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Abstract
The recent application of novel technologies to the robot-assisted radical prostatectomy (RARP) procedure has 
provided a new perspective and demonstrated potential usefulness in surgical planning, intraoperative navigation, 
and education of both patients and healthcare professionals, allowing for a patient-tailored prostate cancer (PCa) 
treatment. Integration of novel techniques into robotic surgery has improved the accuracy of surgery and has 
demonstrated a potential benefit in functional and oncological outcomes in patients with PCa. However, further 
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randomized and prospective studies are needed to assess and validate the role of these technologies in clinical 
practice. The aim of this review is to summarize the current evidence on the new emerging techniques, such as 
three-dimensional (3D) imaging and printing, augmented reality (AR), and confocal microscopy (CM), and their 
impact on RARP and its oncological outcomes.

Keywords: Robot-assisted radical prostatectomy, augmented reality, three-dimensional (3D) imaging, 3D printed 
models, confocal microscopy

INTRODUCTION
Radical prostatectomy (RP) represents one of the mainstays of treatment for localized prostate cancer 
(PCa). The cornerstone of PCa surgery is achieving the balance between complete removal of the prostate 
gland without jeopardizing oncological results and optimal postoperative functional outcomes[1]. In this 
setting, the nerve-sparing (NS) surgical technique allows preservation of the neurovascular bundles (NVBs), 
improving functional results, even though it is associated with a higher risk of positive surgical margins 
(PSMs)[2]. Furthermore, PSMs have been identified as predictive factors of biochemical recurrence (BCR), 
cancer-specific survival (CSS), and overall survival (OS) in PCa patients[3]. Consequently, many techniques 
have been proposed to assist in the intraoperative guidance of RP and evaluate surgical margins in real time, 
aiming to reduce PSM rates[4].

Currently, PSM rates range from 9%-26% for robot-assisted radical prostatectomy (RARP)[5]. In the last 
decade, entering the era of precision surgery[6], RARP has been adopted as the preferred and most frequently 
used surgical approach[7-11]. Furthermore, robotic surgery allows the integration of novel tools and 
innovative technologies to plan and guide RP[6].

Moreover, the introduction of imaging techniques for the assessment of the local extent of PCa, such as 
multiparametric magnetic resonance imaging (mpMRI), aids in predicting and localizing areas of possible 
extraprostatic extension (EPE) and its proximity to NVBs[12,13]. Therefore, mpMRI may have a role in 
guiding NS surgery, potentially improving the preservation of NVBs and reducing PSM rates[4].

Recently, novel tools integrating mpMRI and robotic surgery have been described for assisting the surgeon 
during RARP in the real-time evaluation of the main anatomical structures, aiming for optimal oncological 
and functional outcomes[14]. Some authors reported the use of three-dimensional (3D) models in surgical 
planning and intraoperative guidance[15]. Likewise, other techniques such as augmented reality (AR) and 
confocal laser endomicroscopy (CLE) or fluorescence confocal microscopy (FCM) have recently been 
introduced as an additional tool in RARP[14,16].

This review summarizes the state of the art of imaging technology (3D models, AR, CLE, and FCM), their 
emerging role in real-time surgical assessment, and their impact on oncological outcomes in RARP.

EVIDENCE ACQUISITION
This review covers the current scenario of the impact of new technologies (3D imaging and printing, AR, 
CLE, and FCM) in surgical planning and intraoperative assessment of RARP. We conducted a 
comprehensive literature search for original and review articles using Medline and PubMed databases from 
February-March 2022. We searched for the following terms: “robot-assisted radical prostatectomy”, 
“augmented reality”, “3D imaging”, “3D printed models”, “confocal microscopy”, and “prostate cancer” 
alone or in combination. The search period ranged from 2012 to 2022. We included studies in English, 
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original articles, systematic reviews, and metanalysis. Studies in other languages, case reports, and abstracts 
in congresses were excluded. The combination of terms is found in more than 1500 related articles. Studies 
with the highest level of evidence and relevance to the discussed topics were selected with the consensus of 
the authors, and 39 papers were finally included in this review [Table 1].

EVIDENCE SYNTHESIS
Three-dimensional imaging and printed models
Three-dimensional (3D) imaging reconstruction, whether in digital modeling or 3D printing, has appeared 
as an emerging technology in urology in recent years. 3D printing was first described in 1986 by Hull[17], and 
since then, its application has demonstrated remarkable potential in surgical planning, patient counseling, 
training, and intraoperative guidance[18]. 3D visualization techniques allow a better understanding of the 
organ’s anatomy, the identification of the tumor lesions in each patient, and its relationship with adjacent 
anatomical structures[17], thus enabling patient-tailored surgery. In the context of RP, a 3D-printed prostate 
model may help to identify NVB and lesions in their vicinity and, consequently, improve the oncological 
and functional outcomes by assisting NS surgery whenever possible[14] [Figures 1 and 2].

Ukimura et al., described a novel 3D surgical navigation model based on transrectal ultrasound (TRUS)-
guided prostate biopsies, which was displayed on the TilePro™ function of the da Vinci Surgical System®[19]. 
The TilePro function allows for direct and simultaneous visualization of 3D reconstruction and 
intraoperative endoscopic images on the robotic console screen. The main purpose of the 3D navigation 
system was to assist NS surgery by facilitating surgical dissection in areas adjacent to biopsy-proven index 
lesions. Negative surgical margins were achieved in 0 of 10 patients included in the study. Subsequently, 
Shin et al. created life-sized 3D-printed prostate models based on MRI, including the transparent prostate 
gland, index lesion, and bilateral NVBs[20]. They described the advantages of using 3D models in 
preoperative planning and intraoperative guidance, achieving negative surgical margins in all five reported 
cases. Jomoto et al. presented a new 3D system based on magnetic resonance angiography[21]. The study 
included six PCa patients and suggested a potential benefit of the 3D system in the identification of 
accessory pudendal arteries and NVBs during RARP. Chandak et al. conducted a phase 2 study evaluating 
the impact of using a 3D-printed model based on MRI in preoperative planning, intraoperative guidance, 
and postoperative outcomes[22]. They reported only 1 PSM among the 10 patients studied.

Recently, Wang et al. performed a systematic review of the currently available evidence including 27 
nonrandomized studies, nine of which refer to the use of 3D reconstructed images or printed models, 
demonstrating a promising role for 3D visualization in preoperative planning, intraoperative navigation, 
and education and training, while noting that prospective studies are needed to validate these technologies 
and their clinical impact on RARP outcomes[18]. Checcucci et al. performed a prospective study including 
160 PCa patients undergoing RARP with mpMRI-based 3D reconstruction and compared them to a control 
group of 640 patients in whom 3D technology was not applied[23]. In the 3D-assisted RARP group, a more 
conservative NS approach (full NS 20.6% vs. 12.7%; P = 0.02) and a lower rate of PSM (25% vs. 35.1%; 
P = 0.01) were observed.

Moreover, in the setting of surgical planning and physician/patient education, Ebbing et al. evaluated a 3D-
printed model based on MRI in a non-surgical setting, comparing the impact on interpreting PCa lesion 
location by medical personnel of different levels of expertise[24]. The study showed that 3D models were 
more accessible to evaluate than MRI results presented in a multidisciplinary conference, especially by less 
experienced professionals. Porpiglia et al. assessed the use of 3D-printed models in physician education and 
preoperative surgical planning[25]. The survey showed high patient satisfaction with preoperative counseling 
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Table 1. Summary of the most relevant studies included in this review

Author Year Technique Image 
acquisition Procedure Application Study design Study objective Results

Simpfendörfer 
et al.[31]

2011 AR US Laparoscopic 
RP

Surgical navigation Case 
report/series

To describe an ultrasound-based AR 
navigation system

Real-time assessment using tracking needles inserted into 
the prostate surface (visualization error 0.55  0.28 mm)

Ukimura 
et al.[19]

2014 3D model TRUS/MRI RARP Surgical navigation Case 
report/series

To evaluate the use of a 3D model 
based on biopsy-proven index PCa 
lesions for NS-RARP

9/10 (90%) patients achieved negative surgical margins

Shin et al.[20] 2016 3D model MRI RARP Surgical planning and 
navigation

Case 
report/series

To describe the advantages of using a 
life-size 3D printed prostate model 
with index lesions pre- and 
intraoperatively

5/5 (100%) patients achieved negative surgical margins

Jomoto et al.[21] 2018 3D model MRI 
angiography

RARP Surgical planning and 
navigation

Case 
report/series

To assess the benefit of using a 3D 
printed model during RARP

Improved detection of accessory pudendal arteries and 
NVB

Chandak 
et al.[22]

2018 3D model MRI RARP Surgical planning and 
navigation

Non-
randomized 
trial

To investigate the use of a 3D printed 
prostate model with PCa lesions in 
RARP

9/10 (90%) patients achieved negative surgical margins. 
Continence 100% at 12 months, 40% no erectile 
dysfunction at 24 months

Porpiglia 
et al.[16]

2018 AR MRI RARP Surgical navigation Case 
report/series

To evaluate the use of AR-assisted 
RARP

NS-RARP with selective biopsies if EPE is suspected 
(positive rate of 78%, 11/14 patients)

Harrison 
et al.[37]

2018 AR - Ex vivo RARP Physician training Non-
randomized 
trial

To analyze the impact of an AR robotic 
training module on novice surgeon’s 
learning curves

Improvement in performance of bladder dissection and 
vesicourethral anastomosis (surgical time, instrument 
collisions, injury to bladder or urethra and total time 
instruments were out of view; P < 0.05)

Porpiglia 
et al.[25]

2018 3D model MRI RARP Surgical planning and 
patient education and 
physician training

Non-
randomized 
trial

To assess the use of 3D printed models 
for RARP based on a survey

High level of patient satisfaction with preoperative 
counseling (scored 9-10/10). Perceived by surgeons as a 
useful tool in surgical planning (8/10), training (9/10) and 
anatomical representation (10/10)

Wake et al.[26] 2019 3D model MRI RARP Patient education Non-
randomized 
trial

To evaluate the role of 3D models in 
patient preoperative counseling

Using 3D models vs. standard imaging, patients better 
understood the disease, cancer location, size and surgical 
plan (scores 4.6-4.78/5 vs. 4.06-4.49/5; P < 0.05)

Porpiglia 
et al.[33]

2019 AR MRI RARP Surgical navigation Non-
randomized 
trial

To introduce an elastic 3D AR real-time 
navigation system

Improved capsular involvement identification vs. 2D 
cognitive group (100% vs. 47%; P < 0.05). No significant 
reduction in PSM rate (P = 0.73)

Samei et al.[5] 2020 AR TRUS/MRI RARP Surgical navigation Case 
report/series

To describe a combined MRI-TRUS-
based AR guidance system for RARP

The average error between US and da Vinci system was 1.4
±0.3 mm

Shee et al.[36] 2020 3D model - Ex vivo RARP Physician training Non-
randomized 
trial

To develop a 3D-printed vesicourethral 
anastomosis model for RARP training

Superior rate of completion of the anastomosis in the pre-
trained group of residents (54% vs. 20%; P < 0.0001)

Saba et al.[27] 2021 3D model MRI RARP Surgical planning and 
physician training

Non-
randomized 
trial

To investigate the use of 3D computed-
aided designs and 3D-printed models 
as preoperative tools for urologists

Improved accuracy, faster and more confident identification 
of PCa lesions by urologists comparing 3D visualization 
with mpMRI

Schiavina Case To describe the impact of 3D AR Improvement in index PCa lesion identification and change 2021 AR MRI RARP Surgical navigation
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et al.[15] report/series technology to guide NS-RARP in NS surgical planning in 38.5% of patients (appropriate 
decision in 94.4% of cases)

Bianchi et al.[4] 2021 AR MRI RARP Surgical navigation Non-
randomized 
trial

To assess a novel technique of IFS 
targeted to the index PCa lesion by 
using AR-3D models for NS-RARP

Comparable overall PSM rate but a lower rate of PSMs at 
the level of the index PCa lesion in patients who underwent 
IFS (5% vs. 20%; P = 0.01)

Rocco et al.[13] 2021 FCM - RARP Surgical navigation Case 
report/series

To describe a technique for 
intraoperative evaluation of margin 
status using FCM analysis

PSMs were found intraoperatively in 4/24 patients, 
performing a secondary resection. Final histopathology 
showed negative surgical margins in all patients

Checcucci 
et al.[23]

2022 3D model MRI RARP Surgical navigation Non-
randomized 
trial

To evaluate the role of 3D models on 
PSM rate

Lower rate of PSM (25% vs. 35.1%; P = 0.01) and more 
conservative NS approach (full NS 20.6% vs. 12.7%; P = 
0.02) in the 3D-assisted RARP-group

AR: Augmented reality; EPE: extraprostatic extension; FCM: fluorescence confocal microscopy; IFS: intraoperative frozen section; mpMRI: multiparametric magnetic resonance imaging; MRI: magnetic resonance 
imaging; NS: nerve-sparing; NVB: neurovascular bundles; PCa: prostate cancer; PSM: positive surgical margin; RARP: robot-assisted radical prostatectomy; RP: radical prostatectomy; TRUS: transrectal ultrasound; 
US: ultrasound; 3D: three-dimensional.

(Likert scores 9-10/10). Moreover, the surgeons perceived 3D visualization as a useful tool in procedure planning (score 8/10). Subsequently, Wake et al. 
performed a study including 200 patients randomized to receive a preoperative assessment with a routine imaging test or with a 3D model (printed, visualized 
in AR, or viewed on a computer monitor)[26]. The results show that patients better understood the disease, cancer localization, size, and surgical plan using 3D 
models versus standard imaging (scores 4.60-4.78/5 vs. 4.06-4.49/5; P < 0.05). Recently, Saba et al. evaluated 3D prostate computer-aided designs and 3D-
printed models as preoperative planning tools[27]. Comparing 3D visualization with mpMRI in the pre-RARP evaluation of ten PCa patients, urologists showed 
improved accuracy, with faster and more confident identification of prostate lesions. Finally, Cipollari et al. introduced the new approach of applying 
histological tissue clearing techniques to 3D technology, demonstrating the role of 3D imaging in molecular and histopathological assessment of prostate 
volumes and its correlation with mpMRI[28].

Nevertheless, although an increasing trend in the use of 3D modeling has been reported over the last decade, there are still limitations to these techniques. 
Firstly, 3D models are based on image acquisition from MRI or ultrasound, thus assuming the risk of missing some PCa lesions not visible on these imaging 
tests[18]. Secondly, 3D-printed models can reproduce the same size as the real organ, although the material does not reproduce the consistency and elasticity of 
normal tissue[18,22]. Thirdly, 3D models add an additional cost to the RARP procedure. Therefore, a cost-effectiveness analysis of the implementation of these 
technologies in the routine surgical process in the future would be necessary[14,18,22]. Lastly, all currently available studies evaluating the role of 3D technology 
are based on small, single-center cohorts. Therefore, the overall level of evidence remains suboptimal, and further prospective randomized trials will be needed 
to assess the potential benefit of novel technologies and validate their use in clinical practice[14,18].

Augmented reality
In the era of patient-tailored surgery, another innovative technique has been developed to implement 3D reconstruction in real-time assessment during 



Page 6 of Dilme et al. Mini-invasive Surg 2022;6:53 https://dx.doi.org/10.20517/2574-1225.2022.4812

Figure 1. 3D prostate rendering (image courtesy of Medics). The tumor lesion is highlighted in green, the urethra in yellow, and the 
prostatic limits in blue. 3D: Three-dimensional.

Figure 2. QR-code that links to a YouTube video of the 3D prostate model designed for robot-assisted radical prostatectomy (image 
courtesy of Medics). QR: Quick response; 3D: three-dimensional.

surgical procedures. Augmented reality (AR) is a technology that overlays objects or images onto the real 
world. Superimposing 3D models on the robotic vision enhances intraoperative navigation and accuracy in 
the identification of essential anatomical structures during the surgical procedure[4,18,29] [Figures 3 and 4].

The first clinical application of AR in RP was described in 2008 by Ukimura and Gill[30], introducing a real-
time fusion system of TRUS with intraoperative laparoscopic vision. The system enabled synchronization of 
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Figure 3. AR images during RARP (courtesy of Prof. Porpiglia). AR: Augmented reality; RARP, robot-assisted radical prostatectomy.

Figure 4. AR images during RARP (courtesy of Prof. Porpiglia). AR: Augmented reality; RARP: robot-assisted radical prostatectomy.

the TRUS 3D images with the surgical view through a high-speed computer workstation and the use of 
optical tracking systems for the dynamic motion of the surgical instruments. The authors concluded that 
AR is a valuable tool in intraoperative guidance, providing increased accuracy and confidence to the 
surgeon and a better understanding and interpretation of the tumor lesions and surrounding anatomy. 
Subsequently, Simpfendörfer et al. described the in vivo application of an ultrasound-based AR navigation 
system for laparoscopic RP[31]. The system used tracking needles inserted into the prostate surface and 
traced their movements and locations in real time with a 3D ultrasound probe. Furthermore, Porpiglia et al. 
introduced an AR technique based on preoperative MRI[16]. The MRI-based 3D imaging was superimposed 
on the real anatomy in the robotic view. The NS strategy was based on local staging and reconstruction 
obtained from MRI, including 16 clinical T2 (cT2) patients who underwent the intrafascial NS technique 
and 14 cT3 patients in whom standard NS and AR-guided biopsy of suspected EPE were performed. Final 
pathology confirmed clinical staging and all the intraprostatic lesions. Selective biopsies in patients with 
suspected EPE showed a positive rate of 78% (11/14 patients). The discrepancy between the surgical 
specimen and the 3D reconstruction ranged from 1 to 5 mm. Despite the potential advantages of using the 
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AR technique, the authors described some limitations: the need for manual orientation and the rigidity of 
the virtual models. In this setting, the group improved the AR technique by implementing hyper-accurate 
3D reconstruction technology (HA3D)[32] and further developed a 3D elastic AR system, which allowed 
simulating the prostate deformation caused by the robotic instruments in the dynamic phase of the surgery 
and, therefore, to better adapt the imaging overlay during the surgical procedure[31]. Porpiglia et al. 
conducted a prospective study including 40 PCa patients, 20 undergoing 3D AR RARP and 20 undergoing 
2D cognitive RARP[33]. In the 3D AR group, capsular involvement was correctly identified in 100% of cases 
versus 47% in the 2D cognitive group (P < 0.05). Moreover, a 10% reduction in PSM rate was noted in the 
3D AR group, although no statistical significance was demonstrated (25% vs. 35%; P = 0.73). The authors 
concluded that the introduction of an elastic system allowed a more accurate surgical simulation and a 
better adjustment to the dynamic reality of tissue manipulation during surgery. However, this model still 
had the limitation of requiring manual segmentation and overlapping of the images. Schiavina et al. 
evaluated the impact of 3D AR technology to guide NS RARP[15]. The study included 26 patients who 
underwent 3D AR-assisted NS RARP, showing an improvement in index lesion identification and a change 
in NS surgical planning in 38.5% of patients, resulting in an appropriate decision in 94.4% of cases. 
Samei et al. presented a novel MRI-TRUS-based image guidance system for RARP consisting of a 
preoperative MRI non-rigidly registered to intraoperative TRUS[5]. This technology offered the surgeon a 
combination of the two imaging tests simultaneously on the robotic console, potentially improving 
intraoperative tailoring to the specific prostate anatomy and PCa location. Kalia et al. proposed a markerless 
AR guidance system for RARP, which coordinated the TRUS image with the robotic camera image without 
the requirement for external calibration markers before or during surgery[34]. The focus can thus be changed 
during surgery, allowing for a re-estimation and adaptation of the image without stopping the procedure. 
Borgmann et al. introduced the use of wearable computing smart glasses in combination with AR in 
urological surgery[35]. The study demonstrated a high usefulness of this technology, as reported by the 
surgeons, considering applications in taking photographs, recording videos, reviewing patients’ medical 
records and images, searching for online information, and hands-free teleconsultation. Recently, Roberts et 
al. conducted a systematic review of the current evidence on AR applications in urology, including 15 
studies on prostate surgery which demonstrated a potential value of AR in intraoperative guidance, 
identification of PCa lesions, detection of capsular involvement, and patient counseling[29]. Finally, some 
authors have assessed the impact of new technologies on surgical training. Shee et al. developed a 3D-
printed model of the vesicourethral anastomosis (VUA) for ex vivo RARP training, showing a superior rate 
of completion of the anastomosis in the pre-trained group of residents compared to the untrained resident 
group (54% vs. 20%; P < 0.0001)[36]. All participants considered the 3D model a useful tool in the setting of 
surgical training. Harrison et al. analyzed the impact of an AR robotic training module on novice surgeon’s 
learning curves, demonstrating a significant improvement in performance of bladder dissection and VUA 
in terms of surgical time (P < 0.0001 and P = 0.0135, respectively), instrument collisions (P = 0.0013 and P = 
0.066; respectively), total time instruments were out of view (P = 0.0251), and injury to the urethra and 
bladder (P = 0.032 and P = 0.0189, respectively)[37]. Nevertheless, despite the increasing use of robotics in 
urological surgery, there are currently no standardized training programs for novice urologists. Several 
authors have presented different training methods, some of them including 3D or AR simulation models to 
optimize the teaching of RARP. In this setting, Anceschi et al. recently proposed a new system for assessing 
the quality of RARP learning curves based on pathologic and perioperative outcomes[38]. They defined a 
score to evaluate the RARP procedures performed by trainees, which was established as a predictor of early 
trifecta achievement (P < 0.05). Conclusively, although the use of new technological tools in surgical 
training is promising, further studies are needed to define standardized training programs and validate their 
evaluation methods.
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In summary, the development of AR passed through different phases, from the use of ultrasound initially to 
the inclusion of MRI and the emergence of elastic models. The major limitation of this technique was the 
rigidity of the 3D virtual models, which failed to adapt the image overlay to the tractions and tissue 
manipulations involved in the surgical procedure. This barrier was overcome by Porpiglia et al., who 
described an elastic AR model in 2019. However, all current MRI-based AR systems still have the limitation 
of requiring manual adjustment of the image by another urologist during surgery[33]. Therefore, the 
development of new automated models in this field will be necessary. In this setting, the advent of artificial 
intelligence and its application in robotic surgery may play a key role in addressing the technological 
limitations described to date[39]. Finally, as with 3D modeling, further randomized trials are needed to assess 
the oncological and functional improvement related to these new technologies[6,14,18].

Confocal microscopy
In the precision surgery setting and to improve the identification of the main anatomical structures and PCa 
involvement, different histopathological and optical imaging techniques have been developed[14,40,41]. 
Real-time assessment of surgical margins and extracapsular extension allows for accurate intraoperative 
guidance of NS surgery, potentially improving the oncological and functional outcomes of RP[40].

In this context, intraoperative frozen section (FS) analysis is considered the gold standard approach for 
assessing surgical margin status during surgery. However, the role of FS during RP is debatable due to the 
lack of benefit in BCR-free survival, the time-consuming nature of the procedure, and the heterogeneity of 
the technique described in the studies available to date[13,39,42]. In 2012, Schlomm et al. presented the 
neurovascular-adjacent frozen section examination (NeuroSAFE) technique[43]. The NeuroSAFE approach 
involves complete dissection of the neurovascular tissue surrounding the prostate and assessment via FS, 
allowing real-time monitoring of oncological safety in NS surgery. Nevertheless, the use of this technique 
failed to progress due to the complexity of its application and low reproducibility, requiring the availability 
of a specific and fully equipped laboratory, a trained pathologist present on-site, and a total time exceeding 
30 min[13,44,45]. Recently, Bianchi et al. conducted a prospective study evaluating a novel technique consisting 
of intraoperative index PCa lesion FS using 3D AR models in patients undergoing NS RARP[4]. The results 
show a comparable overall PSM rate between the group of patients who received intraoperative FS and the 
control group, although a lower rate of PSMs at the level of the index lesion was demonstrated in those 
patients who underwent intraoperative FS (5% vs. 20%; P = 0.01).

In this scenario, López et al. introduced confocal laser endomicroscopy (CLE) in the RARP procedure[46]. 
CLE is an imaging technology based on a fiber-optic system that provides high-resolution cellular images 
using a blue laser (488 nm) in combination with fluorescein[14,40]. The study demonstrated the intraoperative 
applicability of CLE and the feasibility of identifying NVBs and performing an optical biopsy of 
periprostatic tissue during RARP[46]. Subsequently, Panarello et al. developed an atlas of CLE images of 
prostatic and periprostatic tissues, thus providing the basis for identifying and interpreting histological 
patterns during RARP[47].

Recently, Rocco et al. presented a novel technology to assess real-time pathological examination: 
fluorescence confocal microscopy (FCM)[45]. FCM is an optical technique that allows the acquisition of 
immediate digital hematoxylin-eosin-like images from freshly excised tissue[13,40,45]. FCM analysis has shown 
91% concordance with the conventional hematoxylin-eosin technique in discriminating PCa from normal 
prostatic tissue[48]. The group conducted a subsequent prospective study[13], including 24 patients undergoing 
RARP with intraoperative FCM control of margin status. Digital images from the surgical margins were 
obtained immediately via FCM. PSMs were found intraoperatively in four patients, and a secondary focal 
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resection was performed. Final histopathology showed the absence of PSMs in all patients. The authors 
concluded that FCM might provide a feasible alternative to the NeuroSAFE technique due to the ability to 
digitalize hematoxylin-eosin-like images and report them in real time remotely and without the need for 
specific image processing. Further, Bertoni et al. developed an ex vivo tissue atlas based on FCM images and 
reported a short learning curve of this novel technique for pathologists[49].

In summary, optical imaging techniques have shown promising results in the assessment of surgical 
margins and the potential improvement of oncological and functional outcomes of RP. However, further 
studies are required to define their possible applications in PCa treatment.

CONCLUSIONS
The advent of novel imaging technologies and their application to RARP procedures has led to a new 
understanding of surgical planning, intraoperative navigation, professional training, and patient education. 
Despite the current limitations of the different techniques and the low quality of the available evidence, the 
new tools have shown a promising role in potentially improving the oncological and functional outcomes of 
RARP. Nevertheless, further randomized and prospective studies are needed to assess and validate the 
clinical utility of these technologies.
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