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Abstract
The intratumoral heterogeneity orchestrated by the tumor intrinsic and extrinsic mechanisms enable cancers to 
persist and spread notwithstanding the use of aggressive interventional therapies. The heterogeneity is revealed at 
multiple levels - at the level of individual tumor cells, in the cellular composition of tumor infiltrates and in the chemical 
microenvironment in which the cells reside. Deconvoluting the complex nature of the cell types present in the tumor, 
along with the homo and heterotypic interactions between different cell types can produce novel insights of biological 
and clinical relevance. However, most techniques analyze tumors at a gross level missing key inter-cell-type genotypic 
and phenotypic differences. The advent of single-cell sequencing has given an unprecedented opportunity to analyze 
the tumor at a resolution that not only captures the diversity of the cellular composition of a tumor but also provides 
information on the genetic, epigenetic and functional states of different cell types. In this review, we summarize the 
genesis of tumor heterogeneity, its impact on tumor growth and progression and their clinical consequences. We 
present an overview of the currently available platforms for isolation and sequencing of single tumor cells and provide 
evidence of its utility in precision medicine and personalized therapy.
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INTRODUCTION
A single cell is the ultimate denominator of a multicellular organism. In the progression of cancer, a single 
cell begins its journey to evolve into a malignant tumor cell and forms distinct subpopulations leading to 
intratumoral heterogeneity (ITH). Clonal diversity, the source of ITH, is the characteristics of all cancers 
and plays a critical role in cancer invasion, metastasis and development of resistance to targeted and non-
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targeted therapies[1-4]. Next-generation sequencing of bulk tumor tissues from many cancers has generated 
an unprecedented amount of multidimensional data bringing in novel insights into mechanisms of tumor 
initiation, progression and metastasis [Figure 1]. It has also unmasked the underlying deeper genotypic and 
phenotypic heterogeneity that exists between tumors belonging to the same cancer type. The ITH originat-
ing in the cancer genome can be revealed by deep exome and whole genome sequencing. However, tran-
scriptome data from a complex mixture of cells derived from bulk tumor tissues fail to accurately elucidate 
the ITH, requiring technologies to study tumors at a single-cell resolution. Over the past ten years, there has 
been extraordinary progress in the development and application of single-cell analysis in cancer research 
as evidenced by the rise in publications describing different aspects of single-cell sequencing to character-
ize tumors at a deeper level [Figure 1]. In this review, we first introduce the concept of ITH and its clinical 
implications. Next, we outline new technologies enabling single-cell analysis with high sensitivity and finally 
provide examples of their applications in uncovering new perspectives in cancer diagnostics and treatment. 
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Figure 1. Application of whole exome sequencing (WES) and single-cell sequencing (sc-sequencing) to cancer research. A: Overview 
of patient cases to which WES and sc-sequencing were applied to characterize different types of human cancers to understand ITH and 
tumor microenvironment. The various types of cancers include liver cancer, lung cancer, renal cell cancer, blood cancer, brain cancer, 
breast cancer, pancreatic cancer, colorectal cancer and ovarian cancer compiled from public databases; B: the number of publications 
reporting applications of either whole exome or single-cell sequencing to cancer patients within the recent ten years. The key words 
“exome/single-cell sequencing” and “cancer patients” were used for searching articles from NCBI

(bulk)



ORIGIN OF ITH
ITH was first described by Fidler et al.[5] more than 30 years ago in murine models as a single tumor consist-
ing of many cell subpopulations. However, this concept of heterogeneity in the composition of a tumor has 
now been expanded to include the genetic and molecular heterogeneity present within individual tumor 
cells and cells comprising the tumor microenvironment[6-9]. 

Genetic and epigenetic alterations
ITH arises as a result of both genetic and non-genetic changes in the tumor cells and the surrounding en-
vironment respectively [Figure 2][10]. Increased genetic instability as a result of mutations in DNA damage 
checkpoint control genes and DNA repair genes is one of the hallmarks of cancer and generates divergent 
clonal population of cells as the tumor grows over time[11,12]. With the significantly high rate of cancer cell 
divisions, events of random mutagenesis increase, leading to local and global genetic alterations, that influ-
ence the future course of tumor development and progression[13]. In addition, these genetic alterations create 
a hotbed for competition between clones driven by selection processes imposed by changes in the tumor mi-
croenvironment and by the use of therapies[14,15]. 

A vast majority of established driver mutations are clonal and arise early in the development of the tumor, 
however, subclonal de novo driver mutations may also arise in the later stages of tumorigenesis - to escape 
drug sensitivity and successful metastasis, for example[16]. In a recent UK-wide multi-center prospective lon-
gitudinal cohort study, “Tracking Renal Cell Cancer Evolution through therapy (TRACERx Renal)”, clonal 
phylogeny and evolutionary subtypes were elucidated by multi-region sampling on matched primary and 
metastasis biopsies from 100 renal cell carcinoma patients[17]. Subclonal driver mutations in the VHL and 
PBRM1 genes that were identified in the original tumor were absent in the widely disseminated metastatic 
tumor sites. Instead, these metastatic sites acquired loss of 9p and 14q mutations, suggesting that metastatic 
competence may not be driven by the founder driver mutations that established the primary tumor[17]. 

Tumor heterogeneity can also arise from epigenetic variations through DNA methylation that can profound-
ly modulate the open and closed conformation of chromatin in tumor cells, leading to gene expression al-
terations and phenotypic changes[18]. For example, the methylation status of the tumor suppressor gene CD-
KN2B can be used as a biomarker of response to treatment in multiple diseases[19]. However, heterogeneous 
methylation was observed in individual patients with acute myeloid leukemia, posing a challenge in using 
CDKN2B methylation as a biomarker[20]. Similarly, differential microRNA expression is known to affect the 
diversity of cellular phenotype within a single tumor by modulating the expression of target genes[21]. Sub-
clonal expression of microRNAs (miRNA-21, miRNA-34a, miRNA-125, and miRNA-126) in prostate cancer  
is associated with diverse patient outcomes[22].
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Figure 2. Origin of ITH. Upon certain oncogenic hits, some cells in the normal tissues undergo genetic alterations to generate cancer cells. 
ITH arises through clonal evolution in which cells are dictated by transcriptomic and epigenetic factors and the tumor microenvironment. 
Cancer clones (yellow) propagate and generate successive clones (green) which outcompete the ancestral ones
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Cellular composition of tumors
Cell types present in the tumor stroma, such as immune cells, fibroblasts, vascular cells play a critical role 
in shaping the composition of tumors by secreting cytokines growth factors and extracellular matrix that 
changes the stiffness of the tumor tissue[23]. In a tumor microenvironment infiltrated by CD8 T cells at the 
tumor site is associated with increased overall survival, whereas myeloid-derived suppressor cells (MDSCs) 
possessing strong immune suppressive activity decreases overall survival[24]. The diversity of these func-
tionally different immune cell types creates a heterogeneous tumor microenvironment and regulate tumor 
growth, metastasis and treatment response[25]. In addition, the distribution and density of the vasculature 
impact the supply of nutrients and oxygen selecting for tumor cells with specific metabolic phenotypes fur-
ther contributing to tumor heterogeneity[26,27]. Tumor heterogeneity has a significant bearing on the manage-
ment of disease as summarized in the next section. 

CLINICAL IMPACT OF THE ITH
Resistance to therapy
The resistance of tumors to therapies is often attributed to the presence of rare drug-resistant clones in the 
tumor before therapy or appears after treatment. An example of clonal resistance was observed in patients 
with anaplastic lymphoma kinase (ALK gene) rearranged non-small cell lung cancer (NSCLC) post treat-
ment with ALK inhibitors[28]. Patients that developed drug resistance displayed a distinct spectrum of ALK 
resistance mutations in response to different generations of ALK inhibitors[28]. Particularly, ALKG1202R muta-
tion is highly enriched in resistant tumors after treatment with second-generation ALK inhibitors, highlight-
ing the significance of repeat biopsies and genotyping during the course of targeted therapy treatment[28]. 
In addition, studies investigating the mechanism of resistance of NSCLC tumors to EGFR tyrosine kinase 
inhibitors have revealed a variety of drug resistance mechanisms, including gatekeeper mutation T790M 
detected in > 50% of the EGFR TKI resistant tumors[29], amplification of MET receptor tyrosine kinase[30], 
activating mutation in PI3K pathway[31], and other uncharacterized mechanisms involving changes in the 
cellular phenotype. The appearance of a rare clonal population of tumor cells harboring drug resistance 
mutations or drug resistance phenotype can be captured by single-cell sequencing of the tumor and may 
not be discernible from whole tumor analysis, especially when present at a very low frequency. In an alter-
native model of drug resistance, resistant clones can be pre-existing in the tumor as a rare cell population 
and emerge post clearance of the drug-susceptible clones. In fact, in a study involving a cohort of 20 breast 
cancer patients, 8 out of 10 patients that did not show complete clearance of the tumor displayed unique so-
matic mutations in chemoresistant clones by single-cell sequencing. These mutations were pre-existing and 
were adaptively selected by the chemotherapy treatment[32]. It is possible to detect de novo or drug-induced 
resistant clones present at low frequency by ultra-deep exome sequencing, however, two critical pieces of in-
formation - number of cells harboring the mutation and the zygosity of the mutation - cannot be accurately 
assessed from the bulk sequencing.

Challenges in diagnostic and prognostic biomarker identification
Identifying clinically relevant diagnostic biomarkers are challenging given that the tumor is heterogeneous 
and diagnostic or prognostic biomarkers are not expressed uniformly in all cells and across longitudinal 
assessment periods [Figure 3]. For example, the divergent genetic landscape of metastatic cells can render 
biomarkers identified from primary tumors irrelevant [Figure 3][33]. 

In prostate cancer, ITH represents a major challenge for diagnostic and prognostic biomarker identifica-
tion. Enhanced DNA ploidy and loss of PTEN, a tumor-suppressor gene, are critical prognostic markers of 
prostate cancer[34]. In a clinical study of 304 patients who underwent radical prostatectomy, a significant dif-
ference in DNA ploidy classification and loss of PTEN expression was observed by analyzing all tumor areas 
in comparison to a single biopsy sample, suggesting that the heterogeneous chromosomal alterations com-
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promise the accuracy of histopathology analysis and confound disease prognosis[35]. Prognostic markers in 
ovarian cancer such as unique CpG methylation patterns have been suggested for progression-free survival 
as well as early disease recurrence following chemotherapy[36,37]. However, DNA methylation patterns are 
heterogeneous and occurs in both large and poorly defined genomic regions[20], posing a challenge in using 
CpG methylation as a biomarker. In a recent study by Rajaram et al.[38], a data-driven framework based on 
single-cell analysis has been reported that provides an estimate of the depth of sampling that may be mini-
mally required to cover the full range of phenotypic heterogeneity for accurate biomarker discovery. Based 
on the analysis of 215 single-cell features, three replicates were sufficient to capture the heterogeneity for 
many features if they were defined by clear biomarkers without background noise[38]. For example, nuclear 
staining (the number of nuclei staining by DAPI: an easily detectable feature) requires 1-2 cores to capture 
the heterogeneity in > 90% of the patients, while 10 cores or more are needed to assess the heterogeneity of 
YAP transcription factor expression (a sparsely detectable feature)[38]. Therefore, both the complexity of the 
feature and the biomarkers that define the feature determine the number of samples required for studying 
heterogeneity[38]. 

UNCOVERING ITH BY SINGLE-CELL ANALYSIS
Single-cell analysis is a powerful tool to resolve ITH of solid tumors and to detect the genetic makeup of rare 
cancer cells such as circulating tumor cells (CTCs) to ultimately guide personalized treatment strategies. 
The sensitivity of detecting somatic variants or changes in gene expression at a single-cell level has improved 
dramatically over the years through the introduction of new technologies. Single-cell analysis workflow 
includes isolation of single cells, either from the tumor site or circulating tumor cells from the blood. Fol-
lowing tumor dissociation, single-cells can be obtained by serial dilution, flow cytometry or microfluidics 
technology and then sequenced at sufficient depth to capture the genetic changes.
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Figure 3. The clinical implications of tumor heterogeneity. Cancer diagnosis is commonly based on tumor biopsy, which is usually a 
small fraction of the total tumor mass and does not represent all subclones inside the tumor. Initial diagnosis is made based on the 
tumor biopsy. After the first-line treatment, dominant clones can be killed successfully whereas resistant clones persist and drive tumor 
progression. Metastasis may develop from the resistant clones that survive the initial treatment. New diagnosis needs to be made in 
order to apply the second-line treatment
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Single-cell isolation methods from solid tumors 
A major challenge in single-cell analysis is obtaining a viable cell sample from complex tumor tissues. Cur-
rent methods include mechanical or enzymatic dissociation of tissues followed by isolation of single cells. 
Once the tissue is processed, multiple techniques to isolate single cells can be implemented [Figure 4]. A 
more labor-intensive technique of laser capture microdissection (LCM) is also a viable approach for single-
cell isolation from sectioned tumor samples. One challenge for single-cell transcriptomics is the poor RNA 
quality extracted from archival tumor samples such as formalin-fixed paraffin-embedded (FFPE) samples[39]. 
However, with the Smart-3SEQ method , it is now feasible to perform single-cell RNA-seq on FFPE sam-
ples[39]. Additionally, recent advances using the SMART seq technology and cDNA synthesis methods using 

Figure 4. Different ways of single-cell isolation. A: Laser capture microdissection. A thermolabile polymer is placed on a tissue section 
on a glass slide. An infrared laser fires through the cap over the cells of interest to melt the film. The cell of interest adheres to the film, 
leaving the unwanted cells behind; B: fluorescence-activated cell sorting. A stream of single cells passes through an excitation laser beam 
and the fluorescent signal is analyzed by a multispectral detector. Single cells can be sorted into a 96 well plate; C: microfluidic-based 
single-cell isolation: i) An example showing a microfluidic device for single cell gene expression analysis (figure is adapted from White 
et al.[94,95], 2011): (1) loading of single cells; (2) capturing single cells; (3) reverse transcription; (4) PCR; ii) Gel Bead-in-EMulsions 
(GEMs) formation and barcoding of 10× Genomics single-cell sequencing platform (figure is adapted from 10× Genomics Inc). Single cell 
GEMs are generated by passing cells with enzyme mix, partitioning oil and 10× barcoded gel beads. After GEM formation, the gel bead 
is dissolved and the co-partitioned cell is lysed. Reverse transcription occurs inside GEMs and barcoded full-length cDNA is generated. 
After RT, the GEMs are broken and the cDNA is pooled prior to library preparation for sequencing
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random priming (SMART-Seq Stranded Kit, Takara Inc.) have been beneficial in extracting reliable gene 
expression information from poor quality RNA from FFPE samples.

Single-cell isolation by mechanical or enzymatic dissociation 
Conventionally, tumor tissues are dissociated into single cells by mechanical dissociation (e.g., meshing, 
trituration with a pipette/tip)[40-42] or by enzymatic dissociation[43-45] or a combination of both. Enzymes such 
as collagenase[41], DNase[46], trypsin[47] are commonly used for dissociating the cell-cell contacts and the ex-
tracellular matrix to generate single cell suspensions. The various dissociation methods may largely differ in 
their yield of viable cells[48,49], limiting their downstream applications. Therefore, tumor dissociation proto-
cols optimized for different tumor types is a key gap that needs to be addressed for high-throughput single-
cell analysis. 

Single-cell isolation by LCM 
To preserve the native properties of tumor cells shaped by the complex tumor microenvironment, LCM can 
be used to isolate tumor cells directly from sectioned tissues. It is a method to procure subpopulations of 
tissue cells under direct microscopic visualization by cutting away unwanted cells and obtain histologically 
pure cell population [Figure 4A][50]. A variety of downstream applications exist for microdissected cells such 
as DNA genotyping, RNA transcript profiling or cDNA library generation. Even though the majority of the 
studies take advantage of approximately 100-1000 dissected cells, LCM can also be used for single-cell isola-
tion directly[51-53].  

Isolation of rare CTCs 
Currently, tumor biopsies are obtained to establish the diagnosis and determine whether the predictive bio-
markers are consistent between the primary and the metastatic tumors. However, getting biopsies is invasive, 
expensive and not always feasible. Additionally, it is difficult to get biopsies of metastatic lesions or get repeat 
biopsies for difficult to access tumors. Analysis of disseminated tumor cells (DTCs) is a useful alternative to 
tumor biopsy in clinical setting for patient stratification, therapy selection and monitoring drug resistance 
during the course of treatment[54]. DTCs originate from the primary or metastatic tumors, extravasate into 
the bloodstream or lymphatics and carry genomic profiles of tumors from which they originate[55,56]. Dis-
seminated cancer cells are usually detectable as CTCs in the circulation[54]. A small fraction of them that 
have reached to a secondary organ such as the bone marrow and lymph nodes is termed as DTCs[54]. Though 
for certain cancers, the presence of DTCs in distant organs is a strong predictive marker for cancer metasta-
sis, the challenge with DTC isolation due to the invasive procedure is a deterrent in studying this population 
by single-cell sequencing. On the contrary, CTCs circulating in patient blood has proved to be a valuable 
resource for diagnostic and prognostic biomarker discovery[57], although distinguishing a DTC from a pool 
of CTCs is challenging.

CTCs contain signatures of tumor heterogeneity and carry the spectrum of somatic mutations present in 
both the primary and metastatic lesions in different cancers[55,56,58]. Because conventional molecular analysis 
of whole tumors provides genotype/phenotype information of the dominant clones or aggregated informa-
tion of all clones, single-cell analysis of the CTCs is a potential solution to investigate heterogeneity. By iso-
lating and sequencing single CTCs in the blood, it is possible to measure somatic mutations that are present 
at both the primary and metastatic tumor sites without performing an invasive core biopsy[59,60]. Two types 
of isolation methods - microfluidic-based and immunoaffinity-based are used for capturing CTCs. 

Microfluidic-based cell isolation
The microfluidic platform can be used for single-step isolation of CTCs from unprocessed blood speci-
mens[61,62]. As whole blood flows through the CTC-chip, individual CTCs are captured onto the microposts 
coated with anti-EpCAM antibody. This type of microfluidic processing enables high yield of pure CTCs[63]. 
Subsequent studies demonstrated the ability and reliability to isolate CTCs from patients with metastatic 

Shi et al . J Cancer Metastasis Treat 2018;4:47  I  http://dx.doi.org/10.20517/2394-4722.2018.32                                Page 7 of 19



lung cancer using this CTC-chip to perform an EGFR mutational analysis[63]. An improved microfluidic 
CTC isolation platform, the herringbone (HB)-chip, is also developed by the same group[64]. The HB-chip 
uses calibrated microfluidic flow patterns to drive cells to come in contact with the antibody-coated walls 
of the device, thereby reducing cell collisions and improving target cell capture efficiency. A commercial 
microfluidic circuitry chip DEPArray System (Menarini Silicon Biosystems, Inc.) containing an array of in-
dividually controllable electrodes to create a dielectrophoretic (DEP) cage around each cell for single CTC 
isolation is also available[65]. Besides isolation of CTCs from blood, the microfluidic platform can also be 
used for single-cell isolation from other tissues[66,67]. For example, an innovative workflow using DEPArray 
system was established to examine tumor heterogeneity using FFPE samples, providing a solution for genetic 
analysis using minute archival clinical samples[68].

Immunoaffinity-based cell isolation
The CellSearch Circulating Tumor Cell Kit (Menarini Silicon Biosystems, Inc.) is based on ferrofluid- and 
fluorochrome-couple antibodies with high binding affinities for the EpCAM antigen of CTCs. After immu-
nomagnetic capture and enrichment, CTCs in peripheral blood are detected and enumerated as measured 
by fluorescence intensity. ITH has been reported for PIK3CA and TP53 mutations in metastatic breast cancer 
using a combination of CellSearch and DEPArray technologies[69,70]. CTCs can also be purified and enriched 
using an immunomagnetic enrichment device termed MagSweeper[71]. Using this technique, high level of 
heterogeneity among individual CTCs was detected in the blood of metastatic breast cancer patients[72]. 

Isolation of single cells using Fluorescence-activated cell sorting
Flow cytometry using fluorescence-activated cell sorting is a powerful method of isolating single cells that 
share the same marker from liquid suspensions. Cells passing through the lasers emit optical signals en-
abling their separation and capture from other cells that lack the signal[73,74]. Single cells can be sorted indi-
vidually onto a 96 well plate format [Figure 4B]. Alternatively, a serial dilution can be performed using the 
sorted cell suspensions into a 96 well plate such that each well contains a single cell. Downstream sequenc-
ing can be performed using a 96 well plate format. 

Isolated single cells can be interrogated by a variety of genomic technologies for deeper genotype-phenotype 
characterization. Significant technological advancement summarized in the next section is producing novel 
insights into the biology of the disease and applications in the clinic.

Downstream analysis of single cells
Single-cell genomics
The work-flow of single-cell sequencing involves amplification of genomic DNA or RNA transcripts to pro-
duce enough material for library construction. The earliest method of sequencing DNA from single-cells 
combined flow-sorting cells by DNA ploidy followed by single-nucleus sequencing by degenerative-oligonu-
cleotide-PCR technique[74,75]. However, this method failed to generate genome-wide single nucleotide variants 
due to low coverage of ~6%[74,75]. A non-PCR-based multiple-displacement DNA amplification method using 
Phi29 enzyme and random hexamers [Table 1] produced good genome coverage with high sequence fidelity 
in multiple single-cell studies[58,76-79]. Another amplification method - multiple annealing and looping-based 
amplification cycles (MALBAC) reduced whole-genome amplification bias and improved genome coverage 
[Table 1]. In the MALBAC method, limited isothermal amplification using degenerate primers, followed by 
PCR amplification produced 93% genome coverage for a single cell and both copy-number variations and 
single nucleotide variations were detected[80]. Amplification bias is a serious limitation in single-cell sequenc-
ing, which can reduce the accuracy of genomic information from single-cell genomes[81]. Statistical models 
have been developed to calibrate allelic bias in single-cell whole-genome amplification to reduce the sequenc-
ing artifacts[81].  

Page 8 of 19                                 Shi et al . J Cancer Metastasis Treat 2018;4:47  I  http://dx.doi.org/10.20517/2394-4722.2018.32



Single-cell transcriptomics
The first study of single-cell RNA transcriptome of mouse blastomere detected novel splice junctions and 
expression of more genes than previous microarray studies[82]. However, this method was found to have a 
strong 3’ bias due to the inefficiency of first-strand cDNA synthesis by reverse transcriptase. To overcome 
this problem, Smart-seq technique was developed using MMLV reverse transcriptase with template switch-
ing activity [Table 1][83,84]. This Smart-seq method utilizes an intrinsic property of MMLV to add three to 
four cytosines specifically to the 3’ end of the first cDNA strand, which is subsequently used to anchor a uni-
versal PCR primer for amplification[85]. In a single-cell RNA-seq of CTCs from melanoma patients, Smart-
seq has improved read coverage across transcripts despite increased noise in gene expression estimates[83]. 
Moreover, distinct gene expression patterns including candidate biomarkers for melanoma CTCs were re-
ported in this study[83].

In vitro transcription (IVT) -based linear RNA amplification uses T7 RNA polymerase to produce tran-
scripts with high specificity and low error rate [Table 1], it has the drawback of lower efficiency and is biased 
towards the 3’ end of input transcripts[86]. CEL-Seq method of pooling cells and libraries reduced some of 
the limitations of IVT and was used to capture differential gene expression in two-cell stage embryo of C. 
elegans[87,88]. 

The third strategy used Phi29 DNA polymerase for cDNA library generation from single cells [Table 1][89,90]. 
RNA is reverse transcribed, circularized and then amplified using Phi29 polymerase which preserves full-
length transcript coverage. Additionally, random primers can be incorporated to generate cDNA, making 
this method suitable for prokaryotes[89]. 

A combined method of single-cell isolation and single-cell sequencing
Microfluidic devices for single-cell isolation coupled with single-cell RT-qPCR or whole transcriptome has 
been developed by multiple groups[91-93]. A good example is a microfluidic device developed by White et al.[94,95] 
capable of performing high precision RT-qPCR measurements of gene expression from hundreds of single 
cells per run. This device combines cell loading, cell lysis, reverse transcription and quantitative PCR in one 
cell processing unit [Figure 4Ci][94,95]. Once cells are loaded, a single cell is trapped in a cell capture chamber 
[Figure 4Ci][94,95]. After cell lysis, the transcript target is reverse transcribed before being injected into the 
PCR chamber[94]. Master mixes for RT and qPCR are loaded onto the common feed channel sequentially to 
enable each reaction step. A similar device, featuring additional cell processing chambers and sample elu-
tion capabilities has been released as a commercial product (Fluidigm C1) in 2012. Since then, an increasing 
number of studies investigated ITH using Fluidigm’s microfluidic device[96-98].

Efforts to reduce amplification bias by incorporating unique molecular identifiers before transcriptome am-

Table 1. Techniques for single-cell analysis

   Methods                Example Advantage Disadvantage Ref.
Genome DOP-PCR High-throughput,

high coverage
Amplification bias,
allelic dropout

[74,75]

MDA High-throughput,
even coverage

Amplification bias,
allelic dropout

[58,76-79]

MALBAC High-throughput,
even coverage

Amplification bias,
allelic dropout

[80]

Transcriptome      MMLV Smart-seq Full-length transcript,
amplify quickly

Weak 3’ bias [83,84]

IVT CEL-Seq Full-length transcript,
specificity, ratio fidelity

3’ bias,
low efficiency

[87,88]

Phi29
DNA polymerase

Full-length transcript,
 high efficiency, low bias

No strand specificity [89,90]

MDA: multiple-displacement DNA amplification; DOP-PCR: degenerative-oligonucleotide-PCR; IVT: In vitro  transcription
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plification are ongoing[99]. A novel technique termed Drop-seq uses the microfluidic chamber to isolate single 
cells followed by labeling RNA of individual cells with a different barcode, allowing pooling of cDNA during 
sequencing thereby greatly improving the multiplexing efficiency[100]. Applying Drop-seq to mouse retinal 
bipolar cells resulted in the identification of different types of neurons by matching molecular expression to 
cell morphology[101]. A similar technique was commercialized by 10× Genomics Inc [Figure 4Cii] in 2016. 
The 10x platform applies unique barcodes to separately index each cell by partitioning thousands of cells 
into Gel Bead-in-Emulsions. Libraries are generated and sequenced and the 10x barcodes are used to associ-
ate individual reads back to the individual cells. The platform can profile up to 10,000 cells from a complex 
mixture of different cell types. 

APPLICATIONS OF SINGLE-CELL SEQUENCING 
Recent technical advances have enabled generation of unprecedented amount of information on genomics 
and transcriptomics at the single-cell level [Table 2]. Compared to bulk transcriptomics data obtained from 
tumor tissues, single-cell RNA-seq allows capturing of the gene expression profile from individual cells of 
heterogenous origin, which is a significant advantage over bulk sequencing that captures the average gene 
expression of a sample.  Secondly, for the samples with limited amount of material, single-cell analysis is a 
good alternative to characterize the genotype. Taking CTCs for an example, mutations identified in CTCs 

Table 2. Overview of single-cell studies on analyzing ITH

Tumor type Sample type Method Description Ref.
Colorectal cancer CTC DNA-seq Mutation profiling, clonal evolution [55]

Prostate cancer CTC DNA-seq Genetic lineage [58]

Breast cancer CTC RNA-seq Transcriptome profiling [72]

Breast cancer Primary tumor DNA-seq Clonal diversity [75]

Melanoma CTC RNA-seq Transcriptome profiling [83]

Leukemia Primary tumor DNA-seq Mutation profiling, clonal evolution [97]

Glioblastoma multiforme Primary tumor RNA-seq Clonal evolution [106]

Acute myeloid leukemia Primary tumor DNA-seq Mutation profiling, clonal evolution [105]

Breast cancer Primary tumor DNA-seq Copy number evolution, clonal evolution [74]

Breast cancer Primary tumor DNA-seq Copy number evolution, clonal evolution [77]

Acute myeloid leukemia Primary tumor DNA-seq Clonal evolution [109]

Kidney cancer Primary tumor DNA-seq Mutation profiling [76]

Bladder cancer Primary tumor DNA-seq Mutation profiling, clonal evolution [110]

Colon cancer Primary tumor DNA-seq Clonal evolution [111]

Acute myeloid leukemia Primary tumor DNA-seq Clonal evolution [112]

Chronic lymphocytic leukemia Primary tumor DNA-seq,
RNA-seq 

Genotype-phenotype relationship 
clonal evolution, mutation profiling

[113]

Lung cancer CTC DNA-seq Copy number evolution [56]

Pancreatic ductal adenocarcinoma CTC RNA-seq Phenotype characterization [115]

Glioblastoma Primary tumor RNA-seq Transcriptional profiling,
phenotype characterization

[43]

Glioblastoma Primary tumor DNA-seq EGFR evolution [116]

B cell leukemia Primary tumor DNA-seq Karyotype heterogeneity [117]

Myeloproliferative neoplasm Primary tumor DNA-seq Mutation profiling, clonal evolution [78]

Melanoma CTC DNA-seq Mutation profiling, copy number evolution [118]

Breast cancer CTC RNA-seq Transcriptome profiling [120]

Various cancers Primary tumor RNA-seq TCR repertoire analysis [124,126]

Liver cancer Primary tumor RNA-seq Characterization of T cell functional states [130]

Breast cancer Primary tumor RNA-seq Tumor microenvironment characterization [132]

Prostate cancer CTC RNA-seq Heterogeneity in signaling pathways [136]

Prostate cancer CTC DNA-seq Copy number evolution [137]

Breast cancer Primary tumor DNA-seq,
RNA-seq

Clonal evolution, transcriptome profiling [32]

ITH: intratumoral heterogeneity; CTC: circulating tumor cell
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are also present in the primary tumor and may be found in the metastatic lesions[55], suggesting that single-
cell analysis on CTCs is an effective option to non-invasively monitor cancer progression and predict meta-
static risk. Last but not the least, single-cell analysis facilitates researchers to dissect tumor heterogeneity at a 
much higher resolution than before. For example, the degree of karyotypic anomalies in human cancer is as-
sociated with tumor progression and therapeutic response to cancer treatment[102]. However, current karyo-
typic analysis methods rely on a small fraction of dividing mitotic subpopulations in the sample and do not 
provide in-depth information on copy number variations (CNV)[102,103]. Single-cell whole genome sequencing 
offers a significant advantage over traditional methods in analyzing karyotypic anomalies and CNVs at a 
much higher resolution. 

Understanding tumor evolution
Tumor evolution is a dynamic process and describes the emergence of cancer cell subpopulations under 
environmental pressure. As the tumor grows, each generation of cells acquire novel somatic mutations that 
provide cells with survival advantages thereby determining the overall fitness of the clonal population[104]. 
Waves of clonal expansion and contraction driven by changes in the tumor microenvironment govern the 
life cycle of a tumor. Single-cell sequencing can potentially identify low abundance clones carrying driver 
mutations, which can be further leveraged to refine therapeutic strategies. Although low abundance driver 
mutations are possible to detect by deep exome sequencing, the fraction of cells carrying the mutation, or 
the zygosity of the change (relevant for loss of function mutations in tumor suppressor genes) are hard to es-
timate without single cell sequencing. A computational approach to map single-cell mutational profile from 
exome sequencing was successfully used to chart the chronological acquisition of mutations and create a 
phylogenic map of tumor evolution in both glioblastoma multiforme and secondary acute myeloid leukemia 
(AML)[105,106]. A similar analysis in breast cancer identified three clonal populations in the primary tumor 
of which only one clone was present in the metastatic lesion[74]. This observation supports the hypothesis 
that rare clones present in the primary tumor harbor genetic signatures of metastasis even before they have 
spread and colonized distant sites[74,107,108]. In a follow-up breast cancer study, aneuploidy rearrangements 
were shown to occur early in tumor evolution, which remained highly stable as the tumor grew, whereas, 
point mutations generated clonal diversity[77]. A similar pattern is observed in lymphoblastic leukemia pa-
tients where recurrent translocations appear earlier than structural nucleotide variants[109]. This suggests that 
large structural alterations offer selective advantage early during tumor growth followed by accumulation of 
mutations producing clonal diversity. This is supported by the finding that subclonal populations arise more 
frequently in tumors with high mutational burdens such as bladder and colon cancer, but not in tumors with 
low mutational burden such as renal cell carcinoma[76,110,111]. A clonal progression of multiple mutations was 
mapped in hematopoietic stem cells of AML patients, suggesting the clonal evolution of AML genomes from 
founder mutations[112]. An interesting finding from single-cell analysis is that phenotypic diversity fails to re-
capitulate genotypic diversity detected in subclones strongly implicating that a large proportion of genotypic 
variation may lack functional consequences, appearing and disappearing without contributing to tumor 
evolution[113].

Disease diagnosis and therapeutic stratification of patients
Modern cancer treatment relies heavily on accurate molecular and immuno/histopathological tissue analysis 
of needle biopsies or surgically resected tissues for diagnosis. Tumor heterogeneity often confounds accuracy 
of disease diagnostics by subsampling a subset of tumor cells that may not represent the whole tumor. This 
calls for obtaining multiregional and longitudinal samples to guide therapeutic intervention, which is often 
not routine.  High-resolution single-cell analysis of tumor samples or CTCs can aid in refining diagnostic 
parameters and patient stratification. 

In a single-cell sequencing study of CTCs from metastatic lung cancer, patients who share the same subtype 
of lung cancer displayed similar patterns of copy number variations in their CTCs, providing a potential 
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biomarker of CTC-based cancer diagnostics[56]. In pancreatic cancer, pancreas epithelial cells can be pres-
ent in the blood at pre-cancerous stages in pancreatic ductal adenocarcinoma patients[114]. In another study, 
single-cell sequencing analysis on CTCs obtained from pancreatic ductal adenocarcinoma patients identi-
fied a macrophage-pancreatic tumor cell fusion product with high proliferative and metastatic potential[115]. 
These studies suggest that early detection of these pancreatic epithelial cells in the blood stream can serve as 
an important diagnostic tool for pancreatic cancer detection[114,115].

The treatment of glioblastomas, an aggressive type of brain tumor has benefited from single-cell sequenc-
ing because of a high degree of tumor heterogeneity harboring a diverse population of cells with a large 
spectrum of stemness, differentiation states, and variable proliferative capacity[43]. By applying single-cell 
sequencing to EGFR-amplified glioblastomas, novel EGFR truncation variants were identified[116]. In vitro 
and in vivo functional studies revealed that a specific EGFR variant (EGFRvII, deletion of exons 14 and 15) 
was sensitive to EGFR inhibitors, which are currently in clinical trials[116]. In chromosomally unstable B cell 
leukemia patients, different degrees of karyotypic abnormalities were detected by single-cell whole genome 
sequencing, which bulk sequencing failed to detect. Because karyotypic abnormalities associate with poor 
clinical outcome in multiple cancers[102], the degree of karyotypic anomalies assessed by single-cell sequenc-
ing can be utilized as an important readout for stratifying patient risk[117]. Single-cell analysis has identified 
novel mutations in JAK2-negative myeloproliferative neoplasm such as SESN2 and NTRK1, chronic lympho-
cytic leukemia such as LCP1 and WNK1 and chromosomal abnormalities in melanoma such as chromo-
somal 12 amplification[78,113,118], opening up opportunities to target these neoplasms. For example, NTRK1 
encodes a tyrosine kinase receptor and inhibitors are available to target its NTRK1 gene fusions that results 
in constitutive activation of the kinase[119]. For patients who are JAK2 mutation negative but harbor NTRK1 
mutation, it is tempting to speculate that NTRK1 can be a target for the treatment of myeloproliferative neo-
plasm.

Disease monitoring and prognostic biomarkers
Cancer heterogeneity in part is driven by selection pressure that arises during drug treatment. Capturing 
this dynamic heterogeneity at the genetic and cellular composition level prior to, during, or post-treatment is 
crucial in assessing drug efficacy and predicting patient survival. Single-cell analysis is an extremely power-
ful tool to capture the dynamic events at a molecular level for disease monitoring and in predicting prognos-
tic biomarkers. Below are few examples of the application of single-cell sequencing in developing prognostic 
and predictive biomarkers. 

CTC analysis
Single-cell analysis of CTCs can provide prognostic markers in several cancers. Microfluidics-based RNA 
sequencing has aided identification of CTC clusters held together by the cell junction component plakoglo-
bin that mediate intercellular adhesion. Presence of high levels of CTC clusters over single CTCs correlated 
with poor prognosis indicating their role in the metastatic spread of cancer[120]. Indeed, heterogonous expres-
sion of plakoglobin in the primary tumor supports the evidence that tightly adhered groups of cells from 
the primary tumors serve as the precursors to CTC clusters in circulation. Thus, single-cell identification of 
plakoglobin-positive clonal cell populations of tumor cells in conjunction with the presence of CTC clusters 
in the patient blood is a potent prognostic marker of breast cancer metastasis[120].

TCR repertoire analysis 
Anti-tumor immunity is largely driven by antigen-specific CD8 T cells, which recognize tumor-derived 
neoantigenic peptides complexed with human leukocyte antigen also referred to as major histocompatibil-
ity complex (MHC) in mouse, to mount an anti-tumor immune response[121]. Adoptive cell therapy using 
autologous tumor infiltrating lymphocytes (TILs) has been shown to be effective for the treatment of mul-
tiple cancers[122,123]. The anti-tumor effects observed post T cell therapy are associated with the activation of 

Page 12 of 19                                Shi et al . J Cancer Metastasis Treat 2018;4:47  I  http://dx.doi.org/10.20517/2394-4722.2018.32



neoantigen reactive T cells[122]. To improve the efficacy of the T cell therapy, engineering TILs to express the 
neoantigen-specific TCR can be a promising next-generation immunotherapy drug[124]. However, to develop 
these engineered T cells, identifying paired sequences of both TCR a and b chains from the vast repertoire 
of TCRs is a challenge. One way to overcome this challenge is to perform, single-cell TCR profiling to ob-
tain paired TCR α/β sequence information[125]. Using patient samples, neoantigen specific CD8 T cells were 
clonally expanded in vitro and multiple paired TCR sequences were identified by single-cell analysis[124]. 
Importantly, the transduced T cells expressing TCRs recognized the neoantigen presented by autologous 
antigen-presenting cells[124]. Another study using single-cell TCR repertoire analysis revealed that clonally 
expanded CD8 T cells were antigen-specific and showed cytotoxic activity against tumors in mouse mod-
els[126]. Intriguingly, the combination of 10x Genomics’ single cell TCR sequencing platform coupled to gene 
expression holds enormous potential for assessing and monitoring patient response to cancer vaccines and 
immunotherapy drugs. 

Monitoring the functional state of CD8 T cells
In the tumor microenvironment, the ability of CD8 T cells to secrete pro-inflammatory cytokines and exert 
cytotoxic function can be compromised during persistent immune activation[127]. Such exhausted CD8 T 
cells differ profoundly from memory CD8 T cells and co-express multiple co-inhibitory immune check-
point regulators such as PD-1, LAG-3, and TIM-3 and lack successful anti-tumor immune response[127,128]. 
Even though various checkpoint inhibitors show clinical efficacy by unleashing cytotoxic T cells activity, a 
large fraction of patients fails to respond to these immunotherapies[129]. Therefore, a detailed understanding 
of the mechanisms of CD8 T cell exhaustion is required. Further, since the transcriptional signatures of T 
cell exhaustion are closely intertwined with their activated T cell state, single-cell analysis is an optimal ap-
proach to identify biomarkers specific to T cell dysfunction. In a single-cell RNA-seq analysis of T cells from 
hepatocellular carcinoma patients, 11 unique T cell subsets were identified based on their molecular and 
functional properties[130]. Exhaustion signature gene LAYN was identified and associated with inhibition of 
IFN-g production[130]. A single-cell RNA-seq of CD8 tumor-infiltrating lymphocytes from murine tumor 
models has also aided identification of novel molecular pathways of T cell exhaustion that is uncoupled from 
T cell activation[131].

Profiling of immune suppressive cell types present in the tumor microenvironment
Single-cell transcriptome profiling enables characterization of the complex tumor microenvironment with 
its heterogeneous mixture of tumor cells along with stromal and immune cells[132]. Targeting of immuno-
suppressive cell types in the tumor microenvironment can sometimes be key to the efficacy of checkpoint 
inhibitors such as anti-CTLA-4 therapy. A variety of cell types including T regulatory cells (Tregs), tumor-
associated macrophages, type 2 NKT cells, M2 macrophages and MDSCs enforce immune suppression in 
the tumor helping tumor cells to survive anti-tumor immune attack[133]. Identifying MDSCs has been chal-
lenging from bulk sequencing data due to the absence of unique MDSC markers. In addition, the presence 
of over 10 different myeloid subsets further complicates bioinformatics analysis[134]. Tregs are potent immune 
modulators and assessing their frequency, phenotype, and function at tissue sites has been profoundly chal-
lenging due to the fact that majority of the defining markers like CD25, FOXP3 and CTLA4 are also pres-
ent in effector T cells[135]. Single-cell analysis of tumor infiltrated immune cells can help circumvent some 
of these hurdles in tumor characterization. In a recent single-cell analysis study tumor cells from 11 breast 
cancer patients, cancer cells were separated from immune cells based on their copy number variations[132]. 
Analysis of the immune cell fraction revealed the presence of immunosuppressive macrophages of M2 phe-
notype and activated T effector cells. Interestingly, the T cells also expressed markers of T cell exhaustion 
such LAG3 and TIGIT suggesting that they could be targeted by immune checkpoint inhibitors[132].

Understanding mechanisms of disease resistance 
Resistance to chemotherapy and molecularly targeted therapies is a major barrier to achieving long-term 
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benefit to treatment. ITH arising from diverse cell subpopulations with distinct molecular features pro-
duce varying levels of drug sensitivity and resistance[16]. Retrospective analysis of CTCs from patients who 
had developed resistance to inhibitors of the androgen receptor (AR) showed higher activation of non-
canonical Wnt pathway beside altered expression and mutations in AR compared to untreated patients[136,137]. 
In castrate-resistant prostate cancers high content single-cell longitudinal profiling of CTCs from a patient 
undergoing chemotherapy and targeted therapy revealed a selective clonal expansion of cells with AR am-
plification supporting the adaptive model of therapy resistance evolution[137]. Similar observation of selective 
clonal persistence was seen in breast cancer patients treated with chemotherapy. In this study, single-cell se-
quencing post-chemotherapy revealed transcriptional reprogramming of resistant signatures, elucidating the 
mechanism of therapy resistance[32].

Based on aforementioned studies, an accurate assessment of ITH by single-cell sequencing using multire-
gional, longitudinal sampling is essential to understand the mechanism of drug resistance and facilitate the 
development of more effective therapies.

FUTURE DIRECTIONS
With the development of precision microfluidic devices and sequencing technologies, single-cell analysis has 
transformed our understanding of ITH and clonal evolution. Single-cell genomics promises to deconvolute 
complex biological processes in cancer, reveal epigenetic alterations and monitor the evolution of metastatic 
and treatment resistance clones. By applying single-cell sequencing to different experimental systems, such 
as cells in culture, patient-derived xenografts, murine models and analysis of human tumors, novel diagnos-
tics and therapies can be developed. A major hurdle in single-cell sequencing is the high cost of the technol-
ogy. Moreover, the volume and complexity of single-cell sequencing datasets exceed that of the traditional 
bulk sequencing, calling for better statistical algorithms to deconvolute the data. Additional caution should 
be given on the transcriptome coverage and number of cells taken for single-cell analysis to ensure the accu-
racy of gene expression distribution estimates. Future breakthroughs in developing cost-effective sequencing 
methods and powerful data analysis pipeline for single-cell sequencing are likely to expand the scope of this 
technology beyond cancer to other diseases.
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