhibits superior accuracy at both sample lengths of 512 and 
1,024, while exhibiting slightly inferior performance at 256. As the length of the sample increases at a 
constant sampling frequency, the quantity of information contained in the data also increases. 
Consequently, the deep learning model can extract a greater number of features, thereby enhancing the 
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Table 4. The results of parameter analysis

Frequency Sample length Accuracy (%) Precision Recall F1

256 88.67 0.8879 0.8867 0.8866

512 95.50 0.9553 0.9550 0.9549

256

1,024 98.83 0.9891 0.9883 0.9884

256 90.17 0.9042 0.9017 0.9023

512 96.83 0.9689 0.9683 0.9682

512

1,024 99.50 0.9951 0.9950 0.9950

accuracy of the recognition process. As the sampling frequency is increased, a greater quantity of 
information is captured simultaneously. Therefore, for a given sample length, a higher sampling frequency 
will result in a greater number of features being included in the collected data, and, consequently, an 
enhanced accuracy of recognition. In general, the proposed method demonstrated satisfactory performance 
in terms of accuracy across a range of sampling frequencies and sample lengths.

Noise analysis
There may be some noise in the actual operation environment. To simulate real-world conditions, a certain 
level of environmental noise is introduced. The addition of noise disturbs the actual distribution of samples, 
which can cause the model to identify the sample as the wrong type and reduce recognition accuracy. 
However, it can also test the ability of the model to withstand noise. Therefore, 10%, 20%, and 30% 
environmental noise are added to the acceleration time history response data with a sampling frequency of 
256 Hz and a sample length of 512, and the noise in the actual measurement process is performed using[25]:

(13)

where anoise and a are the acceleration response data containing noise and the original data, respectively; 
RMS(a) is the root mean square of a; Nunit is Gaussian white noise; and Nlevel is the added noise level, which is 
10%, 20% and 30% in this paper.

From Table 5, it can be seen that the noise has little effect on the recognition accuracy, and the accuracy 
does not decrease significantly as the noise increases. This indicates that the proposed method has good 
noise immunity and can still achieve good recognition accuracy even under noise interference.

EXPERIMENTAL VALIDATION
Set up of the experiment
To verify the practicality of this method, this paper conducted a damage identification experiment on a 
reinforced concrete arch model [Figure 11]. This model was cast with C40 concrete; the arch rib section was 
rectangular, and the longitudinal bars were made of HRB400 rebar. The mass increase method was used to 
simulate damage. In this experiment, single damage (B0~B5) and multiple damage (C1~C6) were set up 
[Table 6]. Prefabricated steel plates were added to the load frame and their mass was increased using the 
lever principle. The loading device consisted of five I-beams installed at 1/6L, 1/3L, 1/2L, 2/3L and 5/6L. 
Due to the lever loading method, a tie rod was placed at the rear end of the loader to be fixed to the ground 
and the steel beam with bolts, and a limit rod fixed to the ground was placed to prevent horizontal 
deflection during loading. Meanwhile, a transverse limiter was installed in the center of the span to prevent 
the arch rib becoming unstable. The model was excited with a rubber hammer in the middle of the span 
after loading. At the same time, the vertical accelerometer was used to collect acceleration response data 
under various damage for 240 s at a sampling rate of 256 Hz.



Xin et al. Intell Robot 2024;4:200-15 https://dx.doi.org/10.20517/ir.2024.13 Page 212

Table 5. The results of noise analysis

Noise level Accuracy (%) Precision Recall F1

No noise 95.50 0.9553 0.9550 0.9549

10% 95.17 0.9520 0.9517 0.9518

20% 95.17 0.9521 0.9517 0.9517

30% 94.83 0.9489 0.9483 0.9480

Table 6. Damage scenarios

Scenarios Location of damage

B0 Undamaged

B1 1/6L

B2 1/3L

B3 1/2L

B4 2/3L

B5 5/6L

C1 1/6L, 1/3L

C2 1/6L, 1/2L

C3 1/6L, 2/3L

C4 1/6L, 5/6L

C5 1/3L, 1/2L

C6 1/3L, 2/3L

Figure 11. Experimental model. (A) Unloaded model; (B) 1/3L, 1/2L loading damage; (C) Accelerometers and arch loading point.

Damage identification
For the acceleration response data collected under each scenario, 500 time-frequency diagrams were 
obtained, where the sliding window with a length of 512 and stride of 120 is selected for CWT[24]. 
Subsequently, the data is labeled and disordered to construct the training, validation and test sets in the 
ratio of 6:2:2. The training and validation sets are then fed into the model for training, and the test set is fed 
into the model for damage recognition when training is complete. The training results and confusion 
matrices are shown in Figures 12 and 13, and the recognition accuracy is shown in Table 7. From the table, 
it can be seen that the proposed method is very effective in damage identification both in single damage and 
multi-damage, with the accuracy of 99.6% and 99.0%, respectively, which further illustrates the practicability 
of this method.
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Table 7. Damage identification results

Scenarios Accuracy (%) Precision Recall F1

Single damage 99.6 0.9966 0.9966 0.9966

Multi damage 99.0 0.9902 0.9900 0.9899

Figure 12. Training results of damage identification. (A) Accuracy of single-damage training and validation sets; (B) Loss of single-
damage training and validation sets; (C) Accuracy of multi-damage training and validation sets; (D) Loss of multi-damage training and 
validation sets.

Figure 13. Confusion matrices of the test result. (A) Single- damage confusion matrix; (B) Multi- damage confusion matrix.
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CONCLUSIONS
In this paper, a novel structural damage identification method based on Swin Transformer and CWT is 
proposed. The effectiveness and practicality of the proposed method are verified numerically and 
experimentally. Some main conclusions can be obtained:

(1) The combination of Swin Transformer and CWT can be used as an effective approach for damage 
identification. This method can accurately identify different damage scenarios, obtaining an identification 
accuracy of 96% in numerical simulation.

(2) The proposed method presents high robustness. In the situations with the disturbance of noise, the test 
accuracy of all scenarios exceeds 95%. The recognition accuracy under different sampling frequencies and 
sample lengths is more than 94%.

(3) The proposed method has high practicability. The experimental test has yielded excellent recognition 
performance, with recognition accuracy surpassing 99% for both single and multiple damage scenarios. 
Therefore, this method may have a noticeable potential in practice.
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