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Abstract
Breast cancer remains the main cause of cancer-related mortality for women world-wide. Main cause of death 
is the development of therapy-resistant metastases. Relapses occur with a bimodal temporal distribution, with a 
first peak at 1-2 years after initial therapy and a second peak 2-3 years later. This discontinuous growth kinetics is 
consistent with the notion that disseminated cancer cells can remain dormant over a prolonged period of time before 
resuming growth. How cancer cells enter, sustain and exit dormancy, are unanswered questions with relevance to 
cancer biology, monitoring and therapy. Investigating mechanisms of breast cancer dormancy remains challenging, 
as in patients the condition is elusive and experimentally there are only a few models that recapitulate the clinical 
condition. Thus, developing new models to identify clinically relevant mechanisms and candidate therapeutic targets 
may open new avenues for novel therapies to induce and prolong dormancy. We have observed that cells surviving 
chemotherapy can enter a state of immunological dormancy. Using this model, we identified IRF-7/Interferon type 
I/IFNRA as signaling axis essential for this effect. Here we will review concepts and recent developments in cancer 
metastasis and dormancy with emphasis on breast cancer, and elaborate strategies to exploit them therapeutically.
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INTRODUCTION
With a few exceptions, as in the case of brain or liver cancer, the main cause of cancer-related death is not 
the primary tumor itself but rather the formation of secondary tumors, so called metastases, in vital organs, 



in particular lung, liver, bone or brain, leading to organ destruction and failure, resistance to therapy and 
cachexia[1,2]. Metastasis formation is believed to be a highly inefficient process[3]. The main rate limiting step 
in the metastatic process appears to be the ability of tumor cells to adapt to the new environment[4,5]. During 
this adaptation step at the metastatic site, cells have to establish bidirectional paracrine communication 
with a new tissue different from the primary site, acquire novel survival capacities and escape immune 
destruction. While cell autonomous processes, such as genetic evolution and epigenetic modifications, altered 
gene expression and metabolic adaptation, are essential to the metastatic process, the microenvironments 
of the primary tumor and of the metastatic site are equally critical determinants of metastasis formation[5-8]. 
Tumor angiogenesis, the remodeling of the extracellular matrix, the activation of local resident cells and 
the recruitment of inflammatory cells provide essential contributions to the metastatic process, including in 
breast cancer[9-11]. At diagnosis, only a minority of cancers have already formed clinically overt metastases 
(i.e., stage IV)[12]. Those that progress to metastatic disease can do with strikingly different kinetic. For 
example, lung and colorectal cancers mostly relapse within 1-3 years after diagnosis and the 5-year survival 
rates for these cancers are about 20% and 60%, respectively[13,14]. Conversely, in prostate cancer relapses occur 
late, with over 90% of the patients still alive 15 years after initial diagnosis[15]. In breast cancer, relapses occur 
with a peculiar bimodal distribution: a first peak appears generally 1-2 years and a second peak 4-5 years 
after surgery, followed by a tailed extension up to 15 years[16,17].

BREAST CANCER SUBTYPES AND ADJUVANT THERAPIES
Breast cancer is the most common cancer diagnosed among women. In spite of improved management 
over the past 30 years, it remains the leading cause of cancer-related mortality for women world-wide[18]. 
Therapy and prognosis are largely determined by the biological and molecular characteristics of the 
primary tumor and its size and spreading at time of diagnosis[19,20]. There are three main clinically relevant 
biological subtypes: Oestrogen/Progesterone receptor positive breast cancer (ER+/PR+), HER2 amplified 
(HER2+) breast cancer and Triple Negative Breast Cancer (TNBC; i.e., ER-, PR-, HER2-)[21-23]. Based on gene 
expression signatures four main molecular subtypes have been reported: Luminal A and B, HER2+, and 
basal-like, which overlap largely, but not fully with the ER+/PR+; HER2+ and TNBC biological subtypes, 
respectively[24,25]. Both biological and molecular classifications have prognostic and predictive (therapeutic) 
relevance[19,20,24,25]: ER+ tumors are treated with adjuvant anti-estrogen therapies (e.g., tamoxifen) while 
HER2+ tumors are treated with HER2 inhibitors (e.g., trastuzumab), in addition to radiotherapy and 
chemotherapy, if necessary[19,26]. TNBC, has no molecular target useful for targeted therapy yet and adjuvant 
radio- and chemotherapies are still the standards of care[22,27]. The rational for administering adjuvant 
therapy after surgery is to eradicate disseminated tumor cells (DTC) or micro-metastases to decrease the 
risk of relapse. A large body of evidence from adjuvant studies suggest that ER+ breast cancer benefits less 
from chemotherapy compared to ER- breast cancer[28]. This is particularly true for the luminal A molecular 
subtype of ER+ breast cancer, which has a low rate of proliferation. Luminal A tumors have lower rates of 
pathologic complete response to chemotherapy compared to the highly proliferative ER+ luminal B breast 
cancer subset, as demonstrated with neo-adjuvant anthracycline/taxane-based chemotherapy[29,30]. For 
HER2+ breast cancer the introduction of HER2 inhibitors as adjuvant therapy, in combination with taxane-
based chemotherapy, has vastly decreased the risk of metastatic progression and greatly improved survival 
in this cancer subtype[23,31]. TNBC is highly proliferative and respond better to chemotherapy compared to 
ER+ cancers[22,32]. Today no established targeted therapy exists for TNBC[33]. Interestingly, a fraction of TNBC 
are rich in tumor infiltrating lymphocytes and this infiltration has been associated with improved disease-
free survival and overall survival OS, suggesting that immune cells may contribute to therapy success and 
implying the possibility of applying check-point inhibitors-based immunotherapies for these patients[10,22].

In spite of an approx 30%-35% decrease in mortality over the past 35 years due to combined systematic early 
detection and improved adjuvant therapies, there are still about 20%-25% of breast cancer patients, all stages 
combined, that will eventually succumb to their disease due to formation of therapy resistant metastases. 
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This corresponds to about 95,000 and 40,000 women in Europe[1] (EU 28) and the United States[2], dying 
every year, respectively[18,19,34]. As of today, there are no effective, curative therapies for metastatic disease. 
Therapy-resistance and therapy-related toxicity limit therapeutic options[35]. 

METASTATIC DISSEMINATION
Cancer metastases is a multistage process. Cancer cells have to first escape from the primary tumor, survive 
in the circulation as circulating tumor cells (CTC), seed at distant sites as DTC and grow to colonize the 
new tissue and form secondary tumors[36-38]. Growing evidence indicates that metastases are formed by a 
subset of tumor cells with “stem cell-like” features[39-41] that also associated with resistance to treatments and 
dormancy[42-44]. Accordingly, molecules controlling stem cell maintenance and differentiation[10,22,45] have been 
implicated in metastasis, including Wnts, BMPs, TGFb family members, Notch, CD44 and integrins[46,47]. 
Cancer stem cells (CSCs), in contrast to normal adult stem cells, seem able to revert the hierarchy so that a 
differentiated cancer cell can revert and recover the stem-like features, while normal, differentiated somatic 
cells are not able to do so. Thus, CSCs may be rather defined by function than lineage and may represent 
a form of adaptation of cancer cells to cellular or microenvironmental stress[48-50]. This plasticity may be 
one reason why by eliminating CSCs as proposed as a new therapeutic approach to eradicate cancer, may 
actually not be as effective as anticipated[51-54]. Acquisition of CSCs traits has been associated with Epithelial-
to-Mesenchymal Transition (EMT), a condition endowing cancer cells with increased migratory, invasive, 
metastatic and therapy resistance capacities[53,55,56]. For example, breast cancer cells undergoing EMT acquire 
a cell surface phenotype (i.e., CD44high/CD24low) associated with CSCs properties[57]. Accordingly, EMT is 
a reversible process, as cells that disseminated through EMT and lost epithelial features, can revert back 
to their epithelial phenotype through an opposite process called Mesenchymal-to-Epithelial Transition 
(MET)[8]. Both CSCs and EMT are features that are heavily influenced by the microenvironment such as the 
vascular niches or inflammation (See below). 

The genetic and epigenetic basis of metastasis is still not fully elucidated[58]. A current paradigm relies on 
the notion that the accumulation and selection of genetic mutations and epigenetic alterations is the basis of 
clonal evolution at the primary site and metastatic dissemination is its ultimate expression[59]. This notion 
is supported by the clinical observation that primary tumor size is a main risk factor for metastasis. This 
suggests that metastasis formation occurs rather in late disease stage as the end product of an evolutionary 
processes in the primary tumor (linear model of metastasis)[8,37,60,61]. According to this model many 
driver mutations found in the primary tumor are present at the metastatic site, and only a few additional 
mutations accumulate between primary tumor and metastases[62-64], including in breast cancer[65-68]. In 
the other hand, comparative genomic hybridization analysis in breast and other cancers revealed that 
DTCs display significantly more genetic aberration than in the primary tumors[69-72]. These observations 
imply that metastatic cells disseminate early during tumor development and then progress independently 
from the primary tumor through multiple steps of genetic mutations. Therefore, the parallel progression 
model of metastasis has been proposed[60]. Importantly, the two models are not mutually exclusive: a first 
vague of cancer cells may disseminate early during tumor formation, for example at the time of oncogene 
activation or EMT induction[73-75], followed by the late dissemination of cells that acquired metastatic 
properties through local evolution[64,76]. Recently, evidence for the parallel progression model in breast 
cancer was reported by using experimental models. By studying metastasis in a HER2-driven murine model 
of breast cancer, Harper et al.[77] showed that cancer cells migrate away from early lesions shortly after 
HER2 activation. In this model over 80% of the metastases were derived from early disseminated cancer 
cells. Using the MMTV-HER2 breast tumor model, Harper et al.[77] identified a subpopulation of ERBB2+/
p-p38low/p-ATFlow/TWIST1high/E-CADlow early cancer cells that are invasive and can spread to distant organs 
(early disseminated cancer cells - eDCC). By using intra-vital imaging they showed that ErbB2+ eDCC 
precursors invaded locally, intravasated and lodged in target organs through a WNT-dependent EMT-
like dissemination program. Strikingly, although the majority of eDCCs were TWIST1high/E-CADlow and 
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dormant, they eventually formed metastasis. This experimental observation supports the notion that DTC/
DCC can remain dormant for prolonged periods before resuming growth to form macroscopic metastases. 
As current adjuvant treatment in breast cancer seems to have reached a plateau in term of survival benefits, 
understanding how DTC and micro-metastases adapt to the distant environment, survive and eventually 
resume growth to form macroscopic metastases may identify new therapeutic opportunities[1,8,78].

In both the linear and parallel tumor progression models, the genomic instability of tumor cells is the 
basis of the evolutive process. The variability emerging among tumor cells within the same tumor tissue 
is referred to as intratumoral heterogeneity and is also found within metastases[79]. This heterogeneity may 
also be responsible to the presence of tumor cells with low and high tumorigenic potentials, the latter being 
CSCs or cancer initiating cells (CICs)[80]. Moreover, it is believed that heterogeneity also exists inside the 
CSC population itself. In such a scenario, metastasis progression and resistance to anti-tumor treatment 
are thought to be due to clonal evolution and selection much alike Darwinian evolution[59]. Intratumoral 
heterogeneity may also contribute to tumor dormancy or escape from it. Marusyk et al.[81] have used the 
MDA-MB-468 tumor cell model in vivo to show that a IL-11 expressing tumor population is able to drive 
non-cell-autonomous tumor growth from dormant tumor cells. This indicates that re-establishment of 
certain heterogeneity is necessary for tumor growth after seeding or treatment. In line with this observation, 
Aceto et al.[82] have reported that, CTC clusters have higher ability to seed metastasis compared to single 
CTC, involving at least in part altered DNA methylation[83]. Furthermore, Kmieciak et al.[84] showed that the 
heterogeneity of breast cancer cells in the levels of IFN-γ receptor α expression could determine a selective 
dormancy. Tumor cells expressing high levels of IFN-γ receptor α are eliminated by CD8+ T cells, while 
tumor cells with low expression levels do not die and remain dormant in the presence of IFN-γ producing 
CD8+ T cells. Thus, tumor heterogeneity contributes to tumor dormancy by providing cells with different 
genetic and biological features. 

METASTATIC BREAST CANCER DORMANCY
As mentioned before, breast cancer metastasis occurs with a bimodal distribution with two peaks: a first 
one 1-2 years and a second one at 4-5 years after surgery, followed by a tailed extension up to 15 years[17,85,86]. 
These observations are inconsistent with a model of continuous growth kinetics and rather suggestive of 
discontinuous growth, thereby implying a period of dormancy[16,17,85-87]. Clinical observations also revealed 
that timing of appearance of metastasis has a similar profile for the different breast cancer subtypes, 
suggesting that after primary tumor removal, DTC from distinct subsets evolve following similar patterns 
but with different dominances (i.e., TNBC and HER2+ cancers tend to relapse at the early peak, compared to 
ER+/PR+ cancer which tend to relapse at the second peak or later[85,86,88,89]. These observations also suggest that 
relapses occurring at peaks may follow inducible and reproducible patterns based on defined mechanisms, 
for example tumor surgery[90], while relapses occurring in between or in the tailed extension may be 
due to unpredictable or random events, such as genetic mutations, epigenetic modifications or unrelated 
inflammatory events[65,67,68,91,92]. Accordingly, these clinical observations were modelled mathematically by 
considering known basic hazard rates and unknown variables[93,94]. Dormant disseminated cancer cells and 
micrometastases have been reported in breast cancer patients[95] and in experimental animal models[77,96-98]. 
Although dormancy is a common phenomenon in breast cancer, the underlying biological mechanisms 
remain ill characterized. Dormancy might be functionally considered as a transitional, metastable step of 
cell adaptation to a novel external stress, in particular a “foreign” soil. DTC lacking survival capabilities 
would rapidly die, while those that have acquired the latter would immediately grow to form macroscopic 
metastases without latency [Figure 1]. Mechanistically, three forms of cancer dormancy have been 
described and many genes and molecules involved identified[99-102]: cellular dormancy, microenvironmental 
(angiogenic) dormancy and immunological dormancy. These three forms of dormancy are not mutually 
exclusive and it is likely that clinical dormancy is owed by their combination and interrelation. 
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CELLULAR DORMANCY: SURVIVAL OF NON-PROLIFERATING SOLITARY CELLS 
Dormant DTC cells have developed mechanisms of survival in a foreign environment, but not yet those 
allowing unrestricted growth. They enter a state of cell cycle arrest (i.e., G0-G1) and survive as non-
proliferating solitary cells or as small cell clusters. Accordingly, solitary dormant cancer cells should 
be negative for the proliferation marker Ki67 as well as for apoptosis markers such as the terminal 
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Entry into dormancy and subsequent 
reactivation seem to be regulated by intrinsic programs and by contextual cues, similar to those involved 
in the physiological regulation of adult tissue stem cells[103]. Lack of signaling from the matrix seems to 
play a role in this form of dormancy, as loss of α5β1 integrin expression or function and inhibition of uPAR 
induce dormancy through the inhibition of the RAS-RAF-ERK signaling pathway, activation of p38/JNK 
signaling, and induction of p53/Rb-dependent cell-cycle arrest[103-105]. By studying DTC in an experimental 
model of head and neck squamous cell carcinoma, Sosa et al.[106] have shown that epigenetic upregulation of 
orphan nuclear receptor NR2F1 (COUP-TF1) plays a critical role in maintaining DTCs in a dormant state. 
This finding has been further extended by a study in breast cancer patients, in which NR2F1 was tested as a 
dormancy marker. Breast cancer patients with < 1% NR2F1high DTC in bone marrow aspirate had all systemic 
relapse within 12 months, while only half of the patients with > 50% NR2F1high remained metastasis-free[107]. 

Alterations in cell signaling have been found associated with tumor dormancy. High levels of ERK1/2 
activity lean toward a higher proliferation, so the ratio of ERK1/2 to p38 MAPK regulates the cell cycle 
suggesting that the cross talk between mitogenic and stress signals may be relevant to induce cellular 
dormancy[108]. Impinging on the PI3K signaling cascade was shown to lead to quiescence and the activation 
of autophagy[109]. Dormant tumor cells express high levels of ARHI, an inhibitor of the PI3K-AKT cascade, 
and ARHI silencing awakens dormant cells of several tumor types, and promotes their proliferation[110,111]. 
Consistently, very low or absent AKT signaling in DTC from breast cancer patient has been shown to 
correlate with the state of dormancy[112]. Strikingly, however, mTOR, a known target of AKT, is found to be 

Figure 1. Dormancy in cancer progression. Tumor cells can leave the primary tumor site and enter the systemic circulation as circulating 
tumor cells (CTCs). Once surviving CTCs have reached a target organ, they seed into a new tissue as disseminated tumor cells (DTCs). 
Their fate is diverse depending on their cell autonomous capacities and complementary cues provided by the local environment. DTCs 
can rapidly die if they fail to adapt to the new condition or are killed by the immune system. They can immediately resume proliferation if 
they have acquired full autonomy for cell survival and proliferation or the local microenvironment provide missing complementary cues. 
In addition, proliferating cells have to evade the immune system. Alternatively, DTC or small tumor cell clusters, can enter a state of 
dormancy if cell autonomous or microenvironmental signals are sufficient to maintain survival but do not effectively support growth or 
the immune system keeps them in check by preventing their expansion. Dormant tumor cells can eventually die by exhaustion, be killed 
by the immune system or resume proliferation and generate clinically relevant metastases at later time points
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activated in quiescent cancer cells. This activation is independent of AKT and is maintained by the small 
GTPase RHEB with anti-apoptotic activity and itself under control of the stress-regulated transcription 
factor ATF6α and high p38 kinase activity. Thus, mTOR seems to be a critical node integrating diverse 
signaling pathways regulating dormancy[111,113,114]. Recently Malladi et al.[115] have shown that human 
breast and lung carcinoma cells express stem-cell like SOX transcription factors, which induces autocrine 
expression of DKK1, a WNT inhibitor, resulting in a state of metastatic latency and immune evasion 
consistent with dormancy. 

Interaction with the extracellular matrix is also implicated in controlling dormancy[116], paralleling the role 
of cell-matrix interaction in physiological CSC niches[117]. For example, the uPAR interaction with a5b1 
integrin increases ERK activity and integrin binding to fibronectin fibrils suppresses p38 activity, increases 
ERK activity and promotes cell proliferation. Accordingly, low uPAR-expressing cells that are growth 
arrested (dormant) in vivo, have a high p38/ERK activity ratio and fail to assemble fibronectin fibrils and 
ligate a5b1 integrin[104]. Integrin a5b1 was shown to promote survival of growth-arrested breast cancer cells 
reminiscent of breast cancer dormancy in bone marrow[118]. Collagen-rich matrix (fibrosis) at the metastatic 
site is also a critical determinant of DTC transition from dormancy to metastatic growth[116]. For instance, 
hepatocellular carcinoma cells that colonize rigid matrix resume growth and proliferation through TGF-β1 
signaling, while cells colonizing a softer matrix remain dormant[116]. The proliferative switch of dormant 
DTCs in response to fibrosis in a mouse model of breast cancer was shown to be also mediated by β1 
integrin[116]. 3D-in vitro models and further in vivo studies demonstrated the critical role of type I collagen 
in the proliferative fate of DTCs[119-121]. Another matrix protein, periostin, produced by TGF-β1-stimulated 
stromal fibroblasts and angiogenic blood vessels[47,122], can drive DTCs escape from dormancy through WNT 
signaling in breast carcinoma[123]. Interfering with extracellular matrix-integrin interaction, in particular b1 
integrins, has been proposed as therapeutic approach to promote dormancy, including in breast cancer[124,125].

Autophagy appears to promote DTCs survival and dormancy by maintaining DTCs viable under conditions 
of microenvironmental stress[126]. Autophagy also promotes survival of DTC against chemotherapy-induced 
cell stress[126]. On the other side, in breast cancer the lack of autophagy is associated with early tumor 
recurrence and escape from dormancy[127]. It is important to note, that cellular dormancy is not just a feature 
of cancer cells but it also occurs in normal cells. For example, hair follicle (bulge) stem cells, muscle stem 
cells (satellite cells), hematopoietic and liver stem cells are rather quiescent under homeostatic conditions 
and can be rapidly activated during tissue regeneration and repair[128-130]. These observations raised the idea 
that cancer cells may hijack the signaling cascade used physiologically by these cells to enter, maintain and 
exit dormancy during homeostatic and regenerative conditions[103,131].

SENESCENCE, A SPECIAL FORM OF CELLULAR DORMANCY? 
The term senescence was originally introduced to describe primary human fibroblasts in culture, that 
after reaching a maximal number of passages (cell divisions) entered a state of permanent growth 
arrest[132,133]. Senescent cells remain metabolically and synthetically active but show significant alterations in 
morphology[132-134]. Following these original observations, scientists discovered that replicative senescence 
is driven by telomere shortening[135]. Telomerase, an enzyme reconstituting telomers, is expressed in 
germ line cells, early embryonic cells, but not in normal cells, and is re-expressed in most cancer cells[134]. 
Besides telomere shortening, other stimuli have been found to induce the senescence[136] including DNA 
damage[137], chemotherapy[138] and oncogene activation[139]. Despite the nature of the stimulus initiating 
the senescence cascade, the signals ultimately converge to the p53/p21 and/or p16INK4a/pRB pathways[136]. 
The tumor suppressor proteins DEC1 (Deleted in Esophageal Cancer) and Decoy Receptor 2 are also used 
as senescence markers in some cell types[140]. Importantly, when oncogenic HRAS (HRAS12V) was used to 
transform immortalized embryo fibroblasts into tumorigenic cells[141], unexpectedly, it induced senescence 
in normal cells associated with the accumulation of p53 and p16INK4a[142]. Thus, senescence may act as a 
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tumor-suppressor mechanism in response to oncogene activation[133]. Generally, overexpression or sustained 
activation of one of the tumor suppressors p53, p21, p16INK4a, or pRB is sufficient to induce senescence[136,143-145]. 
Importantly, growth arrest caused by senescence is considered as irreversible as senescent cell could not be 
stimulated to resume proliferation by exposure to growth factors[136,141,143]. However, the genetic or epigenetic 
alternations which cause the shift of the senescence maintaining mechanisms, such as the inactivation of 
tumor suppressor genes p53 and/or p16INK4a, could potentially push the cells to re-enter the cell cycle[136,143]. 

It is not clear whether senescence is one of the mechanisms that drives tumor dormancy and late relapse, but 
there are some potential links suggesting so. Senescence-associated secretory phenotype (SASP) defines the 
spectrum of factors secreted by senescent cells. It consists of a mixture of chemokines, cytokines, growth 
factors and proteases, many of which are pro-inf lammatory[136]. The cytokine GM-CSF (granulocyte-
macrophage colony-stimulating factor, also known as CSF2), one of the components from SASP, induces 
differentiation of myeloid dendritic cells, which present tumor-associated antigens (TAAs), resulting in 
the activation of the immune system, enhanced immunosurveillance and improved tumor control[146,147]. 
Furthermore, Braumüller et al.[148] showed that adaptive TH1 cell are capable, via the combined secretion of  
IFN-γ and TNFR to induce tumor cells senescence. In conclusion, while senesce is a mechanism capable of 
negatively controlling tumor growth, its relevance in dormancy is not fully demonstrated. 

MICROENVIRONMENTAL DORMANCY: DEFICIENT SUPPORT FROM THE 

MICROENVIRONMENT
In this form of dormancy, the fate of the DTCs is mainly controlled by the immediate, and possibly distant, 
host environment[126,149]: cancer cells proliferate but fail to grow as a tumor mass because proliferation is 
balanced by cell death[99]. This situation has been described first when disseminated cancer cells fail to 
induce blood vessels[150]. During the early stage of tumor spreading, DTCs associate to preexisting (coopted) 
blood vessels where oxygen and nutrient levels are highest[151]. Importantly, quiescent mature blood vessels 
keep DTCs in a state of dormancy through angiocrine communication[122]. With the growing tumor 
mass, however, the increasing metabolic demand call for the formation of novel blood vessels through 
an angiogenic switch[152]. Several molecules, including hypoxia-inducible factor 1, vascular endothelial 
growth factor (VEGF), placental growth factor and angiopoietin-1, are induced upon metabolic stress or 
hypoxia and initiate endothelial cell sprouting from preexisting vessels[153]. Angiogenic endothelial sprouts 
secrete periostin and TGF-β1 to create a microenvironment that promotes DTCs exit from dormancy 
and accelerates proliferation[122]. Thus, the failure of initiating the angiogenic switch will keep the tumor 
mass small, a condition called angiogenic dormancy[154]. Conversely, a short-term angiogenic burst may 
awaken dormant tumor cells[155]. For example, in the mouse model of Lewis lung carcinoma, dormant 
micrometastatic cells can be induced to to grow by the expression of VEGF and the recruitment of bone-
marrow-derived endothelial progenitor cells[156]. 

Importantly, inf lammatory cells recruited to the tumor microenvironment are critical inducer of the 
angiogenic switch and lack of recruitment may therefore contribute to angiogenic dormancy[11,157]. In 
particular the polarization of tumor associated macrophages toward the M2 phenotype results in the 
formation of a metastatic niche favoring tumor cell outgrowth[158]. In addition, the angiogenic endothelium 
triggers a T helper 2-mediated inflammatory response, which can accelerate metastatic outgrowth in tumor 
models[159]. The hemopoietic stem cell niche also supports quiescence and survival through the CXCL12/
CXCR4 pathway and Src pathway[47,160] as well as the TGF-β2-rich bone marrow microenvironment[161]. 
On the other hand, expression of VCAM1 on DTCs promotes escape from dormancy. This is due to the 
recruitment of osteoclast progenitors via α4β1 integrin binding to VECAM1 causing the breakdown of the 
bone matrix and stimulation of DTC to grow and form metastases[162,163]. Likewise, metastatic outgrowth 
following skeletal traumas was associated with bone remodeling in the reactivation of DTCs via TNFα, 
IL1β, IL6 and prostaglandin E2 production[163]. Thus, the cellular tumor microenvironment, in particular 
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inflammatory cells, endothelial cells and osteoclasts should be considered as critical regulators of tumor 
dormancy. 

IMMUNOLOGICAL DORMANCY: ACTIVE CONTROL BY THE IMMUNE SYSTEM  
The immune system can specifically recognize tumor cells through TAAs and initiate an anti-tumor 
immune response through a multi-step process called immunoediting[164,165]: initially, the immune response 
can effectively eliminate cancer cells and no metastases are formed (elimination phase). If a balance between 
the tumor suppressive immune response and tumor evasion is achieved (equilibrium phase), the tumor mass 
remains constant resulting in a state of immunological dormancy[166]. Tumor cells may eventually succeed 
in evading the immune system through a combination of genetic evolution and exhaustion of the immune 
system, and resuming growth to form macroscopic metastases (escape phase). Evasion involves multiple 
mechanisms, including the down-regulation of TAAs or MHC molecules, secretion of immunosuppressive 
cytokines, (e.g., IL-10 or TGF-b), recruitment of regulatory T cells (Treg), myeloid derived suppressor cells 
(MDSC) or alternatively (M2) - polarized macrophages or by expressing immunosuppressive molecules 
on the cell surface, such as PDL1 or B7[167-169], in multiple cancer types, including breast cancer[170]. The 
occurrence and relevance of immunological dormancy in human cancer is difficult to grasp, as the absence 
of biomarkers of dormancy makes it hard to investigate in patients. Also, there is paucity of clinically 
relevant in vivo model for experimental studies[100]. Pommier et al.[171] have recently reported that patients 
and mice with pancreatic ductal adenocarcinoma contained single quiescent DTCs lacking MHC-I 
expression, which enabled them to escape immunity and establish latent metastases. Four cases of breast 
cancer transmission to immunosuppressed transplant recipients from a single, clinically healthy donor have 
been recently described[172]. The latency time to metastasis formation ranged from 16 months to 6 years, and 
transmissions did not occur in a patient that discontinued immunosuppression. This unintentional situation 
suggested that donor tissues harbored DTCs, which persisted in a latent state because of immune control, 
while the immunosuppression of the recipient allowed the DTCs to resume growth[172]. Once cells have 
escaped immunosurveillance it is unlikely that they can re-enter a second state of immunological dormancy, 
because the mechanisms that eluded immunosurveillance are generally part of the genetic or epigenetic 
tumor clonal evolution and therefore irreversible[59,91]. 

The recent observation that immunosuppressive immune cells promote angiogenesis[157], and that some 
angiogenic factors, including VEGF, are immunosuppressive, established an important cross-talk between 
these two systems[173-175]. They implicate that suppression of angiogenesis may stimulate the immune system 
and that reversal of immunosuppression may inhibit angiogenesis in a bi-directional cross-talk. In support 
of this notion, several trials have been performed to improve the anti-tumor immune response with anti-
angiogenic drugs[176]. Combination of anti-angiogenic agents with immunotherapy is currently being 
considered as strategy to improve the response rates and duration of immunotherapy[177]. For example, VEGF 
has been shown to suppress the immune-response by impinging on maturation of dendritic cells[178,179]. 
Thus, inhibition of VEGF abrogates its immunosuppressive effect and improves the antitumor effect of 
adoptive cellular immunotherapy[180]. Combining anti-VEGF therapies with check-point inhibitors (e.g., 
anti-PD-L1) has shown synergy and positive outcomes in phases I to III studies, particularly in patients with 
high VEGF levels[177]. Using the 4T1 experimental model of TNBC we have demonstrated that inhibition 
of tumor angiogenesis with the anti-VEGFR-2 antibody DC101, attenuated the inhibitory effect of MDSC 
on T cell proliferation and decreased the frequency of Tregs in primary tumors and lung metastases[181]. 
Combined angiopoietin-2 and VEGF inhibition was shown to promote superior vascular regression, tumor 
necrosis, and enhanced the perivascular recruitment of cytotoxic T lymphocytes, as compared to the single 
agents in multiple cancer models. Addition of a PD-1 blocker unleashed the cytotoxic activity resulting 
in improved tumor control[182,183]. These findings support the rationale for combining anti-angiogenic 
therapy with immune checkpoints inhibitors in cancer therapy, including in breast cancer. In addition to 
immunosuppressive angiogenic molecules, endothelial cells themselves also play a direct role in modulating 

Page 8 of 24                         Peyvandi et al. J Cancer Metastasis Treat 2019;5:44  I  http://dx.doi.org/10.20517/2394-4722.2019.16



cellular dormancy. Quiescent endothelial-derived thrombospondin-1 induces sustained quiescence of DTC in 
breast cancer, while sprouting vessels wake dormant DTC and promote their outgrowth[122,184,185] [Figure 2].

DORMANT CANCER CELLS ARE RESISTANT TO THE CYTOTOXIC EFFECTS OF 

CHEMOTHERAPY
Adjuvant chemotherapy significantly improves breast cancer patient survival, in particular for TNBC, 
by decreasing the hazard of relapse after surgical removal of the primary tumor[26,32,186-188]. Relapses and 
metastases however still occur in a fraction of patients and are likely due to tumor cells that had already 
invaded the surrounding tissue, lymphatic vessels and lymph nodes, or disseminated through the blood 
stream to the bone marrow and distant sites prior to surgery and resume grow at a later time point[60,77,189]. As 
it is generally assumed that adjuvant chemotherapy acts by killing tumor cells, a corollary of this assumption 
is that relapses are due to DTC resuming growth at a later time point after surviving chemotherapy. 
Dormant, poorly proliferative DTC may not be affected by chemotherapy and may persist upon treatment 
since chemotherapeutic drugs mainly target highly proliferating cells. This has been shown for instance in 

Figure 2. Synthetic summary of cellular and molecular events and interventions associated with dormancy. Cellular and molecular 
events promoting entering into dormancy or escape from dormancy are listed based on their implication in the three forms of dormancy. 
Classification is based on the main mechanisms and does not consider potential cross talk between different types of dormancy
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acute lymphoblastic leukemia, colorectal, lung, liver and breast cancers[190-196]. In addition, chemotherapy 
pre-exposed DTC may develop mechanisms of chemoresistance and become less responsive to subsequent 
chemotherapies, as is often observed at relapse in patients. CSCs have been shown to be chemo-resistant and 
to be responsible for post-therapy relapses[197]. Chemotherapy causes enrichment of CSCs thereby facilitating 
recurrences and resistance to further chemotherapies in multiple cancers including glioma, ovarian, liver, 
colon, breast cancers[197]. Resistance involves multiple mechanisms, such as activation of signaling pathways 
prominent in stem cells (e.g., WNT, NOTCH, HEDGEHOG)[198-200], but also pathways that are frequently 
mutated and activated in cancer, in particular the EGFR-HER2/PI3K/PTEN/Akt/mTORC pathway[198,200,201]. 
CSC are often enriched at sites of chronic hypoxia leading to the activation of the HIF pathway[200,202]. 
Interestingly, HIF activation leads to the initiation of protective pathways, including WNT and NOTCH, 
and genes of the ATP-binding cassette (ABC) drug transporter family members, such as MDR1, MRP1 
and ABCG2 which are responsible for the efflux of cytotoxic drugs from the cells[203-208]. Additional, HIF-
independent mechanisms have been reported[209]. In short, the mechanisms behind the long-term beneficial 
effects of adjuvant chemotherapy remain in part elusive and cannot be fully explained by the direct cytotoxic 
activity of chemotherapy as dormant/CSC that are mostly responsible for late relapses that are highly 
resistant to chemotherapy.

IMMUNE RESPONSE AND CHEMOTHERAPY IN BREAST CANCER 
Cumulating evidence indicates that tumor infiltrating lymphocytes (TILs) play an active role in controlling 
progression and clinical outcome in breast cancer, particularly in highly proliferative TNBC and HER2+ 
cancers[210-212], and in conjunction with chemotherapy[213,214]. This is particularly relevant to TNBC, as these 
cancers present the richest presence of TILs, most notably CD8+ T lymphocytes, and tertiary lymphoid 
structures[211,215,216]. Increased numbers of infiltrating TIL in TNBC, are associated with an improved 
pathological complete response to chemotherapy[217], decreased rates of recurrences and improved 
survival[210,216,218]. Evaluation of TILs in breast cancer has been recommended as an immunological 
biomarker with prognostic and potentially predictive values, mainly in TNBC and HER2-amplified breast 
cancers[219]. In TNBC, expression of antigen presenting MHC class II pathway molecules is associated with 
a better outcome, consistent with the hypothesis that a functional antigen presentation pathway may trigger 
a protective antitumor immune response in response to chemotherapy[220]. Ladoire et al.[221] demonstrated 
that pathological complete response to neoadjuvant chemotherapy of breast carcinoma resulted in the 
disappearance of tumor-infiltrating FOXP3+ regulatory T cells and the increase in tumor infiltrating 
cytotoxic TiA1+ and granzyme B+ T cells, consistent with the induction of an antitumor immune response 
by chemotherapy. While the association between lymphocytic infiltrates, and improved outcome after 
chemotherapy appears to be strongest in TNBC and HER2+ breast cancer subtypes, the association with 
luminal tumors is less clear, and may be limited by the reduced immune infiltration or by the greater tumor 
heterogeneity of these tumors[222]. Several recent experimental studies have shown that chemotherapy can 
induce a therapeutic anti-tumor immune response. For example, Ma et al.[223,224], reported that anthracycline-
based chemotherapy induces the release of ATP by dying breast cancer cells, which promotes the 
recruitment and differentiation of CD11c+CD11b+Ly6Chigh antigen presenting cells. Depletion or preventing 
tumor infiltration by these cells abolished the anti-tumor immune responses elicited by anthracyclines[223,224]. 

Besides these desired immunological effects, chemotherapy can also induce unwanted, immune-mediated 
tumor-promoting effects. For example, increased expression of TNFa in the breast tumor microenvironment 
due to chemotherapy, induces CXCL1/2 expression via NF-κB activation in breast cancer cells and 
initiates a paracrine loop involving myeloid cell-derived S100A8/9 to enhance cancer cell survival and 
chemo-resistance. Inhibition of CXCR2 blunt this TNFa-induced response and augments the efficacy of 
chemotherapy, particularly against breast cancer metastasis[225].
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Taken together, there is growing evidence to support the notion that chemotherapy, in particular those based 
on anthracyclines, can elicit an effective anti-tumor immune response in breast cancer, mainly in the TNBC 
and HER2+ subtypes.

CHEMOTHERAPY-INDUCED IMMUNOLOGICAL BREAST CANCER DORMANCY
One important question emerging from these studies is whether the cytotoxic activity of chemotherapy 
and the elicited immune response, dominated by CD8+ T lymphocytes, may be sufficient to effectively kill 
cancer cells or whether additional mechanisms may be involved. This is particularly relevant to dormant 
DTC as these cells are naturally less responsive to chemotherapy due to the fact that they are not or low 
proliferative. We were interested in the possibility of whether a short chemotherapy treatment, induce a 
long-lasting immune response leading to immunological dormancy. We recently addressed this question 
experimentally[226]. To this end, we treated the TNBC-like 4T1 cells with high dose Methotrexate and 
Doxorubicin in vitro and characterized the in vitro and in vivo behavior of the surviving cells (MR20 
and DR500 derived from Methotrexate and Doxorubicin treatment, respectively). The hallmark of the 
surviving cell lines was the dormant phenotype at the primary (MR20 in the mammary gland) or at the 
metastatic (MR20 and DR500 in the lung) site. MR20 cells grew significantly slower in vitro compared to 
parental 4T1 cells and this was due to increased cell death, while there was no significant alteration in the 
cell cycle.  When injected orthotopically in the mammary fat pad of immunocompetent BALB/c mice, 
only about half of the MR20-injected mice developed tumors with a longer latency (between 6 week and 
4 months) compared to parental 4T1 cells (between 2 and 4 weeks). These tumor cells grew with nearly 
the same rate as parental 4T1 tumors and were highly metastatic. DR500 cells formed primary tumors but 
no lung metastases. Both conditions were consistent with dormancy. In BALB/c mice MR20 and DR500 
cells twisted the immune response from CD11b+ Gr1+ MDSC-dominated to CD4/8 T cell, B cell and DC 
dominated response. When injected in vivo in immunodeficient NSG mice, however, treated cells formed 
tumors without latency. We then performed a genome wide gene expression analysis of parental 4T1, MR20 
and DR500 cells and the dominant trait observed was a type I IFN gene expression signature and the 
sustained activation of the IRF7/IFN-β/IFNAR pathway. Upregulated IRF7 expression in treated cancer cells 
was responsible for suppressed mobilization of CD11b+ Gr1+ MDSCs, increased expansion of DCs, T and B 
lymphocytes and chemo resistance. Silencing IRF7 or blocking IFNAR1 resulted in escape from dormancy 
in vivo. Elevated levels of IFN-β were present in the blood of mice injected with dormant cells, while MR20 
cells escaping dormancy and forming late tumors no longer expressed IFN-β. Interestingly, the dormant 
D2.0R murine breast cancer cells that are generally considered as a model of cellular dormancy, also induced 
a T-cell twisted immune response and had a constitutive active IRF7/IFN-β/IFNAR pathway [Figure 3]. 
To collect evidence that the activation of the type I IFN pathway was associated with a better response 
to chemotherapy in patients, we monitored IFN-β levels in serum samples of ER- breast cancer patients 
treated with neoadjuvant chemotherapy (TOP trial NCT00162812). Patients with detectable IFN-β during 
neoadjuvant therapy had significantly longer distant metastasis free survival (DMFS) compared to patients 
with undetectable levels[226]. 

TYPE I IFN RESPONSE TO CHEMOTHERAPY MEDIATES IMMUNOLOGICAL DORMANCY IN 

BREAST CANCER 
Taken together our results demonstrate that sustained activation of the IFN-β/IFNAR/IRF7 signaling 
axis in chemotherapy-treated TNBC-like murine breast cancer cells instigates immunological dormancy. 
Elevated levels of IFN-β in the serum of TNBC patients during adjuvant therapy correlates with a shorter 
DMFS. Acute exposure of breast cancer cells to chemotherapy induced IFN-β expression[226]. Thus IFN-β 
may be considered as a potential therapeutic tool to improve chemotherapy efficacy and clinical outcome 
as well as a potential predictive biomarker to identify responding vs. non-responding patients. While the 
implication of type I IFN in dormancy is novel, previous reports have implicated it in acute anti-tumor 
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response to chemotherapy. Sistigu et al.[227] reported that anthracycline-based chemotherapy rapidly induced 
the production of type I IFN in cancer cells via TLR3 activation resulting in CXCL10 secretion promoting 
an anti-tumor immune response mimicking those induced by viruses. Moreover, a type I IFN-related 
signature predicted clinical responses to anthracycline-based chemotherapy in breast cancer patients. Using 
a panel of ER- breast cancer PDXs before and after chemotherapy, Legrier et al.[228] demonstrated activation 
of the IFN/STAT1 pathway and expression of IFN-inducible genes, early after chemotherapy treatment. 
IFN-a deficient DC were shown to accumulate in aggressive breast cancers favoring the expansion of 
Tregs implicating that IFN-α deficiency may contribute to tumor immune tolerance and poor clinical 
outcome[229]. Previous studies based on tumor-derived IFN signatures have shown that IFN-regulated genes 
may correlate with favorable outcomes. A STAT1 signature before therapy was associated with a better 
response to neoadjuvant chemotherapy[230] and better prognosis in TNBC and HER2+ breast cancers[231]. 
High IRF7 pathway activity in human breast cancer predicted bone relapse-free survival and, and protected 
mice against bone metastasis[232]. In the same study, treatment with IFN-α improved bone metastasis-free 
survival[232]. High level of IFN-β activates STAT1, STAT2 and STAT3 to facilitate cell autonomous cellular 
dormancy of melanoma repopulating cells[233]. Taken together, our recent data extend the role of type I IFN 
in immunoediting in cancer[234] to a putative role in inducing immunological dormancy after chemotherapy 
in TNBC. An important outstanding question raised by our study, concerns the effector mechanism of T 
cell mediated dormancy. While it is likely that direct CD8+ T cell mediated killing and immune control 
is involved, particularly since CD4+ Th1 T cells produce IFN-γ which upregulates MHC expression on 

Figure 3. Schematic model of chemotherapy-induced immunological dormancy. Primary breast cancer cells escape immune elimination 
by inducing the expansion of myeloid derived suppressive cells (MDSC) which also promote tumor growth. Chemotherapy induces a 
type I IFN response in treated tumor cells, resulting in an autocrine and self-sustained increase of IRF7 expression and activation, which 
in turn induces expression and secretion of IFN-β. Secreted IFN-β binds to IFNAR and induces signaling in both immune cells and tumor 
cells. IFNARs signaling in tumor cells activates STAT1/STAT2/IRF9 complex which further induces the expression of IFN-β responsive 
genes including IRF7 resulting in a sustained autocrine IFN-β expression and secretion. Paracrine activation of IFNARs on immune cells 
stimulates the expansion of tumor suppressive lymphocytes (e.g., CD4+ and CD8+ T cells) and prevents the mobilization of MDSCs, 
resulting in the switch of the immune response from immunosuppressive to anti-tumoral
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tumor cells thereby facilitating killing by CD8+ T cells[235], it is plausible that additional mechanisms may be 
involved. One possibility is suppression of tumor angiogenesis by the secretion of anti-angiogenic factors, 
such as CXCL9 and CXCL10 by CD4+ T cells[235]. Another putative mechanism is induction of senescence. 
CD4+ Th1 T cells also produce TNF-α, which in combination with IFN-γ induces an irreversible state of 
cellular senescence keeping DTC dormant[235,236]. Ongoing projects in our lab are aimed at unraveling the 
effectors steps. 

BREAKING DORMANCY: IMPACT OF INFLAMMATION
Clinical and experimental observations indicate that dormant tumor cells can resume proliferation 
and generate macroscopic metastases at various times after primary tumor treatment[17,85]. Escape from 
dormancy could be initiated by cell autonomous events, such as oncogenic mutation or inactivation of 
tumor suppressor genes. Alternatively, alterations in the host micro- or macro-environment may promote 
escape from dormancy. Metastatic growth following surgical removal of the primary tumor itself is often 
observed in clinical settings with predictable patterns, including in breast cancer[16,86,237-241]. Reconstructive 
surgery after mastectomy for breast cancer significantly accelerates relapse rates proportionally to the 
extent of surgery, when compared to primary surgery. However, no worsening in long-term survival was 
reported, consistent with an effect on breaking dormancy and accelerating progression but not altering the 
overall outcome[242]. Enhancement of metastatic growth induced by experimental surgery has been long 
observed in animal models, suggesting that surgical wounding itself may be directly involved in breaking 
dormancy[243-245]. Recently Krall et al.[246] described an experimental model that links the wound-healing 
response after surgery to the outgrowth of DTC at distant sites. The link is mediated by the systemic 
inflammatory response induced after surgery suppressing a tumor-specific T cell response, thereby resulting 
in tumor growth. Consistent with these findings, perioperative anti-inflammatory treatment significantly 
reduced tumor outgrowth. Epoxyeicosatrienoic acids, a family of pro-inflammatory molecules, stimulated 
escape from dormancy in several tumor models independently of the primary tumor and was associated 
with increased production of VEGF by endothelial cells[247]. Recently, it was reported that lung inflammation 
promotes escape from tumor latency by inducing ZEB1 expression, a regulator of the EMT[248]. Another 
recent study reported that neutrophil extracellular traps (NET) produced by neutrophils during repeated 
acute inflammation awaken dormant cancer cells in a mouse model of breast cancer[249]. The releasing of 
neutrophil elastase and MMP9 from NET then remodel laminin in the extracellular matrix rendering it 
accessible to a3β1 integrin. Ligated a3β1 integrin leads to the activation of FAK, ERK and MLC2 signaling 
resulting in the awakening of the dormant cancer cells[249]. 

Clinical and experimental evidence suggests that sustained inflammation may also promote relapses[91]. 
Correlations between inflammation at primary tumor site and risk or recurrences were reported for several 
cancers including oral[250], endometrial[251] and breast cancers[250,252]. Elevated levels of circulating C-reactive 
protein and serum amyloid A, two proteins of the inflammatory response, are associated with reduced 
overall survival in breast cancer, independently of body mass index, age and tumor type and stage, consistent 
with inflammation being involved in breaking dormancy[253]. Interestingly, perioperative administration 
of the analgesic nonsteroidal anti-inflammatory drug (NSAID) ketorolac was reported to suppress early 
breast cancer relapse particularly in TNBC patients[254] and to reduce distant recurrences in patients with 
increased BMI[255]. Taken together, there is compelling clinical and experimental evidence indicating that 
inflammation promotes breast (and other) cancer relapses by breaking dormancy. 

OUTLOOK AND PERSPECTIVES
Tumor dormancy is widely accepted as one discrete step during multistage tumor progression and bears 
considerable therapeutic potential[256]. The rapid translation of this innovative concept to the patient is 
limited by the paucity of therapeutic tools currently available in the clinic. Treatments directly aimed at DTC 
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by critical cell survival and proliferation pathways (e.g., PI3K-AKT or MAPK pathways), stem cell pathways 
(e.g., WNT, NOTCH) or cell adhesion molecules (e.g., b1 integrin) would be virtually excluded for such an 
approach given their expected long-term systemic toxicities. We are proposing here selected strategies based 
on limiting the host (unwanted) inflammatory response and stimulating the (wanted) anti-tumoral-immune 
response that may be rapidly tested in clinical-translation studies in breast cancer [Figure 4]. 

NSAIDs
There is growing clinical and experimental evidence that inf lammation can trigger cancer relapse, in 
particular in breast cancer, and that NSAIDs treatment can prolong dormancy and delay or reduce 
relapses[246,248,249,252,254,255,257]. The overall positive safety profile of aspirin and other NSAIDs would make them 
realistic candidate drugs for such long-term therapies[258]. Even more interesting, as a short perioperative 
treatment with ketorolac has been shown to significantly decrease the risk of breast cancer relapses 
particularly in obese patients[255], a short term NSAID treatment at time of surgery may have long-lasting 
effects through suppression of surgery-associated inflammation. 

Neoadjuvant chemotherapy
A second approach to consider, is to exploit the ability of chemotherapy to elicit an effective immune 
response in breast cancer, particularly in lymphocyte-infiltrated TNBC or HER2+ tumors[211,212,222,224,226,227,259]. 

Figure 4. Strategies to improve chemotherapy-induced immunological dormancy. Based on work by others and us, we propose four 
clinically feasible approaches to induce or maintain breast cancer dormancy, primarily in TNBC. Firstly, we propose neo-adjuvant 
chemotherapy (nCTX) to promote chemotherapy-induced immune response. Chemotherapy may be pursued as adjuvant therapy 
(aCTX) if necessary. Secondly, during and following surgery we propose the administration of NSAIDs (in particular Ketorolac) to prevent 
surgery-associated inflammation that may potentially promote relapses. Thirdly, the cytotoxic immune response could be stimulated by 
providing type I IFN, or inducers of an interferon response such as TLR4 ligands, in particularly in low IFN-producing patients. Fourthly, 
addition of checkpoint inhibitors, such as anti-PD1/PDL-1 antibodies, may be applied to maintain the immune response active
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Our and other’s results indicate that chemotherapy induces an effective anti-tumor immune response upon 
tumor cell treatment[214,226,227]. Clinically this implies that neo-adjuvant/pre-operative chemotherapies may 
be more effective in inducing a long-lasting, protective immune response compared to classical adjuvant/
post-operative therapies, due to the larger targeted tumor mass[224,260]. Indeed, neoadjuvant chemotherapy is 
already used in highly proliferative breast cancers (i.e., Luminal B, HER2+ and TNBC) with high frequencies 
of pathological complete responses (pCR). Interestingly, paclitaxel, in combination with trastuzumab, 
induced a high rate of pCR in HER2+ patients, likely due to the synergy between the immunomodulating 
properties of these drugs[260]. Ladoire et al.[221] reported that pCR to breast cancer neoadjuvant chemotherapy 
was associated with the disappearance of tumor-infiltrating FOXP3+ Tregs and recruitment of CD8+ T cells, 
consistent with the induction of an antitumor immune response by chemotherapy.

Type I IFN
In our experimental model we have shown that Type I IFN response is essential to elicit a state of 
immunological breast cancer dormancy[226]. Others have shown that exogenous addition of type I IFN 
boosted an insufficient response to chemotherapy in an experimental model of breast cancer and that a 
type I IFN-related signature predicted clinical responses to anthracycline-based chemotherapy in breast 
cancer patients[227]. We demonstrated that patients with high levels of serum IFN-β during neoadjuvant 
therapy have a better outcome compared to patients with low levels[226]. This suggests that administration of 
type I IFN during neo-adjuvant therapy may be effective in mounting a long-lasting immune response in 
particular in those patients with low endogenous type I IFN levels. Type I IFN, in particular IFN-α has been 
already tested as immunostimulatory anti-cancer agent, especially in melanoma and kidney cancers, albeit 
with mild results, in part also due to the need of repeated administrations and its intrinsic toxicity[261-263]. 
Alternatively, less toxic inducers of Type I IFN response, such as TLR-ligands of STING stimulators may be 
considered[227,264]. 

Check point inhibitors
A complementary strategy to IFN administration could be the use of check point inhibitors, in particular 
anti-PD-1/PD-L1 antibodies to relieve tumor-induced immunosuppression[265]. In breast cancer, 
immunotherapy is being explored, in particular in patients with tumors expressing PD-L1 and infiltrated 
with lymphocytes[266]. Potential response to PD-1 or PD-L1 inhibitors was demonstrated in metastatic 
TNBC[267] and HER2+ breast cancers[268]. However, because the number of potential neoantigens available 
for immune response in most breast cancers, responses are modest compared with other cancers such as 
lung and melanoma, the use of check-point inhibitors may require combination with other therapies[269]. 
Therefore, combination with neo-adjuvant chemotherapy (causing the release of tumor antigens), anti-
angiogenesis therapies (suppressing inhibitory cues)[182] or Type I IFN (acting immunostimulating)[270] may 
be more effective and should be explored. 

Biomarkers of dormancy
There are currently no specific non-invasive biomarkers to monitor breast cancer dormancy of clinical 
utility[271]. Such markers would allow personalized follow up and accelerate therapeutic decisions in case of 
evidence of disease progression. CD44+/CD24- CTC subsets along with combinatorial expression of uPAR 
and b1 integrin, as well as proliferation and apoptosis markers in CTC of early breast cancer patients, have 
been explored for potential use as biomarker of dormancy or aggressiveness[272,273]. Genomic analysis (i.e., 
SNP/CNV) of circulating ctDNA was shown to potentially identify breast cancer patients with dormant/
minimal residual disease[274]. Also, serum inflammatory markers might serve as biomarkers of relapse in 
disease-free patients, as inflammation is associated with escape from dormancy but will likely be unspecific 
and of limited sensitivity[275]. Serum IFN-β levels were associated with longer DMFS (as a surrogate of 
dormancy) in our model of chemotherapy-induced dormancy and during neoadjuvant therapy in patients 
with favorable outcome[226]. Also, we observed a shift in peripheral blood leucocyte populations in our 
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experimental model, from a Gr1+CD11b+ cell dominated response in mice with progressive tumors toward 
a CD4+/CD8+-, B cell and CD11c+ cell-dominated response in mice with dormant tumors[226]. Thus, Serum 
IFN-β levels and immunophenotyping should be explored for their potential use as biomarkers of breast 
cancer dormancy. 

CONCLUSION
Advances in the understanding of the mechanisms of breast cancer dormancy have raised the hope to 
therapeutically exploit dormancy to prevent relapses and overt metastatic disease. To date many potential 
therapeutic targets and strategies have been considered and proposed for clinical testing[100,185]. However, 
many of these approaches would be difficult to apply to patients due to lack of suitable drugs, potential long-
term toxicity and over all complexity in the in their clinical translation. Recent reports implicating a T cell 
based immune response in the therapeutic effects of chemotherapy including dormancy, have opened novel 
perspectives for a feasible clinical translation. Administration of chemotherapy before tumor removal (i.e., 
neoadjuvant chemotherapy) may be explored for improved effects on immunological dormancy compared to 
conventional, post-surgery, adjuvant chemotherapy. Drugs with potential beneficial effects on promoting or 
prolonging dormancy, such as NSAIDs to suppress inflammation, type I interferons, check-point inhibitors 
or anti-angiogenic drugs to stimulate the immune response, are available for clinical use and could be 
tested in combination with chemotherapy. Thus, the observation that chemotherapy can induce a state of 
immunological dormancy adds a new therapeutic effect to the older class of anti-cancer drugs and opens 
unanticipated therapeutic opportunities for clinical translation in breast cancer (and possibly other cancers). 
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