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Abstract
Duplex stainless steel is widely used in the petrochemical, maritime, and food industries. However, duplex stainless
steel has the problem of corrosion failures during use. This topic has not been comprehensively and academically
reviewed. These factors motivate the authors to review the developments in the corrosion research of duplex
stainless steel. The review found that the primary reasons for the failure of duplex stainless steels are pitting
corrosion and chloride-induced stress corrosion cracking. After being submerged in water, the evolution of the
passive film on the duplex stainless steel can be loosely classified into three stages: nucleation, rapid growth, and
stable growth stages. Instead of dramatic rupture, the passive film rupture process is a continuous metal oxidation
process. Environmental factors scarcely affect the double-layer structure of the passive film, but they affect the
film's overall thickness, oxide ratio, and defect concentration. The six mechanisms of alloying elements on pitting
corrosion are summarized as stabilization, ineffective, soluble precipitates, soluble inclusions, insoluble inclusions,
and wrapping mechanisms. In environments containing chlorides, ferrite undergoes pitting corrosion more easily
than austenite. However, the pitting corrosion resistance reverses when sufficiently large deformation is used.
The mechanisms of pitting corrosion induced by precipitates include the Cr-depletion, microgalvanic, and high-
stress field theories. Chloride-induced cracks always initiate in the corrosion pits and blunt when encountering
austenite. Phase boundaries are both strong hydrogen traps and rapid hydrogen diffusion pathways during
hydrogen-induced stress cracking.
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INTRODUCTION
Duplex stainless steel has gained wide acceptance in the papermaking, petroleum, food processing, and 
marine industries as a material of choice for systems, structures, and components due to the combination of 
high strength, good toughness and excellent corrosion resistance. This is attributed to the synergistic 
collaboration between the ferrite and austenite phases. Duplex stainless steels are more resistant to 
intergranular corrosion than austenitic stainless steels, because the combination of the austenite-ferrite 
boundary and the ferrite phase enables the precipitation of chromium carbides without severely depleting 
chromium at the phase boundaries[1]. The high solubility and slow diffusion rate of hydrogen in the 
austenite phase of duplex stainless steel make it more difficult for hydrogen to diffuse, distinguishing duplex 
stainless steel from ferritic stainless steel[2].

However, as application fields have expanded, it has become clear that duplex stainless steel suffers from 
corrosion problems. In acidic environments, duplex stainless steels suffer from severe selective corrosion of 
the austenite phase[3]. In the moist H2S environment, duplex stainless steel faces the risk of sulfide stress 
cracking[4]. From 2000 to 2022, several failures have been documented in journals and conferences, 
including CORROSION, Engineering Failure Analysis, and Journal of Failure Analysis and Prevention, as 
illustrated in Figure 1[3-8] and presented in the supplemental material [Supplementary Table 1]. 
Environmentally-assisted cracking (EAC), which includes hydrogen-induced stress cracking (4.55%), sulfide 
stress cracking (18.18%), and chloride-induced stress corrosion cracking (27.27%), accounted for 50% of the 
failures. Pitting corrosion-induced failures accounted for 27.27% of the failures. Additionally, both 
microbially-induced corrosion (MIC) and selective corrosion caused 9.09% of the failures. Crevice corrosion 
was responsible for 4.55% of the failures. The majority of the failures were attributed to pitting corrosion 
and EAC. To ensure the safety of duplex stainless steel in industrial practice, it is imperative to undertake 
rigorous academic investigations into these issues.

Nevertheless, current review articles mainly emphasize the production processes, such as hot working, 
machinability and weldments[9-14]. Only a few reviews have discussed the service processes of duplex 
stainless steel. de Farias Azevedo et al. summarized some failures of duplex stainless steels, which focused 
on the failures induced by improper heat treatment[15]. However, the report is deficient in academic studies 
concerning failures related to corrosion. Salthalaand highlighted failures in the oil and gas industry, which 
focus on practical advice[16]. Cassagne and Elhoud reviewed the hydrogen embrittlement of duplex stainless 
steels[17,18]. Since their reviews were conducted ten years ago, new findings should be added, such as the 
recent research on the distribution of hydrogen in the two phases and at phase boundaries. Pan performed a 
mini-review summarizing research on passive films using synchrotron-based analyses[19]. Han et al. 
reviewed the function of the alloying elements in duplex stainless steel, which shed little on the corrosion 
behavior[20]. In response to the demands of industry and the paucity of comprehensive reviews dedicated to 
corrosion related to practical applications, this review was undertaken to fill this knowledge gap.

This article aims to review the recent academic progress on the pitting corrosion and EAC of duplex 
stainless steel, which are the most common causes of failures. Because the formation and degradation of the 
passive film are the basis for understanding the corrosion of duplex stainless steel, this review first 
introduces the research on passive films from the perspective of the formation process and degradation 
process of the passive film. Subsequently, the progress on pitting corrosion research is reviewed and 
summarized from the perspectives of alloying elements and microstructures. Various distinct pitting 
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Figure 1. Environment-related failure statistics and typical cases of duplex stainless steel from 2000 to 2022. (A) Causes of failures and 
their proportions and (B) Failure caused by pitting corrosion (Reproduced with permission[5]. Copyright 2009, Elsevier). (B1) Pitting 
corrosion was observed at the weld during the industrial inspection, (B2) cross-sectional morphology of pitting corrosion, and (B3) 
enlarged morphology of a pitted area. (C) Failure caused by crevice corrosion[6]. (Open access). (C1) The failure point was located at 
the joint and (C2) corrosion occurred along the contact area between the workpieces. A schematic diagram of the crevice corrosion 
mechanism is shown on the top right. (D) A failure caused by selective corrosion. (Reproduced with permission[3]. Copyright 2015, 
Elsevier). (D1 and D2) Corrosion caused perforation, and (D3) the austenite phase was selectively corroded. (E) Failure caused by 
microbially-induced corrosion (MIC). (Reproduced with permission[7]. Copyright 2014, Elsevier). (E1) Corrosion caused perforation at 
the weld, (E2) the internal tube was covered with corrosion products, (E3) biofilm was observed in the corrosion products, and (E4) 
corrosion products containing sulfur element (S), indicating that corrosion was caused by sulfate-reducing bacteria (SRB) and sulfur-
oxidizing bacteria (SOB). (F) Failure caused by sulfide stress cracking[8]. (Open access). (F1) Cracking occurred near the weld/matrix 
interface, (F2) cracks propagated along the side of the fusion line, and (F3) fracture exhibited typical cleavage features. (G) Failure due 
to stress corrosion cracking. (Reproduced with permission[4]. Copyright 2018, Elsevier). (G1) Cracks were visible along the length of the 
pipe and there was significant pitting corrosion on the pipe surface, (G2) cross-sectional cracks with obvious dendritic bifurcations, (G3) 
at the crack-propagating regions, the cracks propagated within both ferrite and austenite and (G4) at crack-tip regions, the cracks 
expanded preferentially in ferrite.

corrosion mechanisms proposed in the literature to date are summarized in this section. Subsequently, the 
most recent studies on EAC are reviewed, and the EAC mechanisms and the most recent experimental 
findings are outlined. Finally, prospects for further corrosion research on duplex stainless steels are 
proposed.
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PASSIVE FILM 
Stainless steel is more corrosion-resistant than carbon steel in many applications because a dense film is 
formed on the surface, shielding the matrix from corrosive media. The passive film of duplex stainless steels 
consists of nanocrystals, hydroxides, and mixed oxides[19]. The two phases of duplex stainless steels have a 
gradient in their chemical composition, raising the question of whether or not their film-formation and 
film-degradation processes differ in any way. These issues have recently been addressed in passive film 
research on duplex stainless steels. This section introduces the research progress from the perspective of 
film formation and film degradation.

Formation of the passive film
Formation process of passive film
Chromium and molybdenum in duplex stainless steels are enriched in the ferrite phase, whereas the content 
of nickel and molybdenum in austenite is higher [Table 1][21-23]. The composition difference would lead to 
the formation difference of passive film. Overall, there is a lack of research in this area, and few studies have 
been published. Some scholars believe that the final passive film is dependent on the oxidation potential and 
ion solubility of the individual elements. Therefore, they extrapolated from the electrochemical behavior of 
pure metals in the environment to the composition of the passive film. Yao et al. predicted the passive film 
composition of 2,205 duplex stainless steel at different potentials by comparing the polarization curves of 
pure iron and pure chromium[24]. The composition of the passive film in duplex stainless steel can be readily 
determined using this method, which is interesting to consider. However, this view assumes that there is no 
interaction between the interphase passive films. This assumption might be debatable at the phase 
boundaries.

Another approach is to observe the passive process in situ. The evolution of passive films over 600 min was 
characterized using electrochemical atomic force microscopy (EC-AFM)[25]. Oxide particles were formed 
separately during the first 100 min, after which they completely covered the surface [Figure 2][25]. However, 
the low time resolution of EC-AFM, as compared to the rapid formation of passive films, is a drawback of 
this technology. Passive films form within seconds of exposure. Hence, the above study could not 
adequately capture the initial process of passive film formation. In recent years, researchers have also 
attempted to capture the formation process in situ at the nanometric scale using high-resolution techniques. 
This has yielded favorable results for the investigation of austenitic stainless steel[26,27]. Using scanning 
tunneling microscopes, the local oxidation of chromium was observed[26]. Therefore, a local inhomogeneity 
is generated once the passive film is formed. However, these studies focused on austenitic stainless steel. 
Further studies on the coupling process between nitrogen element and chromium element, the formation 
process at grain boundaries and phase boundaries, and the differences in passive film formation between 
ferrite and austenite from on the nanometric scale are promising for unveiling the mechanism responsible 
for the high corrosion resistance of duplex stainless steel. Furthermore, from a cross-sectional perspective, it 
is currently unknown how the passive film grows longitudinally. There are insufficient data to determine 
whether the oxidation is internal or external.

The study of the in situ passive film growth process in liquid may be another research direction because the 
current research is performed under electrochemical polarization conditions or in air. The state of the 
passive film in air differs from that in a real liquid environment. CrOOH in the passive film, which is one of 
the main components of the passive film in air, may react with water into other substances once it is 
immersed in the NaCl solution[28].
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Table 1. The chemical composition of the matrix and the phases (wt.%)

Material Phase Cr Mo Ni Mn Ref.

Total 21.69 0.36 1.56 4.92

α 22.643 0.435 1.276 4.710

UNS S32101

γ 20.735 0.280 1.857 5.247

[21]

Total 22.44 3.24 5.99 1.38

α 23.604 4.216 5.003 1.300 

UNS S32205

γ 21.501 2.540 7.231 1.493 

[22]

Total 24.48 4.00 6.36 0.54

α 27.428 4.693 5.807 0.450

UNS S32750

γ 24.299 3.08989 8.810 0.495

[23]

(Reproduced with permission[21]. Copyright 2019 Elsevier) (Reproduced with permission[22]. Copyright 2014, Elsevier) (Reproduced with 
permission[23]. Copyright 2015, Elsevier).

Composition and structure of the passive film 
Research on passive films has focused on studying the composition and structural differences between the 
ferrite and austenite phases of the passive film, as shown in Figure 3[29,30]. There is a difference in the 
chemical composition of the passive film formed between ferrite and austenite. The contents of chromium, 
molybdenum and tungsten are higher in the ferritic passive film than that in the austenitic passive film. The 
nitrogen and nickel contents in the austenitic passive film are higher than those in the ferritic passive 
film[29-32]. Nickel is chemically stable and does not form oxides, which is mainly concentrated at the film/
matrix interface[24]. However, both passive films are structurally composed of an outer film rich in iron and 
molybdenum and an inner film rich in chromium, with almost the same thickness and structure[30,32]. Other 
literature has shown that the passive film conductivity of the austenite phase is higher than that of the ferrite 
phase[33]. The crystal orientation may influence the passive film, which was identified by synchrotron hard 
X-ray photoemission electron microscopy (HAXPEEM)[29]. The (111) ferrite grains exhibit the lowest 
chromium content among the different orientations of ferrite, while the Cr2O3 content in the (111) ferrite 
grains is higher than that in the (111) austenite grain[29].

Environmental response of passive film 
Environmental factors that cause corrosion failures of duplex stainless steels include pressure, temperature, 
sulfide, sodium hydroxide, chloride ions, vibration, and applied potentials[17]. Therefore, the effects of these 
factors on the composition and structure are discussed in the subsequent sections. Upon immersion in 
water, the structure and composition of the passive film change [Figure 4A and B][26,28]. Once immersed, the 
surface strain of the passive film decreases and relaxation occurs[28]. Furthermore, the content of CrOOH in 
the passive film decreases upon immersion in water, and when immersed in a 0.1 M NaCl solution, CrOOH 
vanishes [Figure 4B][28].

Based on the thermodynamic Pourbaix diagram, increasing the temperature narrows the region of metallic 
Fe, Cr, and Ni. Cr2O3 and Cr (OH)3 are transformed into FeCr2O4, CrOOH, and HCrO2

[34]. From the 
perspective of the corrosion process, the temperature thickens the passive film and increases the point 
defects density in the passive film by analyzing the electrochemical data [Figure 4C][35]. When the 
temperature exceeds 40 °C, the electrochemical impendence spectra (EIS) show two-time constants, 
indicating that the structure changed[36]. The XPS results showed that increasing the temperature could also 
increase the Cr/Fe ratio in the passive film [Figure 4C][36]. However, the above conclusions were mostly 
drawn from electrochemical studies. Moreover, these structural changes require further verification.
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Figure 2. Evolution of the passive film on 2,205 duplex stainless steel[25]. (Open access). (A) The surface morphology changes within 
600 min and (B) a schematic diagram of the passive film evolution.

Hydrostatic pressure is inevitable when considering the use of deep-sea counterparts. On the one hand, 
hydrostatic pressure decreases the Nyquist impedance and Cr2O3 proportion of the passive film 
[Figure 4D][37]. These changes indicate that hydrostatic pressure may reduce the compactness of the passive 
film[37]. On the other hand, potentiodynamic results show that hydrostatic pressure promotes the hydrogen 
evolution reaction by accelerating hydrogen adsorption on the metal surface and inhibiting the transfer of 
H2 molecules[37]. However, the changes to the passive film due to hydrostatic pressure have not been 
adequately investigated. Therefore, elucidating the relationship between the changes in the passive film and 
the hydrogen evolution reaction may help clarify the mechanism. Cui et al. used the High Field Model and 
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Figure 3. (A-C) EDS analyses revealed that the elements in the passive film are unevenly distributed. (Reproduced with permission[30]. 
Copyright 2019, Elsevier). Chromium, molybdenum and tungsten are enriched in the passive film on the ferrite phase. Nitrogen and 
nickel are enriched in the passive film on the austenite phase. (D and E) Line-scanning from the passive film to the matrix revealed that 
nickel is enriched at the film/matrix interface. (Reproduced with permission[30]. Copyright 2019, Elsevier). (F) FIB analyses 
demonstrated that the passive film thicknesses of ferrite and austenite phases are already the same. (Reproduced with permission[30]. 
Copyright 2019, Elsevier). (G1 and G2) Scanning tunneling spectroscopy (STS) results show that the energy gap (Eg) of passive film on 
the ferrite phase is higher than that of the austenite phase, which means that passive film on the ferrite phase has a  higher local energy 
gap between different semi-conductive characteristics (local conduction band potential and local valence band potential) (Reproduced 
with permission[30]. Copyright 2019, Elsevier). (H1 and H2) The chromium oxide content of the passive film on the ferrite phase is higher 
than that on the austenite phase[29]. (Open access).
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Figure 4. The effect of environmental variables on the passive film. (A) The passive film in the open air is constituted by a two-layer 
structure, specifically, the Cr-rich inner layer and the Fe-rich outer layer. (B) When immersion in the solutioncontaining chlorides, the 
CrOOH disappears[28]. (C) When the temperature increases, the passive film thickens and becomes more enriched in Cr[35]. (D) When 
the hydrostatic pressure increases, less Cr2O3 is detected[37]. (E) Removing oxygen decreases the point defects in the passive film and 
lowers the film/solution potential drop[35]. (F) Hydrogen sulfide accelerates the film dissolution process and local acidification 
processes[38]. (G) Increasing the anodic potential transforms the passive film from p-type to n- type[36]. (H) Hydrogen charging makes 
the passive film more conductive and imparts it with a larger OH-/O2- ratio[39,40]. (I) Stress creates more point defects and more soluble 
CrO3 in the passive film[41,42].

Point Defect Model (PDM) and proposed that reducing the oxygen content in the solution can reduce the 
potential difference of the field/substrate interface and decreases the point defect diffusivity [Figure 4E][35].

Hydrogen sulfide generates hydrogen ions via the reacidification effect [Figure 4F][38]. Adding hydrogen 
sulfide does not change the semiconductor type of the passive film, but thins the film [Figure 4F][38]. A 
higher anodic current indicates that it accelerates the dissolution of the passive film. When the 
concentration was increased, the number of oxygen vacancies increased and Fe2+ in the passive film was 
consumed.
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The influence of the applied potential on the passive film can be divided into anodic potentials and cathodic 
potentials, compared with the corrosion potential. One research strategy is focused on the composition 
change. At low anodic potentials, the passive film exhibits p-type semiconductor characteristics, because the 
passive film is composed of Cr2O3, FeO, NiO, and MoO2, which contain many cationic vacancies. At high 
anodic potentials, the main components are Fe2O3, FeOOH, CrO3, and MoO3. The passive film resembles 
the n-type semiconductor [Figure 4G][36]. Therefore, the conductivity of the passive film decreases when the 
applied anodic potential increases[36]. Another research thought focuses on the film evolution modes under 
applied potentials[35]. At low anodic potentials, the passive film grows and thickens. When the applied 
potential shifts to the transpassive potential range, electron removal increases the number of the valent 
species and the passive film dissolves.

The applied cathodic potential is related to the hydrogen evolution reaction. Time-of-flight secondary ion 
mass spectrometry (TOF-SIMS) analyses showed that hydrogen accumulates preferentially on the grain 
boundaries and phase boundaries of the duplex stainless steel[39]. In situ AFM revealed that hydrogen 
charging causes a height difference on the sample surface[39]. Further studies showed that hydrogen-charged 
specimens exhibit an increased conductivity, and that the increase in conductivity in the austenite phase is 
larger than that in the ferrite phase[40]. The composition analysis of the passive film demonstrates that 
hydrogen charging promotes the presence of oxygen atoms in the form of hydroxide [Figure 4H][39,40].

Elastic stress and tensile stress both increase the donor and acceptor densities as determined using Mott-
Schottky measurements [Figure 4I][41,42]. Stress increases the number of dislocations on the surface. 
According to the PDM models, dislocations promote the formation of vacancies in passive films[42].

In summary, the study on the environmental response of passive films focuses on their semiconductor 
properties, compositions, and structural response characteristics. As the thickness of the passive film is only 
a few nanometers, the above parameters are mostly obtained by substituting the macroscopic data into the 
existing model. Therefore, its accuracy is debatable. The specific evolution process of the influence of 
environmental factors on passive films is not clear. Further research can be conducted using high-resolution 
observation methods coupled with an environmental test bench.

Degradation of the passive film
It was believed that the rupture of the passive film was caused by the reaction from the trivalent chromium 
to the soluble tetravalent chromium at a certain potential, which was consistent with the sudden current 
increase. However, new experimental results do not support this view. Using in situ synchrotron grazing-
incidence X-ray diffraction (GIXRD), a new phenomenon was observed that the passive film would thicken, 
accompanied by accelerating iron dissolution, and crystallinity decreases of the passive film when the 
potential increased in the passivation zone [Figure 5A-D][43]. This indicates that the rupture of the passive 
film is not only a valence change process but also a structural change process. As the applied potential 
increases to the breakdown potential, the composition and structure change simultaneously. Chromium, 
nickel and molybdenum in the passive film react and form soluble substances [Figure 5E and F][44]. The 
passive film becomes loose, whereas the film/matrix interface becomes dense owing to the enrichment of 
nickel and molybdenum[44]. These phenomena indicate that the rupture process of the passive film is a 
continuous degradation process over a wide potential range, rather than a sudden change as per the 
traditional definition [Figure 5G][44].

Nevertheless, there are also some factors that still need to be defined. Firstly, the difference in the 
degradation process of passive film between the austenite and ferrite phases is not fully understood. The 
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Figure 5. Study of the passive film degradation of duplex stainless steel after anodic polarization at 900 and 1400 mV (vs. Ag/AgCl) in 
1 M NaCl (aq). (A) During the polarization test, selective dissolution occurred on the ferrite phase and the austenite phase was 
corroded as well. (Reproduced with permission[43]. Copyright 2018, Elsevier). (B) The main composition was ferrite and 
austenite.(Reproduced with permission[43]. Copyright 2018, Elsevier). (C) The small diffraction peaks corresponded to multiple crystal 
oxides (Reproduced with permission[43]. Copyright 2018, Elsevier). (D) Chromium oxide is the major compound of crystal oxides. The 
random noise represents the nano-crystalline structure of the oxides. (Reproduced with permission[43]. Copyright 2018, Elsevier). 
(E and F) The X-Ray Fluorescence (XRF) data for Fe, Cr, Ni, and Mo after applying different anodic polarization at room 
temperature[44]. (Open access). (G) The degradation mechanism of 2,507 duplex stainless steel under the applied potential[44]. (Open 
access).

studies mentioned above were conducted on the entire surface of the samples, and the exact phases cannot 
be distinguished. The morphological results show that both ferrite and austenite are corroded[43]. Secondly, 
the hydrogen evolution reaction, in addition to anodic polarization, could also degrade the passive film, 
since current research all focuses on the transpassive process of the passive film. This type of degradation is 
still not clearly understood. The mechanism by which the passive film changes if the hydrogen reaction 
occurs is yet to be explored.
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PITTING CORROSION 
The pitting corrosion mechanism includes both initiation and propagation mechanisms. The initiation and 
stabilization mechanisms of metastable pitting are still not comprehensively understood. Research on the 
pitting corrosion mechanism is mostly performed on single-phase austenitic materials, and there is little 
research on duplex stainless steel, which is more complicated. Current research on the pitting corrosion of 
duplex stainless steels mostly focuses on the correlation between various material factors with the pitting 
corrosion resistance and their mechanisms. These material factors include alloying composition and 
microstructure. As duplex stainless steels are mainly applied in chloride-containing environments, the 
default environment is a Cl-containing reducing environment unless specifically mentioned.

Alloying elements
Nitrogen element
Nitrogen is the element that solves the welding problems of duplex stainless steels and makes it widely 
commercially available. Nitrogen slightly increases the pitting potential and protection potential of duplex 
stainless steels[45]. When the nitrogen content in 2,507 is increased from 0.15 wt.% to 0.27 wt.%, the 
corrosion rate decreases by approximately 85%[46]. However, previous studies mainly focused on corrosion 
evaluation and not on the corrosion mechanism, and some topics remain debatable. Nitrogen is mainly 
distributed in the austenite phase in duplex stainless steels, and the solubility of nitrogen in the ferrite phase 
is extremely low. In austenitic stainless steel, nitrogen exists as NH4

+ in the passive film[47]. Therefore, the 
addition of nitrogen leads to a larger difference between the Pitting Resistance Equivalence Number (PREN) 
values of the two phases. According to the point of view that the phase with the lowest PREN represents the 
pitting corrosion resistance, the addition of nitrogen has little effect on the pitting corrosion resistance, 
which is not consistent with the experimental results.

Molybdenum element
Molybdenum can significantly increase the pitting corrosion resistance of duplex stainless steels. When 
molybdenum content is below 1.0 wt.%, molybdenum exhibits no obvious improvement in pitting 
corrosion resistance[48]. However, adding 1.5 wt.% Mo can increase the pitting potential by at least 
150 mV[49]. This is mainly attributed to two reasons. Firstly, molybdenum exists in the passive film in the 
form of MoO2, MoO3, and MoO4

2-. These oxides render the passive film more stable[49]. Secondly, 
molybdenum accumulates in the pits and hinders further dissolution[50]. Additionally, Tian et al. found that 
tetravalent Mo species only exist in the passive film of 2,205 duplex stainless steel, as compared to single 
ferrite phase or single austenite phase[51]. This indicates that molybdenum plays an important role in the 
interaction between the austenite and ferrite phases. However, the exact interaction between the austenite 
and ferrite phases is unclear. The influence mechanism of molybdenum on austenite and ferrite in different 
stages of pitting corrosion still needs to be comprehensively understood.

Nickel element
Nickel changes the composition of the passive film by introducing metallic Ni, NiO, Ni(OH)2, and NiCl2

[52]. 
This is beneficial for pitting corrosion resistance[46]. A nickel content of 5-13 wt.% increases the pitting 
potential in 1 M hydrochloric acid by 500 mV[53]. Nickel also narrows the protection potential range[53]. 
However, the content change of nickel causes a significant change in the ratio of the two phases[54], and the 
ratio of the two phases has a greater impact on the pitting corrosion ability. When studying the influence of 
nickel, it is necessary to control the ratio of the two phases by heat treatment. Additionally, the influence of 
nickel on pitting corrosion is still mainly observed using electrochemical tests, and comprehensive research 
needs to be conducted from the perspective of the corrosion morphology and the corrosion rate.
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Tungsten element
Kim et al. reported that adding 4 wt.% tungsten increases the pitting potential and critical pitting 
temperature of the duplex stainless steel. It could also promote the repassivation process[52]. Tungsten exists 
as WO3 and WM in passive films. However, Torres et al. reported that adding 2.1 wt.% tungsten to the 
duplex stainless steel decreases the critical pitting temperature when aged at 920 °C for 60 s[55]. This change 
correlates with the fact that tungsten favors the precipitation of the chi phase. The opposite results that were 
obtained for tungsten are not only because the heat treatment varied but also because the steel used in the 
research was not a single variable. That is, industrial steels were used as the test samples[52,55], in which the 
contents of molybdenum, silicon and other elements vary, which also influences the pitting corrosion 
resistance and may obscure the influence of tungsten. Another study that controlled element tungsten more 
accurately showed that tungsten is slightly beneficial in resisting pitting corrosion when in the solid solution 
state[56]. However, tungsten is detrimental when detrimental phases containing tungsten precipitate.

Copper element
Copper exists in duplex stainless steels in the form of the solid solution state or epsilon-Cu, the latter of 
which exists when the sample is aged at 700-800 °C[57,58]. The addition of copper in the solid solution state 
has few beneficial or even negative effects[59]. Although copper is more stable than iron, the corrosion 
product of copper dissolves into complex ions containing Cu[57], which have not been fully understood until 
now. Epsilon-Cu has been reported to be more active than the ferrite and austenite phases[60], which means 
that it dissolves preferentially and forms nucleation sites for pitting corrosion. However, the electrochemical 
test is the main test method on this topic which cannot reflect the corrosion mechanisms microscopically. 
Additionally, in situ observation of the pitting corrosion process caused by epsilon-Cu is still lacking. The 
change in the pitting nucleation and pitting propagation stages after the addition of solid-solution copper is 
also vague.

Manganese element
Manganese exists in passive films in the form of oxidation states II and IIII[61]. Jang reported that adding 
0.8 wt.% manganese to CD4MCU cast duplex stainless steel negatively impacts the pitting corrosion 
resistance, but the pitting corrosion resistance recovers by adding 2 wt.% manganese[62]. Jang attributed these 
changes to the proportion of austenite/ferrite[62]. Mass loss tests showed that increasing the manganese 
content from 1.7 to 3.3 wt.% significantly decreases the pitting corrosion resistance[49]. However, the pitting 
potential slightly increased when adding 8.03 wt.% in the solid solution state to duplex stainless steel[63]. Feng 
et al. reported that manganese is detrimental when aging at 800 °C for forming precipitants[64]. Therefore, it 
can be concluded that manganese increases the number of pit nucleation sites when it exists in the form of 
precipitants (inclusions or secondary phases). However, the current research shows that manganese-
containing inclusions exhibit different dissolution modes, and the specific mechanisms of these different 
dissolution modes still need clarification. Additionally, existing studies have shown that solid-solution-state 
manganese does not seem to have a significant effect on the pitting corrosion of duplex stainless steels.

Titanium, niobium and tantalum
Titanium is a strong nitride-forming element which means TiN would form upon Ti is added to duplex 
stainless steels. Firstly, titanium could form TiN. Secondly, titanium in the solid solution state forms oxides. 
Zhang et al. has reported adding 0.01 wt.% titanium increased the pitting potential[65]. However, when 
0.15 wt.% titanium was added, the pitting potential decreased. The authors attributed this change to the size 
of TiN. However, no direct evidence was provided to support this.
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Adding 0.25 wt.% Nb to the duplex stainless steel increases the pitting potential by more than 100 mV. 
Niobium forms the Z phase that surrounds the anodic inclusions[66]. Furthermore, the Z phase has a low 
mismatch with the matrix, and there is no gap between the matrix and Z phases[66]. Therefore, niobium 
addition decreases the number of pitting nucleation sites.

It has been reported that tantalum additions can hinder the precipitation of harmful phases, which 
improves the pitting corrosion resistance[67,68]. Further studies showed that tantalum forms nitrides that coat 
the CaS and (Al, Ca) oxides. When CaS and (Al, Ca) oxides dissolve, stable nitrides containing tantalum 
prevents further propagation of pitting corrosion[69].

Other elements
Aluminum was found to have a negative effect on pitting corrosion. The negative effect is not obvious when 
contents are below 1 wt.%, but it is obvious when the contents are above 1.5 wt.%[70]. This is because the 
Al2O3 film formed by aluminum is porous. Studies have reported that Al2O3 forms an Al2O3 layer on the 
surface only when the content is above 4-6 wt.%.

The addition of 0.2 wt.% silver is detrimental to pitting corrosion resistance. Silver increases the fraction of 
secondary austenite[71]. Pits preferentially initiate at secondary austenite. Additionally, the solubility of silver 
in steel is very low, and pitting corrosion is preferentially initiated at the interface between the Ag-
containing precipitates and the matrix.

Sulfur addition of 0.001 to 0.053 wt.% increases the pitting nucleation sites by approximately 3.5 times[72]. 
Manganese sulfides increase significantly, which deteriorates the pitting corrosion resistance. The pitting 
potential decreases by approximately 700 mV in 3 M NaCl[72].

Rare earth metals (REMs) exist in duplex stainless steels in the form of precipitates. The addition of REMs 
can refine polygonal Mn inclusions into uniform-shaped REM oxides[73]. These REMs oxides are ball-
shaped at the interface and act as cathodes during corrosion[74]. Pitting corrosion occurs at the matrix near 
the oxide/matrix interface, rather than at the oxide[74]. The frequency of metastable pitting also decreases[74]. 
However, Kim et al. did not clarify why pitting corrosion initiates in the matrix near the oxide/matrix 
interface instead of in the matrix away from the REM oxides[74].

Adding 0.01-0.2 wt.% tin was also found to improve corrosion resistance, and its effect was better when it 
was compounded with copper[75], but the specific mechanism is still unclear.

Ruthenium addition of approximately 0.28 wt.% can increase the pitting corrosion potential in sulfuric acid 
by 100 mV[76]. The passive current decreases dramatically with the addition of ruthenium. This indicates that 
ruthenium can hinder anodic dissolution. However, in the only report on this topic, the conclusion was 
mainly drawn using macroscopic electrochemistry and weight loss, and the partition and influence 
mechanism of ruthenium between the two phases is yet to be understood.

In summary, the mechanism of alloying elements on the pitting corrosion of duplex stainless steels can be 
roughly divided into six mechanisms. In the stabilization mechanism [Figure 6A][49], elements accumulate in 
the passive film and at the bottom of pits, which stabilize the passive film and hinder further dissolution in 
the corrosion pits. This mechanism has been verified for molybdenum in the solid solution state[49]. In the 
ineffective mechanism [Figure 6B][49,59], the element does not stabilize or deteriorate the passive film. When 
pitting corrosion propagates, this kind of element is also corroded. This mechanism applies to manganese 
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Figure 6. The six mechanisms of alloying elements on the pitting corrosion of duplex stainless steels. (A) Stabilize the passive film and 
hinders further dissolution in the corrosion pits. This mechanism has been verified for molybdenum[49]. (B) Does not stabilize or 
deteriorate the passive film. When pitting propagates, the element is also corroded. This mechanism applies to both manganese[49] and 
copper[59] in the solid solution state. (C) Forms soluble precipitates, which dissolve preferentially and nucleate pits. This mechanism 
applies to copper after aging during which epsilon-Cuis formed[60]. (D) Forms soluble inclusions. The inclusions dissolve preferentially 
and nucleate pits. This mechanism is applied to sulfur[72]. (E) Forms insoluble inclusions, which do not corrode. Pitting corrosion occurs 
in the matrix near the inclusions. This mechanism has been reported for titanium[65]. (F) Wraps soluble inclusions. When the inclusions 
dissolve, the protective layer protects the matrix from pitting corrosion. This mechanism applies to adding niobium[66].



Page 15 of Liu et al. Microstructures 2023;3:2023020 https://dx.doi.org/10.20517/microstructures.2023.02 27

and copper in the solid solution state[57]. In the soluble precipitates mechanism [Figure 6C][60], the element 
preferentially promotes the formation of soluble precipitates and dissolves, promoting pit nucleation. This 
mechanism applies to copper after aging during which epsilon-Cu is formed. Epsilon-Cu corrodes and 
initiates pitting[60]. In the soluble inclusions mechanism [Figure 6D][72], the alloying elements forms soluble 
inclusions. The inclusions preferentially dissolve and nucleate pits. This mechanism applies to the addition 
of sulfur[72]. In the insoluble inclusions mechanism [Figure 6E][65], the alloying elements form insoluble 
inclusions, which do not corrode. Pitting corrosion occurs in the matrix near the inclusions. This 
mechanism has been previously reported for titanium[65]. The last mechanism is the wrapping mechanism 
[Figure 6F][66]. The element forms a protective layer that wraps the soluble inclusions. When the inclusions 
dissolve, the protective layer protects the matrix from pitting corrosion[66,69].

Microstructure 
Ferrite and austenite
The Volta potential difference between the ferrite and austenite phases is approximately 50-100 mV 
[Figure 7A][28,77]. The potentiodynamic results show that the dissolution potentials of austenite and ferrite 
are -281 mVSCE and -323 mVSCE in 1 M H2SO4, respectively[78]. Theoretically, the potential difference should 
induce micro-galvanic corrosion and accelerate the corrosion of the ferrite[79]. However, duplex stainless 
steel has excellent corrosion resistance. Xiao proposed that there is feedback during the corrosion 
process[80]. The corrosion of the ferrite phase can change the passive film of the austenite phase. Xiao also 
believed that the potential difference is no longer the main electrochemical inhomogeneity in corrosive 
media, where both phases can be passivated[80]. Tian et al. found that the passive current density of the 
duplex stainless steel was lower than that of the single-phase structure[51]. The two phases in the duplex 
stainless steel may interact during the corrosion process. Cheng et al. found that the defect density in the 
two-phase passive film is lower than that of single austenite phase or single ferrite phase[81]. They proposed 
that the two-phase galvanic corrosion effect improves the corrosion resistance of the duplex stainless steel. 
However, the exact galvanic corrosion mechanism is unclear. Additionally, the existing test methods are 
controversial. The single-phase structure obtained by anodic dissolution is honeycomb-like. Therefore, the 
single-phase samples have more interfaces, which increases the risk of crevice corrosion of the samples 
during electrochemical testing.

Pitting corrosion after deformation has also been studied[28,78]. Örnek and Engelberg reported that the ferrite 
phase of 2,205 undergoes pitting corrosion preferentially before cold deformation, whereas the austenite 
phase preferentially pits after a 40% cold deformation[77]. Luo et al. also found that when the cold 
deformation of UNS S31803 exceeds 70%, pitting corrosion preferentially initiates in the austenite phase[82]. 
Molyndal et al. proposed that the corrosion resistance of ferrite decreases monotonically with strain but not 
in the austenite phase[78]. Slip bands and subgrains are formed in austenite under a small deformation, which 
barely deteriorate the pitting corrosion resistance. High-angle grain boundaries are formed in austenite 
under large deformation, which deteriorates the pitting corrosion resistance[78]. Therefore, the relative 
pitting corrosion resistance between ferrite and austenite reverses as the cold deformation increases 
[Figure 7B1 and B2][83]. However, the above studies were based on the correspondence between pitting 
corrosion behavior and microstructural changes after deformation. Evidence for the direct correlation 
between microstructural changes (dislocation configuration, slip banding, and subgrain boundaries) and 
pitting corrosion is still lacking.

The phase ratio affects the pitting corrosion as well [Figure 7C1 and C2][23]. Ha et al. stated that the smaller 
the PREN difference between the two phases, the stronger the pitting corrosion resistance of the entire 
matrix[21,22]. This view was verified in 2,205 and 2,101 duplex stainless steels. However, the pitting corrosion 
resistance of different phase ratios in 2,507 stainless steel The pitting corrosion resistance with different 
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Figure 7. Summary of the studies on the pitting corrosion resistance between ferrite and austenite. (A1) The pitting resistance 
equivalent number of the ferrite phase is smaller than that of austenite. Therefore, the passive film of ferrite is unstable, and pitting 
corrosion occurs preferentially in ferrite. (A2) In the chloride-containing environment, the amount of pitting corrosion initiated in the 
ferrite phase is significantly more than that in the austenite phase[28] (Open Access) (B1) Under plastic deformation conditions, 
austenite forms more dislocation walls, slip bands, and dislocation outcropping defects. Therefore, more active sites appear on the 
surface of the austenite phase, and the pitting corrosion resistance gap between ferrite and austenite becomes smaller and even 
reversed. (B2) After plastic deformation, the defects in austenite increase significantly, whereas that in the ferrite phase changes little. 
(Reproduced with permission[83]. Copyright 2006, Elsevier). (C1) Element diffusion occurs during the heat treatment process to change 
the phase ratio. The minimum value of the pitting resistance equivalent number changes, and the pitting corrosion resistance of duplex 
stainless steel changes. (C2) UNS S32750 with different phase ratios exhibits different pitting potentials. (Reproduced with 
permission[23]. Copyright 2015, Elsevier.
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phase ratios is not highly correlated with PREN. but it is well correlated to the two-phase micro-galvanic 
corrosion depth[23]. The authors believed that this is because PREN mainly reflects the initiation process of 
pitting corrosion. This is suitable for 2,205 and 2,101 duplex stainless steels, which are not resistant to 
pitting corrosion. The corrosion resistance of 2,507 duplex stainless steel is higher. Therefore, the pitting 
corrosion performance mainly depends on the pitting propagation process. However, according to the 
pitting corrosion model proposed by Li et al. and Frankel et al., the propagation process plays a decisive role 
in materials that are not resistant to corrosion[84,85]. This opinion contradicts that of Ha et al.[21,22]. However, 
the model proposed by Li et al. has not been verified in the duplex stainless steel system[84,85]. Therefore, the 
mechanism of the phase ratios on the pitting corrosion requires further clarification.

Precipitates
Harmful phases precipitate in duplex stainless steels during welding and isothermal aging processes. In 
metals, precipitates typically have a deleterious effect on pitting resistance[86]. There are three opinions on 
interpretations of the pitting corrosion mechanisms of secondary precipitates.

The first theory is the Cr-depletion theory [Figure 8A1], where the precipitates are enriched with chromium 
or molybdenum, which forms a surrounding depleted zone. The passive film at the depleted zone is weak or 
absent. Pitting corrosion occurs in these areas. This theory is applicable to secondary austenite, sigma phase 
(σ phase), chi phase (χ phase), CrN, and Cr2N [Figure 8A2 and A3][87-90]. Zhang et al. showed that after 
tempering at 700 °C for a sufficient duration, the pitting initiation site of S82441 duplex stainless steel 
transformed from austenite to the Cr-depleted zone[91]. The higher the quantity of the sigma phase, the 
lower the breakdown potential. However, the pitting corrosion resistance recovers to a certain degree after 
aging for a sufficient time. Once the sigma phase is fully precipitated, further aging causes tungsten and 
molybdenum to diffuse into the Cr-depleted secondary austenite[92].

The Cr-depleted α phase formed by spinodal decomposition can also induce pitting corrosion, but it is not 
as strong as the σ phase[93]. The micro-galvanic corrosion model has been proposed to interpret this 
phenomenon [Figure 8B1][94,95]. Cathodic phases enriched in chromium surround anodic phases depleted in 
chromium [Figure 8B2 and B3][94]. Microgalvanic corrosion induces pitting corrosion in the Cr-depleted 
phase, which has been proposed recently and is appliable to the α and α’ phases.

The pitting corrosion that occurs around the G phase is still under debate. The stress concentration model 
assumes that a large strain field is generated around the square precipitate, which promotes the initiation of 
pitting corrosion preferentially at this location [Figure 8C1]. A high-stress field has been verified using 
HAFFT [Figure 8C2 and C3][96]. Another hypothesis is that pitting corrosion is related to the Cr-depleted 
zone around the G phase, which is caused by the growth of the G phase. Silva et al. recently suggested that 
the pitting corrosion around the G phase is due to galvanic corrosion[94].

In summary, research on microscale precipitates and nanoscale precipitates has yielded a unified 
understanding of the σ and χ phases, whereas the knowledge of nanoscale precipitates, such as the G phase, 
α phase and α’ phase, is still lacking. Transmission electron microscopy (TEM) has been adapted to trace the 
initiation sites and propagation tendency in austenite stainless steel and got good results on Cu-rich phases 
and MnS[97]. This technology is promising in studying the pitting corrosion related to nanoscale precipitates 
in duplex stainless steel. The second tendency is from static research to dynamic research. The precipitation 
growth process of secondary phases leads to the diffusion of alloying elements, which affects the pitting 
corrosion resistance. Moreover, research on the surface passive films of the precipitates is still lacking. 
Current research has reported that TiB2 nanoparticles help suppress pitting initiation, because it is easier to 
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Figure 8. The proposed pitting corrosion mechanisms of the precipitants. (A) When secondary phases are enriched in chromium or 
molybdenum, a surrounding depleted zone is formed. The passive film at the depleted zone is weak or absent. Pitting corrosion 
occurred at the Cr-depleted zone. This theory is applicable to σ phase, χ phase and CrN. (Reproduced with permission[87]. Copyright 
2014, Elsevier). (B) Cathodic Cr-enriched secondary phases surround anodic Cr-depleted phases. The micro-galvanic corrosion induces 
pitting corrosion in the Cr-depleted phase. This theory has been recently proposed and is applicable to α and α’ phases. (Reproduced 
with permission[94]. Copyright 2022, Elsevier). (C) A large strain field is generated around the square precipitate, which promotes the 
initiation of pitting corrosion preferentially at this location. (Reproduced with permission[96]. Copyright 2020, Elsevier). This opinion has 
been proposed to interpret the pitting corrosion around the G phase, which is still under discussion.

passivate[98]. This research indicates that the passive film on the precipitates is meaningful for further 
understanding the role of precipitates in pitting corrosion.

ENVIRONMENTALLY-ASSISTED CRACKING
The main causes of EAC in duplex stainless steels are chloride-induced stress corrosion cracking, hydrogen-
induced stress cracking, and sulfide stress cracking, which was deduced from the failure investigation in the 
Introduction Section. These failures are caused by a combination of the anodic dissolution mechanism and 
the hydrogen embrittlement mechanism. Additionally, the stacking fault energy of the austenite phase is 
significantly lower than the ferrite phase. Dislocations cross-slip more easily in austenite. Therefore, 
dislocations move differently between the phases. This causes the crack to propagate in different ways 
between the phases. Nevertheless, there is a lack of discussion on this important topic.
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Environmentally assisted cracking (EAC) is the main failure cause in duplex stainless steel. EAC is caused 
by the combined effects of materials, stress, and a corrosive environment[99]. At the mesoscopic scale, the 
suggested mechanisms include: (1) The anodic dissolution mechanism, which suggests that the nucleation 
and propagation of cracks result from the preferential dissolution of atoms at the crack tip[100]; (2) The 
adsorption-induced dislocation emission theory, where absorbed ions reduce the bonding force of the 
atoms at the crack tip, which promotes dislocations nucleation. Dislocations connect the holes, thereby 
inducing crack propagation[101]; (3) The weak bond theory, where hydrogen atoms generated by the 
electrochemical reaction are adsorbed at the crack tip. Hydrogen reduces the bonding force between the 
atoms at the crack tip and promotes crack propagation[102]; (4) Hydrogen promotes local plastic deformation 
theory. Hydrogen promotes the movement of dislocations in the plastic zone. Therefore, slip/microvoids 
accumulate in the local plastic deformation zone and the crack propagates[103]; and (5) The membrane 
rupture theory, which assumes that the crack tip moves because the brittle product film at the crack tip 
ruptures under the action of an external force[104].

This section reviews the mechanisms and the recent studies on the main type of failures [Figure 9][105-109]. 
Overall, research on the EAC mechanism in duplex stainless steels is still lacking. The current research 
mainly focuses on how environmental variables affect EAC susceptibility.

Chloride-induced stress corrosion cracking
Although duplex stainless steel is more resistant to stress corrosion cracking than austenitic stainless steel, it 
still suffers from chloride-induced stress corrosion cracking under certain conditions[4], which include 
seawater and alkaline environments[110]. The cracking mechanism of chloride-induced stress corrosion 
cracking is associated with ferrite dissolution and hydrogen embrittlement[105]. The mechanism states that in 
the chloride-containing environments, chloride ions penetrate the passive film of duplex stainless steel 
[Figure 9A1 and A2]. Owing to the poor stability of the passive film, pitting corrosion is preferentially 
initiated in the ferrite phase. An autocatalytic effect occurs at the bottom of the pits, which hinders the 
repassivation of the matrix [Figure 9A3][105]. Under the action of stress, cracks initiate at the bottom of the 
pits. Distinct chloride-induced cracks are branched. When cracks propagate into the austenite phase, they 
are arrested [Figure 9A4][105]. Therefore, the cracks mainly propagate along the ferrite/ferrite boundaries and 
austenite/ferrite phase boundaries.

Wu et al. reported that the sensitivity of 2,205 duplex stainless steel in a simulated marine atmosphere 
increases with a decrease in the pH, and the main control mechanisms are the anodic dissolution 
mechanism and the hydrogen embrittlement mechanism[111]. The susceptibility of 2,101 duplex stainless 
steel increases with increasing temperature, then decreases when the temperature is above 50 °C[106]. This is 
because high temperatures intensify the anodic dissolution and weaken the hydrogen embrittlement[106]. The 
addition of 5,600 ppm of nitrate prolongs the rupture time of 2,507 duplex stainless steel in 30 wt.% MgCl2 
by nine-fold because it can reduce the adsorption sites of chloride ions[112].

The crack propagation resistance of ferrite is weaker than that of austenite[113]. However, some researchers 
believe that the anodic dissolution crack initiation in ferrite is not due to pitting corrosion. Wickström 
suggested that the chloride-induced cracks in ferrite in water droplet evaporation experiments were due to 
surface dealloying[114]. Not all circumstances make the ferrite more prone to chloride-induced stress 
corrosion cracking. For example, Örnek found that the austenite in 2,205 duplex stainless steel suffers from 
chloride-induced stress corrosion cracking in the drop test[115].
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Figure 9. The mechanisms of (A1-A4) chloride-induced stress cracking, (B1-B4) hydrogen-induced stress cracking (C1-C4) and sulfide 
stress cracking. (A1) In chloride-containing environments, chloride ions penetrate the passive film of the duplex stainless steel. (A2) Due 
to the poor stability of the passivation film, pitting corrosion is preferentially initiates in the ferrite phase, and the autocatalytic effect 
occurs at the bottom of the pits, which hinders the repassivation of the matrix and initiates cracks under the action of stress. The crack 
is branched and stops when it propagates into the austenite phase. The crack propagates along the ferrite and austenite/ferrite phase 
boundaries. (A3) Three-dimensional pitting corrosion on the surface of the duplex stainless steel. (Reproduced with permission[105]. 
Copyright 2021, Elsevier). (A4) The crack blunts when it reaches the austenite phase and propagates along the ferrite and phase 
boundaries. (Reproduced with permission[105]. Copyright 2021, Elsevier). (B1) Hydrogen atoms diffuse and accumulate at the phase 
boundaries. (B2) Cracks initiate in the ferrite phase and ferrite/austenite phase boundaries and propagate in a zig-zag manner. 
Hydrogen promotes dislocation slip in austenite. (B3) Hydrogen accumulates at the ferrite/austenite boundaries (Reproduced with 
permission[107]. Copyright 2022, Elsevier). (B4) Both cracked ferrite and austenite exhibit brittle fracture characteristics. (Reproduced 
with permission[108]. Copyright 2006, Elsevier). (C1) In sulfide environments, the passivation film dissolves and a layer of sulfide is 
formed on the surface. The surface is partially acidified, and the acidification effect produces corrosion. (C2) Corrosion pits are formed 
in the ferrite phase. The reacidification and the autocatalytic effects generate hydrogen. Cracks initiate in the ferrite phase. Hydrogen 
generated at the corrosion product/substrate interface also preferentially diffuses to the phase boundaries and initiates cracks. (C3) A 
sulfide corrosion product film forms on the surface of the sample, and the ferrite phase preferentially dissolves. (Reproduced with 
permission[106]. Copyright 2014, Elsevier). (C4) Secondary cracks preferentially initiate at the phase boundaries and ferrite (Reproduced 
with permission[109]. Copyright 2006, Elsevier).

Hydrogen-induced stress cracking
Hydrogen-induced stress cracking mainly occurs under the conditions of the low cathodic protection 
potential and the deep-sea environment[116]. The mechanism is as follows. Hydrogen atoms diffuse and 
accumulate at the phase boundaries [Figure 9B1 and B3][107]. The decohesion effect of hydrogen causes the 
boundaries and planes to crack more easily [Figure 9B2]. A combination of the applied stress and the 
residual stress cause the specimen to crack. The cracks initiate in the ferrite phase and at the ferrite/
austenite phase boundaries [Figure 9B4][108,117],which then propagate in a zig-zag manner[108].
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Hydrogen charging in the pre-strained duplex stainless steel can induce dislocation multiplication[118]. 
Hydrogen can cause more obvious lattice deformation in austenite than ferrite[119]. Further studies 
interpreted this phenomenon by stating that hydrogen causes slip planarity and martensite formation in 
austenite[120,121]. Larsson et al. reported that hydrogen absorption causes compressive strains without 
stress[122]. This may be due to the expansion effect after austenite accommodates more hydrogen atoms.

The solubility of hydrogen atoms in the ferrite phase is significantly lower than that in austenite, whereas 
the diffusion rate in ferrite is considerably faster than that in austenite. Therefore, the ferrite phase is more 
prone to cracking during hydrogen embrittlement[123]. The remarkable role of the phase boundaries in 
hydrogen-induced stress cracking was recently recognized. The binding energies of phase boundaries, 
ferrite boundaries and austenite boundaries are 43.6, 26.5, and 13.5 kJ/mol, respectively[107]. Wu et al. used 
experiments, numerical simulations, and theoretical analysis to demonstrate that the phase boundaries are 
not only strong hydrogen traps but also act as fast hydrogen diffusion pathways[107].

Sulfide stress cracking
Sulfide stress cracking is common in the petrochemical industry. The occurrence of sulfide stress cracking is 
related to the dissolution of the passive film, sulfide formation, localized corrosion, and hydrogen 
embrittlement[124]. In the sulfide environment, the passivation film dissolves, and a layer of sulfide is formed 
on the surface[124]. The surface is partially acidified, and the acidification effect results in corrosion 
[Figure 9C1 and 9C3][106]. Corrosion pits are then formed in the ferrite phase. The reacidification and the 
autocatalytic effects generate hydrogen atoms. Cracks initiate in the ferrite phase [Figure 9C2]. Hydrogen 
atoms generate at the corrosion product/substrate interface also preferentially diffuse to the phase 
boundaries and initiate cracks [Figure 9C4][109].

Zucchi reported that adding sulfide to seawater increases the cracking sensitivity of 2,205 duplex stainless 
steel in neutral seawater[108]. The main control mechanism is the hydrogen embrittlement mechanism. The 
sensitivity of 2,101 duplex stainless steel after adding 10-3 M thiosulfate to a 20 wt.% NaCl environment is as 
high as 40%, but when the pH is increased to above 4.5, 2,101 is not sensitive to 10-2 M thiosulfate[106]. This 
indicates that the sulfide stress cracking is closely related to the acidification effect. The σ phase, which 
preferentially precipitates in the ferrite phase, also easily becomes the initiation point. The σ phase may 
crack first and the crack spreads along the interface between the ferrite phase and the σ phase[125].

CONCLUSIONS
This article first summarizes the failures in the last 20 years and identifies the main corrosion-related types 
leading to failures of duplex stainless steels. Then the study on the formation and degradation of passive 
films is reviewed. The mechanisms by which the alloying elements and microstructure affect the pitting 
corrosion are summarized. Finally, the academic progress of EAC is reviewed. The main conclusions are as 
follows.

(1) Among the reported failures, pitting corrosion and chloride-induced stress corrosion cracking are the 
main causes. Sulfide stress cracking, Hydrogen-induced stress cracking, MIC, selective corrosion and 
crevice corrosion are other failure causes. Therefore, academic studies should focus on the causes of such 
failures.

(2) The evolution of passive films after immersion in water can be roughly divided into three-stage, namely, 
the nucleation, rapid growth, and stable growth stages. The rupture process of the passive film is a 
continuous metal oxidation process rather than a sudden rupture. The film structure and composition 
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change simultaneously during the breakdown process.

(3) The film structure and film thickness of ferrite and austenite are very similar, whereas the chemical 
composition differs. Environment variables hardly change the double-layer structure of the passive film, but 
they change the overall thickness, oxide ratio, and defect concentration.

(4) The influence mechanisms of the alloying elements on pitting corrosion are summarized as the 
stabilization, ineffective, soluble precipitates, soluble inclusions, insoluble inclusions, and wrapping 
mechanisms. When the state of existence of the same alloying element changes, the influence mechanism 
varies.

(5) In the chloride-containing environment, ferrite is more prone to pitting corrosion than austenite. 
However, reversion of the pitting corrosion resistance occurs when a sufficiently large deformation is 
applied to duplex stainless steel. This is attributed to the greater number of defects generated in austenite.

(6) Three theories can be used to interpret the pitting corrosion mechanism of precipitants, namely (1) the 
Cr-depletion theory suggests that Cr-depleted zones surrounding precipitates cause pitting corrosion; (2) 
the microgalvanic theory proposes that the microgalvanic effect between Cr-enriched phase and Cr-
depleted phase causes pitting corrosion; and (3) the high-stress field theory suggests that the high-stress 
field around the precipitates causes pitting corrosion.

(7) In chloride-induced stress corrosion cracking, chloride-induced cracks always initiate at corrosion pits 
and blunt upon contact with the austenite phase. In hydrogen-induced stress cracking, phase boundaries are 
not only strong hydrogen traps but also fast hydrogen diffusion pathways. The occurrence of sulfide stress 
cracking is closely related to the acidification effect of sulfide.

PROSPECTS
Owing to its high corrosion resistance, low economic cost, and good mechanical properties, duplex stainless 
steel is an ideal material for constructing future industrial societies. However, research on the corrosion of 
duplex stainless steel is still lacking. This review proposes important scientific issues and promising research 
directions in recent years.

(1) Studies on passive film formation are still lacking. The difference between the two phases at the micro-
nanoscale and the longitudinal growth process of the passivation film from the cross-sectional perspective is 
still unclear. The effect of the cathodic potential on the passive film is still unclear. Therefore, it is necessary 
to use in situ scanning tunneling microscopy, high-resolution transmission microscopy, and theoretical 
model calculations to further explore this. Researchers need to pay more attention to the diffusion of 
elements along the phase boundaries.

(2) Studies on the nucleation and repassivation process of metastable pitting and the initiation process of 
submerged pitting corrosion are still lacking. Therefore, it is necessary to use in situ scanning tunneling 
microscopy and neutron scattering technology to study this. It is also necessary to perform quasi-in situ 
experiments, such as SKPFM and GIXRD, to understand these phenomena.

(3) The detailed mechanism of alloying elements to improve pitting corrosion still needs to be clarified 
because the alloying elements may play different roles in different stages of pitting corrosion. The coupling 
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law of more than two elements in pitting corrosion still needs to be explored. Therefore, it is necessary to 
use electrochemical corrosion combined with a pitting corrosion model to study this.

(4) Studies on the EAC of duplex stainless steels are not sufficient compared to the proportion of failures it 
has caused. The apparent regularity and microstructural mechanism of alloying elements on EAC are still 
unclear. Therefore, materials computing, metallurgy and electrochemistry should be used to study this and 
propose theoretical models.

(5) Duplex stainless steels are increasingly being used in a variety of applications. Therefore, it is necessary 
to study their corrosion behavior and mechanisms in more practical applications. Based on this, new types 
of corrosion-resistant, economical and high-strength duplex stainless steels should be developed.
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