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Abstract
The importance of MYC function in cancer was discovered in the late 1970s when the sequence of the avian 
retrovirus that causes myelocytic leukemia was identified. Since then, over 40 years of unceasing research have 
highlighted the significance of this protein in malignant transformation, especially in hematologic diseases. Indeed, 
some of the earliest connections among the higher expression of proto-oncogenes (such as MYC), genetic 
rearrangements and their relation to cancer development were made in Burkitt lymphoma, chronic myeloid 
leukemia and mouse plasmacytomas. Multiple myeloma (MM), in particular, is a plasma cell malignancy strictly 
associated with MYC deregulation, suggesting that therapeutic strategies against it would be beneficial in treating 
this disease. However, targeting MYC was - and, somehow, still is - challenging due to its unique properties: lack of 
defined three-dimensional structure, nuclear localization and absence of a targetable enzymatic pocket. Despite 
these difficulties, however, many studies have shown the potential therapeutic impact of direct or indirect MYC 
inhibition. Different molecules have been tested, in fact, in the context of MM. In this review, we summarize the 
current status of the different compounds, including the results of their clinical testing, and propose to continue 
with the efforts to identify, repurpose, redesign or improve drug candidates to combine them with standard of care 
therapies to overcome resistance and enable better management of myeloma treatment.
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INTRODUCTION
Multiple myeloma
Multiple myeloma (MM), although a rare disease, is the second most common blood cancer[1], with over 
54,000 estimated new cases in Europe[2] and 176,000 worldwide in 2020[3]. It is a neoplasm originating from 
the clonal expansion of plasma cells in the bone marrow (BM)[4].

Even if recent advances in medicine have quadrupled MM patient survival in the last 40 years (from 6% to 
33% for ten or more years), it remains virtually incurable, as relapse rates are as high as 90%[5]. Indeed, the 
disease adopts a cyclical pattern of response to therapy and remission followed by disease progression or 
reappearance[6], as depicted in Figure 1.

Importantly, due to the progressive aging of the population and the fact that the peak rate of MM cases is at 
85-89 years[7,8], MM’s incidence trend over time has increased by 32% since the early 1990s and keeps 
growing. In fact, estimates predict that the number of incident myeloma cases will almost double by 2040[9].

Myelomagenesis is a complex process that requires various driver genetic alterations to collude with each 
other, resulting in the development and progression of MM[10]. A benign and asymptomatic condition, 
termed monoclonal gammopathy of undetermined significance, precedes it and can evolve into another 
asymptomatic disorder, also classified among monoclonal gammopathies, termed smoldering multiple 
myeloma (SMM). All these diseases are characterized by the invasion of proliferating plasma cells in the BM 
and the secretion of monoclonal proteins referred to as M protein or M spike, present in large amounts in 
the blood and urine and used for the disease diagnosis[11-13]. This protein is also known as paraprotein, which 
is essentially a single antibody excessively produced by abnormal plasma cells.

MM is a highly heterogeneous cancer marked by clonal diversity[14]. It starts with underlying germline 
events, followed by primary - frequently initiating - and secondary genomic aberrations that lead to tumor 
progression. Using integrated genomics on newly diagnosed patients with MM, Walker et al.[15], for 
example, identified 63 driver genes, including the most diverse oncogenes, such as FGFR3, DIS3, PRKD2, 
CCND1, IRF4, MAF, BRAF, DIS3, ATM, FAM46C and MYC. Among the most relevant secondary events, 
deregulated MYC activity is associated with disease progression[10] and occurs in a large percentage (67%) of 
MM case[16]. In one of the largest genome-wide association studies to date, researchers have found several 
single-nucleotide polymorphisms associated with MYC activation, considered a critical exacerbating event 
and related to poor outcomes[4]. Secondary translocations encompassing the MYC gene are late progression 
events that involve an Ig enhancer in 60% of the cases (either the heavy or light chains) and seemingly no 
other recurrent chromosomal loci in the remaining 40% cases[17].

The heterogeneity of MM imposes a big challenge for its treatment with tailored therapies, which are 
typically directed against a unique target. Besides, as mentioned above, patients commonly relapse after 
receiving first-line therapy, often due to a selective pressure exerted by the treatment leading to resistant 
subclones outgrowth[18]. This is the main reason researchers are currently proposing alternating the use of 
therapies with different mechanisms of action, which could overcome future relapses.
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Figure 1. The response-relapse pattern in multiple myeloma patients. Monoclonal gammopathies that undergo malignant 
transformation are likely to respond initially to the therapy and enter in remission. However, the disease eventually relapses, and the 
response becomes less durable until resistance appears, resulting in relapsed refractory myeloma. Figure adapted from[6]. MGUS: 
Monoclonal gammopathy of undetermined significance; SMM: smoldering multiple myeloma.

Another critical aspect of MM pathophysiology is its dependence on the BM niche. Probably one of the 
most critical interactions in the creation of a favorable microenvironment for MM cells proliferation, 
survival and apoptosis resistance is their relationship with BM stromal cells (BMSCs)[4]. The cell-cell 
crosstalk through adhesion molecules such as VCAM1 and VLA-4 expressed by BMSCs and MM cells, 
respectively, results in the secretion of cytokines responsible for the formation of an appropriate cancerous 
milieu. This interaction also accounts for bone destruction, a hallmark of late-stage myeloma that 
significantly deteriorates the quality of life of MM patients[19]. Indeed, the development of osteolytic lesions, 
present in more than 80% of myeloma patients[20], is one of the most devastating consequences of advanced 
MM, caused by an imbalance between bone formation and resorption, partly due to a significant reduction 
in circulating osteoprotegerin[21].

Taken together, all these pieces of evidence appeal for the research of new therapeutic options, either 
directed against novel targets or focused on bone disease management, to achieve fewer side effects. These 
new therapies could be combined or sequentially administered together with already approved drugs to 
render myeloma a preventable or, even better, curable disease.

Personalized medicine and its limitations
Oncology is one of the most invested fields in discovering new drug options, in an insatiable search for 
alternative therapies able to overcome the limitations of the already existing ones[22]. Personalized medicine, 
also known as precision medicine, aims to design tailored treatments against major molecular drivers of 
different pathologies[23]. Hence, precision oncology performs molecular profiling of tumors to identify 
alterations that can be translated into actionable targets[24].

The first step in the profiling is to stratify the patients using new technologies, such as next generation 
sequencing or multi-omics approaches, to choose the most appropriate treatment for each individual based 
on their unique molecular aberrations. Very often, the most affected proteins in cancer are kinases, involved 
in many physiological processes of the cell[23]. One well-characterized example is the BCR-ABL gene fusion 
in chronic myeloid leukemia (CML). This chromosomal defect, known as the Philadelphia chromosome, is 
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the signature of CML, present in all patients suffering from this condition[25]. Its discovery led to the 
development of imatinib, a selective inhibitor of the constitutively active tyrosine kinase resulting from the 
gene fusion[26]. Thanks to imatinib, the survival rates for CML patients notably improved to 90% over 5 years 
and 88% over 8 years[25]. Other tyrosine kinase inhibitors then became very popular because of the broad 
involvement of the kinome in different malignancies. Thus, numerous small molecules against the 
enzymatic core or binding pockets of these proteins have been developed ever since, changing the clinical 
management of cancer[27].

Currently, over 55 targeted therapies are approved to treat different hematologic malignancies[28]. As such, 
they are directed against actionable molecules identified to play essential roles in the biology of immune 
cells or represent proteins that are highly expressed in these types of tumors. They can be categorized 
according to the type of target they inhibit: (1) B-cell surface markers [e.g., rituximab, an anti-CD20 
monoclonal antibody (mAb), or daratumumab, an anti-CD38 mAb]; (2) survival or proliferation factor 
receptors (e.g., siltuximab, an anti-IL-6 mAb); (3) cell signaling markers (e.g., ibrutinib, a BTK inhibitor, or 
idelalisib, a PI3K inhibitor); (4) cell cycle, apoptosis and proteasome machinery (e.g., bortezomib, a 
proteasome inhibitor, or venetoclax, a Bcl-2 inhibitor); (5) metabolism (e.g., lonidamine, a hexokinase 
inhibitor); and (6) microenvironment (including immune modulators, such as plerixafor, an anti-CXCR4; 
pembrolizumab, an anti-PD-1 antibody; CAR-T cells; or bispecific antibodies)[29].

However, as mentioned above, despite the initial success of all these different therapeutic strategies, most 
patients eventually relapse. Hence, the emergence of drug resistance is not only limited to conventional 
chemotherapy, but it extends to drugs with a targeted mode of action as well[30]. There are several 
mechanisms of resistance that have been primarily studied and described, including drug efflux, acquired 
mutations that impair drug binding, trapping in acidic vesicles, enhanced metabolism, activation of 
compensatory signaling pathways or remnant quiescent stem cells that are inherently resistant[31].

MM, in particular, is an excellent example of frequent disease recurrence through multiple compensatory 
mechanisms [Figure 2]. For instance, the occurrence of mutations in the proteasome machinery and the 
RAS/RAF signaling pathway confers resistance to proteasome inhibitors (PIs, e.g., bortezomib) and 
immunomodulatory agents (IMiDs, e.g., lenalidomide), respectively. Similarly, sequestrations of drugs in 
autophagosomes or active pumping to the outside are typical resistance mechanisms observed in MM. In 
addition, MM cells can get protection from the microenvironment by strengthening the interaction with 
supporting cells through integrins and other adhesion molecules or by increasing proliferation and survival 
signaling. Lastly, a reduction in the expression levels of certain proteins such as cereblon, CD38 and SLAM7 
impairs the activity of targeting agents. Interestingly, CD38 and SLAM7 can also be secreted, acting as decoy 
receptors for mAbs (daratumumab or elotuzumab), which can be further weakened by increased expression 
of complement inhibitory proteins that hamper their ability to activate the complement-dependent 
cytotoxicity[32].

In this scenario of multiple resistance mechanisms, liquid and on-treatment standard biopsies would clearly 
be beneficial for the identification of biomarkers of resistance or response, to intervene ahead of the point of 
no return, for instance by switching to a different drug and dosing regimen or even deciding to start 
combinations with other therapies[33].

MYC as a key regulator in cancer
MYC is one of the most powerful oncogenes found to be deregulated in over half of human cancers[34]. The 
MYC gene encodes for a family of basic helix-loop-helix leucine zipper (bHLHZ) transcription factors 
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Figure 2. Examples of the most common resistance mechanisms to multiple myeloma therapies. See text for details. For a more 
thorough description of the resistance mechanisms, check the review from Wallington- Beddoe[32]. Figure adapted from[32]. CD38: 
Cluster of differentiation 38; CRBN: cereblon; ERK: extracellular signal-regulated kinases; IMiDs: immunomodulatory agents; IL-6: 
interleukin-6; MEK: mitogen-activated protein kinase; RAF: rapidly accelerated fibrosarcoma; SDF-1: stromal cell-derived factor; 
SLAM7: signaling lymphocytic activation molecule family member 7; TNFα: tumor necrosis factor alpha; Ub: ubiquitin; VEGF: vascular 
endothelial growth factor.

(TFs), comprising c-MYC, L-MYC and N-MYC, which conduct partially redundant functions depending on 
the tissue where they are expressed[35,36]. To mediate the many biological processes in which it is involved, 
MYC forms transcriptionally active dimers with its obligate partner MAX, and together they bind DNA at 
sequences known as E-boxes[37].

MYC displays characteristics of an intrinsically disordered protein in its monomeric form in solution, being 
mostly unstructured. It comprises an N-terminal transcriptional activation domain, followed by a canonical 
nuclear localization signal and a C-terminal bHLHZ domain, which is mainly unfolded until it dimerizes 
with MAX[37,38].

The physiological functions of MYC include, but are not restricted to, cell proliferation and growth, 
apoptosis, differentiation, migration, stem cell biology, metabolism and transcriptional control over the 
non-coding transcriptome (miRNAs and lncRNAs)[39-42]. Of note, unlike in the case of other TFs and 
signaling molecules, in which loss of individual proteins can often be compensated by other members of the 
same pathway or a parallel one, MYC function is non-redundant, as demonstrated by the lethality observed 
in MYC deficient mouse embryos[43].

a
图章
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Given the highly central role MYC plays in cell proliferation, its expression is tightly regulated at the 
transcription, mRNA and protein levels[37]. Nonetheless, many of the genetic alterations that occur in cancer 
uncouple MYC expression from these usual regulatory constraints: either constitutive activation of signal 
transduction pathways (e.g., Notch, Wnt and receptor TKs) or direct alterations of MYC, such as point 
mutations, leading to protein stabilization, amplifications or translocations[37,44], can lead to its deregulation. 
Interestingly, however, deregulation of MYC alone is not always enough to induce tumorigenesis, so that 
some other genetic alterations are required. The reason is that continuous expression of MYC usually has a 
dual effect, inducing proliferation at first, followed by proliferative arrest, senescence or apoptosis[45,46], so 
these fail-safe mechanisms need to be disabled in order for MYC to exert its full pro-tumorigenic function. 
Only then, aberrant expression of its target genes promotes deregulated entry and exit of the cell cycle, 
increased cell mass through protein biogenesis, restraint of the host immune response, relentless DNA 
replication, remodeling of the microenvironment, activation of the angiogenic switch, and suppression of 
the response to autocrine and paracrine regulatory programs and metabolic rewiring [Figure 3]. Hence, 
MYC activation seems to constitute the main inducer of most molecular hallmarks of cancer[42,45,47,48].

In MM, increased MYC activity is related to disease progression[16,51]. Such deregulation can happen through 
many different processes - some of which are mentioned above, such as translocations or sustained 
activation of upstream signaling pathways, as more extensively reviewed elsewhere (Jovanović et al.[16]).

Many researchers worldwide have experimentally confirmed MYC’s role in carcinogenesis, in many cases 
using conditional expression of MYC in different tissues with in vivo models, including studies on the 
reversibility of the process upon MYC withdrawal[52-55]. In these studies, suppression of MYC has proven to 
induce tumor regression not only in those tumors considered MYC-driven[52,56-58], but also in those in which 
MYC is not the initiating oncogenic lesion[59,60], suggesting that MYC inhibition would represent an effective 
treatment for many cancer types.

MYC INHIBITION STRATEGIES
Extensive evidence in the literature supports the idea that MYC inhibitors would have a huge impact on 
cancer treatment. However, no such drug is available in the clinic yet. As it happens, MYC is still considered 
“undruggable”, a term coined for proteins believed not pharmacologically targetable[61].

The reasons are multiple:

(1) The MYC family comprises three potentially redundant members so that complete MYC inhibition 
would require simultaneous blockade of all three at a time.

(2) MYC is a mainly unstructured TF, lacking a binding pocket to tamper with, and it functions mainly 
through protein-protein interactions (PPIs), so that targeting it with the classical small molecule therapeutic 
design is hardly achievable, in part due to their small interacting surface.

(3) Its localization in the nucleus supposes another challenge since the inhibitory compound would need to 
reach this subcellular compartment to exert its function.

(4) Finally, given the pivotal role of MYC not only in tumor biology but also in physiological conditions, it 
was thought that MYC inhibition could potentially cause catastrophic adverse effects in healthy tissues[62].
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Figure 3. MYC as a central node in the hallmarks of cancer. MYC is a transcription factor and master regulator of the expression of 
around 30% of all human genes. As such, it instructs the differential expression of many genes, contributing to the acquisition of 
cancer-like properties, as defined by Hanahan and Weinberg[49]. In the image, some examples of MYC target genes involved in the 
tumorigenesis process are indicated next to the hallmark they impinge on. Figure adapted from[50].

However, thanks to the design of Omomyc, a dominant-negative mutant of the bHLHZ of MYC and the 
best direct MYC inhibitor known to date[63,64], we managed to prove most of these assumptions wrong. 
Indeed, Omomyc has been extensively characterized and validated in various cancer models, both as a 
transgene and as a mini-protein (for a historical perspective, refer to[65]) and demonstrated the feasibility, 
safety and dramatic therapeutic impact of MYC inhibition.

However, Omomyc is not alone, and several investigations were or are being conducted to develop other 
drug candidates against this TF. The strategies used can be classified as indirect or direct MYC inhibitors, as 
summarized in Figure 4. In Table 1 we have synthesized the preclinical and clinical studies that encompass 
the specific indirect MYC inhibitors detailed in the text. In this review, we describe several inhibitors used 
in the context of MM, independently of their stage of development, aiming at summarizing the lesson 
learned from each of them.

Indirect MYC inhibitors
Because the MYC protein itself appeared to be a “slippery as an eel” target, researchers mostly opted for 
indirect pharmacological approaches, targeting its transcription, translation or degradation.

Blockade of MYC transcription
Bromodomain and extra-terminal motif inhibitors
Bromodomain and extra-terminal (BET) inhibitors (BETis) were found to alter the transcription of the 
MYC gene, which is regulated by BET proteins such as BRD4. The first compound to show this effect was 
JQ1, a BETi widely used in in vitro studies. JQ1 significantly downregulated MYC expression, causing a 
reduction in tumor burden and extending the overall survival in a MM mouse model[105]. Several second-
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Table 1. Summary of the different indirect MYC inhibitors and their development stage for hematological tumors (focused on MM)

Class of inhibitor Name Combined with other 
therapies? Mechanism of action Clinical trials Ref.

OTX015 PIs, IMiDs and chemo Downregulation of BRD4 
Interruption of pathways and genes critical for 
MM survival and resistance (e.g., NF-κB, c-
MYC)

Preclinical testing Gu et al.[67]

CPI203 IMiDs Downregulation of MYC, Ikaros and IRF4 Preclinical testing Díaz et al.[68]

AZD7543 and 
ARV825

Combination of CDK9 inhibitor and 
BET PROTAC

Downregulation of BRD2, BRD4, MYC and 
phosphorylated RNA polymerase II

Preclinical testing Lim et al.[69]

INCB054329 JAK inhibitors† Reduced expression of IL6R and STAT3 
signaling. Downregulation of c-MYC, FGFR3 
and NSD2/MMSET/WHSC1†

Discontinued (NCT02431260)‡ †Stubbs et al.[70] 
‡Falchook et al.[71]

BET inhibitors

RO6870810 No High affinity for the acetyl-lysine recognition 
pocket of BET family (BRD4, BRD3, BRD2 and 
BRDT)

Being evaluated (NCT03068351) Shapiro et al.[72]

GSK126 No Increased IFN signaling and stopped IRF4-MYC 
axis†

Terminated (the maximal dose and schedule attained with 
GSK2816126 showed insufficient evidence of clinical activity 
and did not justify further clinical investigation) (
NCT02082977)‡

†Ishiguro et al.[73] 
‡Yap et al.[74]

SGC0946 No, but the authors suggest that 
KO of SETD1B increases the 
sensitivity to DOT1L inhibition

Suppression of IRF4-MYC, ATF4, global protein 
synthesis and alteration of ER stress pathways

Preclinical Dafflon et al.[75]

Panobinostat PIs and IMiDs‡ Downregulation of HO-1, IRF4 and MYC† Active (the results highlight the ability of resensitizing 
patients with acquired resistance) (NCT01965353)‡

†Tang et al.[76] 
‡Laubach et al.[77]

IRF4 ASO No Decrease of MYC and MYC targets Recruiting (NCT04398485) Mondala et al.[78]

Epigenetic 
modulators 
(continued)

RRX-001 Bortezomib, pomalidomide, HDAC 
inhibitor SAHA

Causative of oxidative stress in hypoxia, 
inhibiting global hypermethylation

Preclinical Das et al.[79] 
Cabrales et al.[80]

THZ1 PIs and BH3-mimetics Downregulation of c-MYC, MCL-1 and BCL.XL Preclinical Zhang et al.[81]

CDK9i (cpds 66 
and 68)

No CDK9 inhibition in the low nanomolar range Preclinical Czudor et al.[82]

SY-1365 Venetoclax (BCL2 inhibitor) Lowering of the MCL-1 protein and alteration of 
cell cycle and DNA repair pathways

Solid tumors: terminated (business decision) (NCT03134638
)

Hu et al.[83]

CDK7/CDK9 
inhibitors

AZD4573 Venetoclax Depletion of MCL-1 Recruiting (NCT03263637) Cidado et al.[84]

CUDC-907 Dual HDAC and PI3K inhibitor Decrease of MYC protein levels Completed (results information submitted but is not yet 
publicly available on ClinicalTrials.gov.) (NCT02674750)

Sun et al.[85]

PIM-447 IMiDs and PIs† Decreased levels of MYC and increased MAD-
1. Disruption of eIF4e and downregulation of 
IRF4†

Completed (promising single-agent activity and potential to 
combine with other agents) (NCT01456689)‡

†Paíno et al.[86,87] 
‡Raab et al.[88]

mTOR/PI3K 
inhibitors

Leflunomide Lenalidomide† Downregulation of MYC and inhibition of TKs† Active (stable disease in 9/11 patients) (NCT02509052)‡ †Buettner et al.[89] 
‡Rosenzweig et al.[90]

https://clinicaltrials.gov/ct2/show/NCT02431260
https://clinicaltrials.gov/ct2/show/NCT03068351
https://clinicaltrials.gov/ct2/show/NCT02082977
https://clinicaltrials.gov/ct2/show/NCT04398485
https://clinicaltrials.gov/ct2/show/NCT03134638
https://clinicaltrials.gov/ct2/show/NCT03263637
https://clinicaltrials.gov/ct2/show/study/NCT02674750
https://clinicaltrials.gov/ct2/show/study/NCT01456689
https://clinicaltrials.gov/ct2/show/NCT02509052
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Selinexor Low dose of dexamethasone Inhibition of XPO1 = retention of tumor 
suppressors and reduction of oncoproteins 
translation

Completed (objective treatment responses) (NCT02336815)
a 
Active (improved PFS and ORR and reduced peripheral 
neuropathy) (NCT03110562)b 
Recruiting (NCT04414475)

aVogl et al.[91] 
aChari et al.[92] 
bMateos et al.[93] 
bRichard et al.[94] 
bAuner et al.[95] 
bGrosicki et al.[96]

eIFs/nuclear export 
inhibitors

Rocaglates ABT-199 and dexamethasone Blockage of MYC mRNA translation Preclinical Maïga et al.[97]

TAZ No MYC loss Preclinical Grieve et al.[98]

NSC12 Bortezomib Mitochondrial oxidative stress and DNA 
damage

Preclinical Ronca et al.[99]

Erdafitinib PI and IMiDs Selective TK FGFR inhibitor Recruiting (NCT03732703) Ronca et al.[99]

AZD4547 No Selective TK FGFR inhibitor Completed (limited activity and low ORR) (NCT04439240) Chae et al.[100]

7594-0037 No Reduction of MYC phosphorylation on serine 
62 and of its stability

Preclinical Yao et al.[101]

Anlotinib 
(AL3818)

No Reduction of MYC phosphorylation on serine 
62 and phosphorylation of threonine 58

Preclinical 
Clinical stage for other indications

Cao et al.[102] 
Shen et al.[103]

Promoters of MYC 
degradation 
(continued)

Rapamycin + 
MS-275

mTORi + HDACi Decreased MYC stability Preclinical Simmons et al.[104]

†Refers to preclinical data. ‡Indicates clinical data. aRefers to NCT02336815. bRefers to NCT03110562. BET: Bromodomain and extra-terminal; PIs: proteasome inhibitors; IMiDs: immunomodulatory drugs; NF-κB: 
nuclear factor kappa-light-chain-enhancer of activated B cells; IRF4: interferon regulatory factor 4; CDK9: cyclin-dependent kinase 9; PROTAC: proteolysis targeting chimera; IL6R: interleukin-6 receptor; FGFR3: 
fibroblast growth factor receptor 3; IFN: interferon; KO: knock out; ATF4: activating transcription factor 4; ER: endoplasmic reticulum; TK: tyrosine kinase; mTORi: mTOR inhibitors; HDACi: histone deacetylase 
inhibitors; ASO: antisense oligonucleotides; eIF: Eukaryotic translation Initiation Factor; PFS: progression free survival; ORR: overall response rate; HO-1: heme oxygenase-1; MM: multiple myeloma.

generation BETis with improved properties (e.g., superior oral or intraperitoneal bioavailability, distinct chemical structure, etc.) have been tested in preclinical 
models of MM either as monotherapy or combined with other agents.

OTX015 was recently demonstrated to have a considerable antitumor effect in a myeloma xenograft model that recapitulates the disseminated form of the 
human disease, extending the overall survival of mice[106]. The authors found that MYC levels were downregulated in two myeloma cell lines, which suggested 
that MYC itself could be a pharmacodynamic (PD) marker of BET inhibition, although its usefulness would be limited to hematologic tumors[107]. In a more 
recent study, Gu et al.[67] combined OTX015 with different antimyeloma agents (PIs, IMiDs or chemotherapy), showing that attacking the biology of myeloma 
cells through distinct angles could hold promise to render MM cells sensitive.

Similarly, Díaz et al.[68] combined another BETi, CPI203, with lenalidomide and dexamethasone, two IMiDs usually used as myeloma standard therapy. This 
combination led to complete tumor growth arrest, accompanied by a significant reduction in MYC, IRF4 (interferon regulatory factor 4) and Ikaros positive 
cells by immunohistochemistry.

https://clinicaltrials.gov/ct2/show/NCT02336815
https://clinicaltrials.gov/ct2/show/NCT03110562
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Figure 4. MYC inhibition strategies at different levels of MYC life cycle. Some examples of drugs are listed. Figure adapted from[66].

Lim et al.[69] were the first to combine the mechanisms of action of a CDK9 inhibitor (AZD 4573) and a BET 
PROTAC (ARV 825), showing synergy between them in MM. They demonstrated a blockage in 
proliferation and enhanced apoptosis by decreasing the phosphorylation of RNA Polymerase II, reduction 
of MCL-1 and MYC proteins and MYC downregulation, resulting in a very significant tumor burden 
reduction.

In 2019, Stubbs et al.[70] tested INCB054329 in various myeloma cells, alone or combined with JAK 
inhibitors, showing better efficacy than either compound alone in in vivo models, suggesting that the 
intelligent design of novel combination approaches could overcome the tumor heterogeneity and 
complexity. Interestingly, Falchook et al.[71] reported that INCB054329, when evaluated as monotherapy in a 
Phase I/II study (NCT02431260), required a second round of titration due to the high interpatient 
variability observed in clearance and exposure at different doses. However, the starting 20 mg twice a day 
dose was not tolerated, and, unfortunately, several patients (MM participant included) discontinued 
treatment.

One other inhibitor, RO6870810, has been studied in a Phase I trial (NCT03068351). In the study, patients 
have reached pharmacokinetic (PK) exposures related to PD effects, displaying thrombocytopenia - a 
common side effect of BETi - but the final results are still being evaluated[72].

As mentioned above, unfortunately, the success of BETis in the clinical setting has been limited so far, in 
part due to dose-limiting toxic effects. It should be noted that BETis also target key transcriptional networks 
controlled by tissue- and disease-specific enhancer regions, so that the transcriptional effects of BET 
inhibition are highly context-dependent[108]. Although many molecules of this class are being evaluated in 
Phase I/II clinical trials (e.g., CPI-0610 and RO6870810), they are clearly not considered as MYC inhibitors 

https://clinicaltrials.gov/ct2/show/NCT02431260
https://clinicaltrials.gov/ct2/show/NCT03068351
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only. For a deeper analysis of the different studies in humans, as well as their NCT identifiers, refer to the 
following reviews[109-112].

Epigenetic inhibitors
Chromatin modifiers such as histone methyltransferases have been defined as promising targets for many 
cancer types, including hematologic malignancies[113], although not necessarily through MYC inhibition 
only. MYC, in particular, has been described to interact with chromatin complexes and to be able to induce 
epigenetic modifications. For instance, Tu et al.[114] recently defined the G9a methyltransferase as one of 
MYC interactors. Similarly, EZH2 and DOT1L are other histone methyltransferases whose inhibition leads 
to MYC downregulation, resulting in tumor growth suppression through slightly different 
mechanisms[115,116].

In particular, EZH2 is involved in myeloma’s pathogenesis and the acquisition of resistance to different 
drugs, and it is related to poor prognosis, raising interest in inhibiting it. Strong preclinical data support the 
translatability of this approach to a clinical setting[115], including a recent report in which Ishiguro et al.[117] 
showed that the dual EZH2/G9a inhibitor GSK126 exerted a potent tumor-suppressive effect by activating 
an immune response through upregulation of interferon (IFN) signaling and by halting the IRF4-MYC axis. 
In a separate earlier publication, the same authors showed that DOT1L inhibitors function in a very similar 
fashion, causing DNA damage that could explain the stimulation of IFN signaling, while shutting down the 
IRF4-MYC axis and thus blocking MM growth[73]. Interestingly, Dafflon et al.[75] characterized the 
mechanism of action of SGC0946 and identified a subset of MM cell lines susceptible to it. In addition to the 
suppression of the IRF4-MYC axis, sensitive cells showed suppression of the TF ATF4, reduced global 
protein synthesis and alterations in the ER stress pathway[75]. In fact, panobinostat, a broad-spectrum 
histone deacetylase (HDAC) inhibitor, functions with almost the same mechanism of action, 
downregulating the mRNA of heme oxygenase-1, as well as IRF4 and MYC, causing the arrest of primary 
CD138+ patient cells and inducing their apoptosis[76]. Indeed, panobinostat is one of the few epigenetic drugs 
approved by the FDA for the treatment of MM[113]. Incidentally, Mondala et al.[78] recently targeted IRF4 in 
MM as well, using instead an antisense oligonucleotide (ASO) and causing a decrease in MYC and MYC 
targets. Importantly, Mondala et al.[78] reported eradication of myeloma progenitors and malignant plasma 
cells and abrogation of tumor formation and disease dissemination in xenograft models while displaying no 
effect on normal human hematopoietic stem cells.

A very different type of molecule, RRx-001, was defined by its creators as a MYC inhibitor[118,119] and 
“erythrophagoimmunotherapeutic”. RRx-001 is also a novel hypoxia-selective epigenetic agent derived from 
the aerospace industry[120]. Its mechanism of action differs from that of the hypomethylating agents 
azacitidine or decitabine, in that RRx-001 causes oxidative stress under hypoxic conditions, inhibiting global 
hypermethylation and restoring tumor suppressor gene function[79]. It has been shown to exert antitumor 
activity in a myeloma xenograft model, both as monotherapy or in combination with standard antimyeloma 
agents (glucocorticoids or PIs)[79,80]. The authors describing it clarified that its antineoplastic efficacy is 
explained by a variety of mechanisms that include promoting an immune response, epigenetic 
modifications, apoptosis, antioxidant and antiangiogenic activities and acting as a nitric oxide donor[120]. 
Currently, this molecule seems to be mostly employed against solid tumors rather than hematological 
diseases.

Unfortunately, as standalone strategies, none of the above molecules performed in the clinical setting as 
predicted by preclinical studies. In a Phase I clinical trial, the investigators concluded that GSK126 is not a 
suitable EZH2 inhibitor to treat advanced solid or hematologic malignancies due to its improvable PK 
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profile, leading to inefficient exposure at tolerated doses and displaying a minimal anticancer activity[74]. 
Similarly, Stein et al.[121] evaluated the safety and efficacy of pinometostat in another Phase I study of acute 
mixed lineage leukemia and observed that, despite reaching exposure to anticancer levels, it could only 
display minor clinical activity, suggesting that its combination with standard of care agents would be a 
better choice. In support of this hypothesis, a recent Phase I study for the combination of panobinostat with 
several myeloma standard therapies demonstrated the ability of the combination to resensitize 
relapsed/refractory MM patients, in the context of resistance to IMiDs, PIs or other novel targets[77]. In 
addition, the IRF4 ASO will soon be tested in a first-in-human clinical trial as monotherapy for 
relapsed/refractory myeloma to assess its safety, tolerability and antimyeloma activity (NCT04398485).

Cyclin-dependent kinase 7or 9 inhibitors
The blockade of cyclin-dependent kinase 7or 9 (CDK7 or CDK9) can also downregulate MYC expression 
and reduce mRNA levels by inhibiting RNA polymerase II-dependent transcription affecting the stability of 
preinitiation complexes[122]. Some studies demonstrated that THZ1, a covalent CDK7 inhibitor, can indeed 
suppress master transcription-regulating oncogenes, such as MYC, in neuroblastoma models[123,124], and 
Zhang et al.[81] expanded the study to several myeloma cell lines, reporting a potent antiproliferative and 
proapoptotic effect with exposure times as little as 24 h and even in the context of resistance to bortezomib. 
Mechanistically speaking, apart from MYC and DNA damage response genes (CtIP, FANCD2, RAD51, 
BRAC1 and ERCC1), the inhibitor diminished the expression of MCL-1 and BCL-XL, in line with its 
expected function as a CDK7 and CDK12/13 inhibitor[81]. Notably, the authors demonstrated a reduction of 
subcutaneous xenograft tumors and extended survival of mice upon treatment with 10 mg/kg of THZ1 and 
suggested the combination with PIs or B-cell lymphoma 2 (Bcl-2) Homology 3 (BH-3) mimetics, as they 
observed a significant increase in cell death of primary patient-derived CD138+ cells and MM stem-like cells 
(CD138-, CD19+, CD20+, CD27+), while having little effect on healthy cord blood cells (CD138-, CD34+)[81]. In 
a brief article, Czudor et al.[82] synthesized two novel CDK9 inhibitors that also displayed considerable 
antiproliferative effects in MM cell lines.

Thanks to the antitumor effect shown by these molecules at the preclinical stage, the first covalent CDK7 
inhibitor (SY-1365) entered clinical trials in 2017 for the treatment of solid tumors[83]. Unfortunately, the 
study was terminated in March 2021 based on a business decision (NCT03134638). On a more encouraging 
note, however, the CDK9 inhibitor AZD4573 has been evaluated against a panel of hematologic cancer 
models, including cancer cell lines and cell line- and patient-derived xenografts, both subcutaneous and 
disseminated models. It demonstrated a similar mechanism of action to that shown for THZ1, depleting 
MCL-1[84]. The definition of the PK/PD/efficacy model helped inform the currently ongoing clinical trial 
design to assess the safety, tolerability, PK and preliminary anticancer activity of this molecule against 
relapsed/refractory hematologic malignancies (NCT03263637).

In any case, how much of the therapeutic impact of the above-mentioned drugs is due specifically to MYC 
inhibition remains to be established.

Blockade of MYC mRNA translation
Mammalian target of rapamycin and PI3K inhibitors
Mammalian target of rapamycin (mTOR) seems to play an essential role in the translation of MYC 
mRNA[125], among others, laying the foundations for inhibiting the PI3K/mTOR pathway as another 
possible strategy to indirectly inhibit MYC. Indeed, several drugs have already been approved (e.g., 
everolimus, temsirolimus and torkinib), and some others are in earlier clinical developmental stages (e.g., 
INK128)[126]. Interestingly, the dual PI3K/HDAC inhibitor CUDC-907 showed potent suppressive activity 

https://clinicaltrials.gov/ct2/show/NCT04398485
https://clinicaltrials.gov/ct2/show/NCT03134638
https://clinicaltrials.gov/ct2/show/NCT03263637
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against MYC-dependent tumors[85,127], and, in a Phase II study assessing its safety (NCT02674750), 14% of 
evaluable relapsed/refractory lymphoma patients achieved an objective clinical response[85].

In this same context, Paíno et al.[86] presented a pan-PIM kinase inhibitor, PIM447, able to block all three 
PIM kinases and act as an mTOR inhibitor, which exhibited cytotoxic effects on myeloma cells and a bone-
protective effect in a disseminated mouse model of human myeloma. Interestingly, the authors also 
reported the decrease of MYC levels and the increased expression of MAD-1, a MYC antagonist. In line 
with what others proposed for different small-molecule inhibitors, the authors demonstrated a strong 
synergistic effect with standard of care agents (IMiDs and PIs), supporting the use of this combination to 
treat MM patients[86]. In fact, in a more recent publication, the same authors used one of these combinations 
(PIM447 plus pomalidomide and dexamethasone) and showed improved survival in a preclinical mouse 
model, where they revealed a convergent blockage of MYC and mTORC1, disrupting the function of eIF4e 
(Eukaryotic translation Initiation Factor 4E), an essential element of the Initiation Translation Complex[128], 
and downregulating IRF4, important in many immune-related contexts[129], as happened with several 
BETi[87]. Interestingly, Buettner et al.[89] presented a similar effect by leflunomide, an orally available, non-
toxic, inexpensive immunosuppressive drug regularly used to treat rheumatoid arthritis. Leflunomide 
downregulated MYC by inhibiting several tyrosine kinases, including the PIM family, and synergized in 
combination with lenalidomide, another IMiD used as standard therapy in MM, further decreasing MYC 
and causing MM growth inhibition both in vitro and in vivo[89].

The first-in-human trial to determine the maximum-tolerated dose (MTD) or recommended dose, safety, 
PK and preliminary antimyeloma activity of PIM447 in relapsed/refractory myeloma showed that the 
compound was tolerated by heavily pretreated patients and clinically benefitted 25.3% of the study 
population (even though most of the discontinuations were due to disease progression)[88]. Of note, the 
investigators could not evaluate the PD markers identified in preclinical studies (phospho-Bad, 
phospho4EBP1 and c-MYC) because of the absence of clinically valid assays[88]. Encouragingly, the 
progression-free survival seen as monotherapy, together with the preclinical evidence supporting the 
combination of several agents, builds the case for combining PIM447 with other targeted therapies to 
overcome drug resistance in patients[88].

Of note, a Phase I clinical trial was also designed to repurpose the use of leflunomide in relapsed/refractory 
myeloma patients (NCT02509052)[90]. As stated by Rosenzweig et al.[90], given the stable disease achieved in 
9/11 subjects, coupled with the tolerable safety profile, leflunomide could be another option for 
combinatorial regimens to treat MM or, if introduced at earlier developmental stages (SMM) of the disease, 
delay its progression into the fully malignant one.

Blocking eukaryotic translation initiation factors or nuclear export of mRNA
Selinexor is an oral selective exportin 1 (XPO1) inhibitor that causes tumor suppression of several cancer 
models through different mechanisms. One of them is the impairment of the nuclear export of tumor 
suppressor and growth regulatory proteins, such as p53 or MYC, respectively[130]. In addition, it has been 
shown to reduce the cap-dependent translation of several oncogenes, including MYC[130].

Vogl et al.[91] tested selinexor in combination with low-dose dexamethasone in relapsed or refractory 
myeloma patients. In this Phase II trial, patients were either quad-refractory (bortezomib, carfilzomib, 
pomalidomide and lenalidomide refractory disease) or penta-refractory (anti-CD38 refractory disease)[91]. 
The overall response rate (the primary endpoint) was 21%, very similar in the quad- and penta-refractory 
patients’ cohorts, providing the latter with a new treatment option. Following the same trend, the authors 

https://clinicaltrials.gov/ct2/show/study/NCT02674750
https://clinicaltrials.gov/ct2/show/NCT02509052
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suggested using selinexor in combination with other standard antimyeloma agents, with the objective of 
overcoming or at least reducing the appearance of drug resistance[91]. Indeed, a couple of randomized Phase 
II/III trials sponsored by Karyopharm Therapeutics Inc. are currently evaluating the efficacy of the 
abovementioned combinations (NCT03110562 and NCT04414475).

Rocaglates are secondary metabolites of the plant genus Aglaia. These compounds inhibit eIF4A, impeding 
translation initiation. Maïga et al.[97] studied the potency of the synthetic derivative oxo-aglaiastatin 
(CMLD011580) to inhibit translation and synergize with other compounds against hematologic tumors. 
CMLD011580 induced cell death of JJN3 and MMS1, two myeloma cell lines, upon combined treatment 
with ABT-199, a BCL-2 inhibitor. Importantly, the authors showed how the agaliastatin analog could block 
MYC mRNA translation and synergize with the glucocorticoid dexamethasone (as previously shown by the 
same group with another rocaglate, silvestrol), inducing cytotoxic effects in MM cell lines. In addition, they 
explored the effect on primary patient-derived cells, demonstrating a considerable reduction in CD138+ 
cells[97]. Despite their apparent applicability as anticancer agents, no current clinical trials are dedicated to 
studying this therapeutic approach. However, they are being investigated as broad-spectrum antivirals, 
thanks to their unique mechanism of action and minimal potential toxic side effects while inducing efficient 
inhibition of RNA viruses[131].

Once again, since all the above-mentioned drugs affect translation of many more proteins besides MYC, 
ascribing their therapeutic effect to MYC only would be incorrect.

Promoting MYC degradation
MYC is ubiquitinated by ubiquitin ligases, such as FBW7, which induce its degradation through the 
proteasome machinery. Inhibition of deubiquitinases that stabilize MYC (e.g., USP28 and USP36)[132] or 
triggering the FBW7-mediated proteasomal degradation of MYC with oridonin[133] are both potential 
strategies to indirectly inhibit MYC.

In this context, Grieve et al.[98] discovered an unexpected role of the TAZ, a transcriptional coactivator, 
component of the Hippo-signaling pathway, described to function as an oncogene in many solid cancers, 
but found to act as a tumor suppressor in myeloma: TAZ expression inversely correlated with the 
prognostic outcome in myeloma patients. Indeed, Grieve et al.[98] demonstrated that restoring TAZ using 
lentiviruses in vitro or pharmacologically upregulating it by treating cells with a hypomethylating drug 
(DAC) resulted in MM cell death. They also pinpointed the underlying molecular mechanism in the 
downregulation of MYC at different levels (transcriptomic, proteomic and posttranslational), resulting in 
the observed antiproliferative effect. Although the exact mechanisms for MYC loss remain elusive, 
understanding the TAZ-mediated regulation of MYC, especially posttranslationally, could produce valuable 
information on potential combinations involving the upregulation of TAZ with anti-MYC therapies[98].

Another means to cause MM cell death and overcome bortezomib resistance was described by 
Ronca et al.[99], showing that FGF/FGFR blockade by the pan-FGF trap molecule NSC12 induces 
mitochondrial oxidative stress and DNA damage. In particular, mitochondrial oxidative stress occurred as a 
consequence of proteasomal degradation of the c-MYC oncoprotein, which caused glutathione depletion. 
The authors reported two clinical trials assessing selective TK FGFR inhibitors, erdafitinib and AZD4547, 
one ongoing and one just completed (NCT03732703 and NCT04439240). It would be interesting to know 
their effect on tumor MYC levels[99].

https://clinicaltrials.gov/ct2/show/NCT03110562
https://clinicaltrials.gov/ct2/show/NCT04414475
https://clinicaltrials.gov/ct2/show/NCT03732703
https://clinicaltrials.gov/ct2/show/NCT04439240
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Yao et al.[101] found 7594-0037, which also led to cell death of MM cells, in a screen of the ChemiDev 
database in search of MYC inhibitors and showed that 7594-0037 induced MYC degradation by reducing its 
phosphorylation on serine 62. In addition, the molecule further decreased the MYC intrinsic lack of stability 
by binding to the N-terminus, preventing the C- and N-termini from interacting[101]. The authors showed 
how treatment with 7594-0037 induced cell cycle arrest in G2/M in RPMI-8226 and U266 cells, promoting 
apoptotic death, as seen by an increase in PARP1, caspase-8 and caspase-9 cleavage. The compound 
demonstrated also synergistic effects with bortezomib, supporting its use to overcome resistance. 
Yao et al.[101] suggested that this approach has the potential to be translated into the clinical setting. 
However, extensive research is still required, starting with evaluating the therapeutic impact in animal 
models, as well as the bioavailability and PK of the compound, to decide whether it is worth pursuing 
further.

A completely different drug, yet with a similar mechanism of action, is anlotinib (AL3818), a multi-targeting 
tyrosine kinase inhibitor directed against vascular endothelial growth factor receptor (VEGFR) 1-3, c-Kit, 
platelet-derived growth factor receptor (PDGFR)-α/β and fibroblast growth factor receptor (FGFR)[102]. 
Cao et al.[102] showed the accumulation of RPMI-8226, NCI-H929 and primary patient-derived cells in G2/M 
phase upon treatment with anlotinib, reporting apoptotic cell death seen by cleavage of PARP1 and caspases 
3 and 9. Notably, the authors reported the direct interaction of anlotinib with the oncoprotein MYC, leading 
to its ubiquitin proteasome-mediated degradation, which is triggered by dephosphorylation of serine 62 and 
phosphorylation of threonine 58. Efficacy was also observed in an in vivo subcutaneous xenograft model, in 
which anlotinib significantly impaired tumor growth, reducing the proliferative marker Ki67 and increasing 
TUNEL and caspase-3-positive cells[102]. This interaction is a new aspect of the inhibitor so far unexplored 
that sets the rationale for using this inhibitor to treat MYC-deregulated cancers. Hitherto, no clinical trial is 
approved to evaluate anlotinib against hematologic cancers, although it is being studied for several other 
indications[103].

Finally, another reported strategy to induce MYC degradation makes use of mTOR inhibition (as already 
mentioned in this manuscript as a potential way of preventing MYC translation) in combination with 
HDAC inhibition. Indeed, Simmons et al.[104] made us of mTORi (rapamycin) and HDACi (MS-
275/entinostat) inhibitors in myeloma, reducing MYC protein stability and causing a significant anti-tumor 
effect. Simmons et al.[104] suggested that the combined use of drug classes that have separately already 
entered clinical practice as single agents could represent a promising strategy to inhibit MYC.

Direct MYC inhibitors
As mentioned above, the MYC protein is hard to target with traditional small molecule drugs due to its 
large, disordered protein interface and lack of deep pockets. In addition, it is often inaccessible to large 
biologics, which are not always capable of crossing cell membranes.

Direct inhibition of MYC expression
G-quadruplex stabilization
G-quadruplexes are four-stranded DNA structures formed in guanine-rich regions. The MYC promoter 
happens to have such a structure, which acts as a silencer element, repressing its transcription[134]. Several 
studies have shown that some small-molecule ligands (e.g., cationic porphyrins and quindolines) can 
stabilize such G-quadruplex. The first one was CX-3543, which was shown to reduce MYC 
transcription[135,136]. Subsequently, a more selective RNA polymerase I inhibitor, termed CX-5461, 
demonstrated the ability to be used in vivo[137]. This compound was even evaluated in a Phase I study for 
advanced hematologic malignancies and was well tolerated. The predominant population of patients 
corresponded to myeloma, whose best response was stable disease in half of the cases[138]. More recently, 
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Leung et al.[139] proposed a novel liposomal formulation of CX-5461 that could result in exposure to higher 
concentrations of the drug over time, potentially increasing its efficacy.

Others have identified different small molecules that act as MYC G4-stabilizers, such as DC-34[140], D089[141] 
or DM039[142]. Calabrese et al.[140] explored the effects of DC-34 in MM cell lines, observing that the 
compound did not downregulate other G4-dependent genes to the same extent as MYC, which was 
efficiently silenced, with consequent antiproliferative activity. On their end, Gaikwad et al.[141] described a 
cytotoxic effect of D089 in myeloma cells regardless of their protective microenvironment when cocultured 
with bone marrow stromal cells, and such death occurred through the activation of the ER stress pathway 
leading to pyroptosis and senescence[141].

Antisense oligonucleotides and small interfering RNA
A different strategy to inhibit MYC’s expression is to promote the degradation of its mRNA, thus 
preventing its translation. For this purpose, investigators have used antisense oligonucleotides (INX-
3280)[143] or antisense oligomers (AVI-4126)[144].

With a similar mode of inhibition, the lentiviral delivery of shRNA[145] or RNAi encapsulated in a lipid 
nanoparticle (DCR-MYC)[146] can also result in the elimination of MYC mRNA. Even though DCR-MYC 
reached clinical trials, the efficacy results obtained did not fulfill the company’s expectations, thus its 
development was ultimately discontinued (NCT02110563).

In Table 2, we have summarized the most recent studies, mostly preclinical, about direct MYC inhibitors in 
hematologic malignancies, particularly MM.

Direct inhibition of PPIs or DNA binding
Peptidomimetics and other small molecule inhibitors against PPIs
Peptidomimetics are small molecules designed to mimic the binding of a peptide sequence to a target[149]. 
The first inhibitor of the MYC/MAX interaction, ILA6B17, was identified after screening a 7000-molecule 
peptidomimetic library and suppressed the growth of MYC-transformed chicken embryo fibroblasts 
(although it was suggested to be slightly unspecific, since it could also inhibit Jun-induced 
transformation)[150]. Other compounds have been identified by multiple different screenings as being more 
MYC-specific (e.g., 10058-F4, 10074-G5, Mycro3 or KJ-Pyr-9)[151-154]. However, there are no recent studies 
that investigate the therapeutic opportunity of these molecules in hematologic cancers, despite their great 
promise, leaving the door open for new compounds to be tested.

DNA binding inhibitors
Some research groups have instead targeted the binding of MYC, MAX or their dimers, to DNA, using 
small molecules such as MYRA-A or KSI-3716[155,156] or peptides and mini-proteins, known to have 
increased selectivity and affinity, as well as lower toxicity. An example of the latter is H1, a 14-amino acid 
peptide derived from the helix 1 C-terminal region of MYC itself[157]. Our group contributed to the effort 
using the purified Omomyc mini-protein, shifting the use of Omomyc from transgenic construct to a 
pharmacological tool[158].

The intravenous formulation of Omomyc, OMO-103 is currently being tested in a Phase I/II clinical trial 
(NCT04808362) for solid tumors. However, its use or the use of similar molecules could be extended to treat 
blood cancers.

https://clinicaltrials.gov/ct2/show/study/NCT02110563
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Table 2. Summary of the different direct MYC inhibitors and their development stage for hematological tumors (focused on MM)

Class of 
inhibitor Name

Combined with 
other 
therapies?

Mechanism of action Clinical trials Ref.

CX-5461 No Beneficial clinical responses in some 
cases and MTD determination 
(ACTRN12613001061729)

Khot et al.[138]

DC-34 No Preclinical Calabrese et al.[140]

D089 No Preclinical Gaikwad et al.[141]

G4-
quadruplex 
stabilizers

DMO039 No

Reduction of MYC 
transcription

Preclinical Minard et al.[142]

siRNA DCR-MYC No Elimination of MYC mRNA Terminated (sponsor decision) 
(NCT02110563)

Tolcher et al.[146]

PPI or DNA 
binding 
inhibitors

No Blockade of the interaction 
of MYC with partners 
(mainly MAX) or with 
DNA

No recent updates in the clinical setting

LNA gapmR 
ASO 
(MIR17PTi)

No Upregulation of BIM by 
targeting miR-17-92s

Preclinical Morelli et al.[147]Synthetic 
lethality

PARPi Addiction to PARP1 Preclinical Caracciolo et al.[148]

siRNA: Small interfering RNA; MM: multiple myeloma; MTD: maximum-tolerated dose; PPI: protein-protein interaction.

MYC-dependent synthetic lethality
MYC is a key transcriptional regulator of many genes, including micro-RNAs such as miR-17-92, involved 
in maintaining cellular homeostasis during MYC-driven tumorigenesis, suppressing the apoptotic program 
led by the oncoprotein. In this context, Morelli et al.[147] hypothesized that inhibition of these miRNAs could 
be synthetic lethal in MYC-deregulated tumors, such as MM[147,159]. The authors used LNA gapmeR antisense 
oligonucleotides to target all six miR-17-92s. They focused on one particular ASO, MIR17PTi, and 
demonstrated a robust effect in a relevant preclinical in vivo model[147]. As for the mechanism underlying the 
synthetic lethality, the authors noted some resistant cell lines that lacked the expression of the tumor 
suppressor BIM, speculating that feed-forward loops between MYC and miR-17-92 were required to induce 
the upregulation of BIM (and other genes) that would trigger apoptosis in this particular context, in which 
oncogenic MYC controls the apoptotic program[147]. Despite the thorough characterization of this new 
strategy, including PK profiles in non-human primates, a well-defined mechanism of action and impactful 
antimyeloma effect, to our knowledge, there is no planned clinical study to explore such a compelling 
alternative yet.

Another attractive investigational area for synthetic lethality is the DNA damage response, as cancer cells 
are addicted to compensatory DNA repair pathways. Indeed, Caracciolo et al.[148] highlighted the potential of 
using PARP inhibition in MM, in particular in the case of bortezomib resistance, pointing to a new role of 
MYC in driving PARP-1 mediated repair. Caracciolo et al.[148] elegantly explained how MYC contributes to 
genomic instability, switching the preferential DNA repair mechanisms to the error-prone PARP-mediated 
alternative non-homologous end joining, and pointed to its potential use as a predictive biomarker for 
PARPi treatments in MM[148].

CONCLUSION
In this review, we try to compile the most recent publications describing the use of different MYC inhibitors 
in hematologic malignancies, especially MM.
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The first attempts to use this strategy in the clinic, unfortunately, have not shown much efficacy 
(INCB054329, GSK126, SY-1365 and DCR-MYC). Nevertheless, a few are proposed to have potential for 
improved activity when combined with standard antimyeloma therapies (pinometostat, PIM447, 
leflunomide, selinexor and TAZ-upregulation). For some compounds, we need to report the lack of follow 
up or publications of recent results in the last years (CX-5461, peptidomimetic inhibitors and other direct 
MYC inhibitors, such as biologics including peptides and mini-proteins). On a more positive note, however, 
many of the molecules reviewed here are still being evaluated in clinical trials (RO6870810, IRF4 ASO and 
AZD4573) or have a strong enough rationale and preclinical evidence to inform the design of clinical trials 
for their assessment (rocaglates, new BETi, anlotinib, DC-34, D089 and synthetic lethality strategies), giving 
us some hope that we will eventually see positive clinical outcome.

One aspect that seems clear from most of the studies is that the field of MM has reached a consensus in 
preferring combinatorial approaches, above all in the relapsed/refractory context. By targeting different 
aspects of MM cell biology, many of which are ultimately controlled by MYC, the research community 
expects to achieve higher response rates, delay resistance appearance and resensitize patients who have 
exhausted all other alternatives, attempting to prolong survival and ultimately getting one step closer to 
rendering myeloma a curable disease.
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