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Abstract
Single-atom catalysts (SACs) have emerged as a research frontier in catalytic materials, distinguished by their 
unique atom-level dispersion, which significantly enhances catalytic activity, selectivity, and stability. SACs 
demonstrate substantial promise in electrocatalysis applications, such as fuel cells, CO2 reduction, and hydrogen 
production, due to their ability to maximize utilization of active sites. However, the development of efficient and 
stable SACs involves intricate design and screening processes. In this work, artificial intelligence (AI), particularly 
machine learning (ML) and neural networks (NNs), offers powerful tools for accelerating the discovery and 
optimization of SACs. This review systematically discusses the application of AI technologies in SACs development 
through four key stages: (1) Density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations: 
DFT and AIMD are used to investigate catalytic mechanisms, with high-throughput applications significantly 
expanding accessible datasets; (2) Regression models: ML regression models identify key features that influence 
catalytic performance, streamlining the selection of promising materials; (3) NNs: NNs expedite the screening of 
known structural models, facilitating rapid assessment of catalytic potential; (4) Generative adversarial networks 
(GANs): GANs enable the prediction and design of novel high-performance catalysts tailored to specific 
requirements. This work provides a comprehensive overview of the current status of AI applications in SACs and 
offers insights and recommendations for future advancements in the field.
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INTRODUCTION
With the rapid advancement of technology, energy crisis and environmental pollution have emerged as two 
core challenges faced by societies worldwide. Rising energy demand and depleting fossil fuels intensify 
energy crisis, while industrialization and human activities aggravate pollution. Effectively addressing these 
two issues has become a central focus for the global scientific and industrial communities. Against this 
backdrop, catalysts have gained prominence as a key technology in tackling energy and environmental 
challenges, due to their unique advantages in accelerating chemical reactions, improving energy conversion 
efficiency, and reducing pollutant emissions. For instance, by enhancing energy conversion efficiency, 
catalysts can reduce energy consumption. Platinum-based catalysts demonstrate excellent catalytic activity 
for oxygen reduction reaction (ORR) in fuel cells[1-6]. Iron-based single-atom catalysts (SACs) have been 
found to significantly reduce energy requirements for water-splitting reactions, greatly improving efficiency 
and cost-effectiveness of hydrogen production[7-9]. Hydrogen production technology is a crucial avenue for 
future clean energy development, and efficient catalysts play an indispensable role in this process[10]. 
Moreover, catalysts are widely applied in the development and utilization of renewable energy sources. For 
example, titanium-based catalysts can efficiently catalyze the photocatalytic water-splitting reaction, 
converting solar energy into hydrogen and providing a sustainable energy solution[11,12]. Furthermore, 
catalysts significantly enhance the selectivity and yield of reactions in biomass conversion processes, 
facilitating the efficient utilization of biomass resources and providing essential technological support for 
the development of biomass energy[13].

In environmental pollution control, catalysts also play a crucial role. For instance, in automotive exhaust 
treatment, they convert harmful gases such as carbon monoxide and nitrogen oxides into harmless 
substances, thereby reducing emissions of atmospheric pollutants[14,15]. Additionally, catalysts have 
widespread applications in wastewater treatment[16,17], pollutant degradation, and carbon dioxide 
reduction[18,19]. Thus, catalysts not only enhance energy conversion efficiency but also play a critical role in 
reducing pollutant emissions and improving environmental quality.

However, the current research and development of catalysts still confront several challenges. Firstly, many 
efficient catalysts rely on precious metal materials, such as platinum and palladium. The high cost and 
limited natural availability of these metals restrict widespread industrial application[14,20,21]. Secondly, some 
catalysts exhibit relatively low catalytic efficiency, leading to challenges in effectively treating harmful 
pollutants. These issues have prompted researchers to seek alternative solutions that are both efficient and 
cost-effective[22,23].

Against this backdrop, SACs have garnered significant attention as an emerging technology[24]. They are 
specialized supported metal catalysts with active metal components dispersed as single atoms. By precisely 
designing the chemical coordination environment around single atoms, researchers can customize active 
sites[25,26] to exhibit unique catalytic properties. This design strategy not only provides a novel research 
platform for catalytic reactions but also offers significant opportunities for exploring and understanding 
catalytic mechanisms. Despite the immense potential of SACs, their development still faces challenges. The 
preparation of SACs involves multiple complex steps, including material design, precise control of active 
sites, and optimization of catalytic performance[27-29]. Traditional experimental methods often rely on 
experience and trial-and-error approaches, which can be inefficient and may not achieve optimal 
performance. In recent years, advances in density functional theory (DFT) calculations have significantly 
accelerated the screening of efficient catalysts[30-35]. However, these calculations require substantial 
computational resources, resulting in significant consumption of CPU and GPU power, along with high 
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time costs[36]. Based on this background, artificial intelligence (AI), particularly machine learning (ML) and 
neural networks (NNs), has revolutionized materials science by providing novel methodologies for the 
discovery and design of SACs[37-40].

By analyzing large datasets from experimental results and theoretical calculations, AI can extract potential 
key parameters and establish multi-layered predictive models to forecast catalyst performance under various 
reaction conditions[41-44]. This data-driven approach can significantly accelerate the screening and 
optimization process for catalysts. For example, ML models can identify the optimal catalyst combinations 
within hours, greatly reducing time and resource consumption. Additionally, AI can uncover the intrinsic 
relationships between catalyst structure and performance, providing theoretical support for further catalyst 
optimization[45]. It also can predict catalyst performance under novel reaction conditions, enabling 
preliminary assessments of catalyst effectiveness and adjustment of experimental designs in the early stages. 
AI-driven automated data analysis and model optimization techniques facilitate rapid iterations of 
experimental designs by simulating catalyst performance under various reaction conditions, ultimately 
identifying catalyst solutions with high activity and stability[46-50].

All in all, this article aims to comprehensively review the latest advancements of AI technologies in the 
research of SACs and explore their potential applications in future materials science. By leveraging the 
strengths of AI technologies, significant breakthroughs are anticipated in the development of efficient and 
stable catalysts, providing crucial support in addressing global energy and environmental challenges. The 
article analyzes four key stages of AI in the field of electrochemical catalysts [Figure 1]: firstly, generating 
data through DFT and high-throughput screening (HTS) to create databases suitable for AI processing; 
secondly, using ML regression models to analyze data and conduct feature importance analysis to identify 
key characteristics affecting catalyst; thirdly, applying NNs to rapidly screen candidates with potential high 
catalytic activity; and finally, employing generative adversarial networks (GANs) to design efficient catalysts 
that meet specific requirements.

GENERATE DATABASE UTILIZING HTS IN COMBINATION WITH DFT AND AB INITIO  
MOLECULAR DYNAMICS
The initial stage: the DFT and ab initio molecular dynamics are calculated to screen the performance 
of the catalyst one by one
In the early stages of developing SACs, researchers primarily relied on DFT and ab initio molecular 
dynamics (AIMD). DFT is widely used to predict the stability, electronic structure, reaction pathways, and 
energy barriers of SACs[51,52]. The catalytic activity of SACs is closely linked to the electronic structure of 
individual active atoms and their interactions with the support, making DFT calculations essential for 
simulating binding energies, adsorption energies, and reaction transition states. For example, the adsorption 
behavior of metal atoms on different supports, such as graphene, nitrogen-doped carbon, and titanium 
dioxide, can be systematically studied using DFT[53,54]. Complementarily, AIMD integrates with DFT, 
simulating the spatiotemporal evolution of materials at the atomic scale to investigate the thermodynamic 
behavior of catalysts under realistic reaction conditions. AIMD not only validates the accuracy of DFT-
optimized models but also simulates the kinetic stability of catalysts under varying temperatures and 
pressures, providing dynamic information crucial for predicting catalyst performance in complex reaction 
environments.

These computational methods can generate a wealth of structural and performance data. On the one hand, 
they serve as valuable empirical information; on the other hand, they provide a crucial foundation for new 
research. Based on existing physicochemical information, researchers can make informed predictions about 
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Figure 1. Advancements and implementations of AI in SACs: facilitating HTS through DFT database construction, accelerating feature 
importance analysis via ML for enhanced screening, crystal structure analysis utilizing NN, and generation of potential atomic structure 
models through GANs. AI: Artificial intelligence; SACs: single-atom catalysts; HTS: high-throughput screening; DFT: density functional 
theory; ML: machine learning; NN: neural network.

the performance of similar materials and subsequently validate these predictions through experiments. This 
integration of theory and experimentation has driven deeper research and technological advancements in 
the field of SACs.

The necessity of DFT and AIMD in SACs research
SACs demonstrate tremendous application potential in the energy and environmental sectors due to their 
unique catalytic properties. However, traditional d-band theory struggles to explain the catalytic 
mechanisms of SACs, presenting ongoing challenges in theoretical characterization[55]. To address this issue, 
researchers have made significant progress through the synergistic use of DFT and AIMD.

DFT can be employed to investigate the fundamental mechanisms of molecular adsorption in SACs, thus 
unveiling the reaction pathways. For example, He et al. investigated the catalytic oxidation of CO on SACs 
using DFT calculations, proposing a “selective orbital coupling” mechanism that reveals the selective 
coupling between the localized d orbitals of metal single atoms and the π* orbitals of O2 molecules[56]. This 
coupling determines the strength of the M–O bond and explains the variations in energy barriers along the 
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reaction pathway. By calculating the energies of different orbitals, they quantitatively predicted the 
adsorption strength and correlated it with the reaction barriers, enhancing the understanding of catalytic 
behavior of SACs. Using DFT calculations, researchers analyzed the highly localized d orbital characteristics 
of metal doping. The Wannier functions for the coupling between the d and π* orbitals of O2 molecules in 
various adsorption configurations [Figure 2A] illustrate that the most stable structure of O2 molecules arises 
from the selective coupling of the π* orbitals with specific d orbitals 
M–O bond. This coupling mechanism determines the strength of the M–O bond and explains the trends in 
reaction energy barriers during the CO oxidation reaction. Figure 2B quantitatively relates adsorption 
strength to reaction barriers by utilizing the energy arrangement of the selected orbitals, helping to 
understand how the chosen d states influence reaction behavior. DFT calculations revealed the electronic 
structure characteristics of SACs, providing a basis for understanding catalytic mechanisms. Our previous 
research also demonstrated that the sub-orbitals of d electrons play different roles in the adsorption of 
catalytic intermediates. For example, when surface transition metals (TM) bind with adsorbed molecules, 

 orbital primarily exhibits an attractive effect, while the dxz/dyz → 2π* coupling 
mainly displays a repulsive effect [Figure 2C and D]. Consequently, Ti2CO2 shows anomalous d-band 
adsorption characteristics for *N, *NH, *NH2, and *NH3 under strain[57]. A similar phenomenon was also 
observed during stretching or compressing Pt-VF-Ti2CF2, resulting in a paradoxical situation where the 
longer Pt–O bond length in *OH exhibited a weaker adsorption energy[58].

Due to incomplete mechanistic understanding of the ORR on Fe-N-C material systems, Hutchison et al. 
have reported a fifth-coordinate structure for H2O formation during ORR on Fe-N4-C, based on a combined 
study employing DFT and AIMD[59]. Under potentials relevant to the ORR, OH is converted to H2O. The 
results indicated that the Fe(III/II) oxidation-reduction potentials and the ORR onset potentials closely 
resemble experimental findings. Reliable predictions of ORR onset potential and Fe(III/II) oxidation-
reduction potentials are achieved when FeIII-OH converts to FeII, and the desorption of H2O necessitates 
axial co-adsorption of H2O onto the iron center. Considering that the five-coordinate model spontaneously 
forms and exhibits ORR chemistry consistent with experimental measurements in AIMD simulations, it 
serves as the fundamental structure for simulating the chemistry of Fe-N-C active sites in experimentally 
relevant systems [Figure 2E].

Additionally, Xiao et al. employed a combined approach of DFT and AIMD to systematically investigate the 
catalytic performance of nitrogen-coordinated TM carbon materials (TM-Nx-C) in the ORR and the oxygen 
evolution reaction (OER)[60]. They optimized the geometric models of TM-N3-C and TM-N4-C using DFT 
and calculated the formation and binding energies for multiple TM atoms. Ultimately, they selected seven 
chemically stable metals (Mn, Fe, Co, Ni, Cu, Pd, Pt) for detailed analysis [Figure 2F]. The results from DFT 
calculations indicated that Ni-N3-C exhibited the best catalytic performance in the ORR/OER, featuring 
optimal adsorption energy and the lowest overpotential [Figure 2G-I].

To further validate the reliability of these models, AIMD was used to assess the thermodynamic stability of 
Ni-N3-C and Pd-N3-C at different temperatures. The results shown in Figure 3A and B indicated that 
Ni-N3-C remains stable at high temperatures, while Pd-N3-C is stable only below 400 K, further confirming 
the potential of Ni-N3-C as an efficient bifunctional oxygen catalyst.

The aforementioned studies provide strong evidence that DFT and AIMD play crucial roles in the field of 
catalysis. They serve an irreplaceable function in advancing catalytic theory.

(dx2-y2 ) of metal dopants, forming the 

the coupling of the 3σ → dz2
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Figure 2. (A) Wannier functions of d orbitals and π* orbital coupling in O2 molecules with various adsorption configurations; (B) 
Correlation between adsorption strength and reaction barrier, with variation of -ICOHP for M–Oα and Oα–Oβ bonds as a function of 
Copyright 2024, American Chemical Society, Reproduced with permission[56]; (C) Mechanism of “donation and backdonation” in N2 

orbital of Ti and 3σ orbital of N 2, and between dXZ/dYZ orbitals of Ti and 2π* orbitals of N2; 
(D) Coupling interactions between adsorbate states and both the average d-band center and spin-polarized d-band center: the 
complexity arising from d-orbital splitting and its influence on various adsorption behaviors. Copyright 2023, John Wiley and Sons, 
Reproduced with permission[57]; (E) Illustration of ORR cycle: a comparison between experimental ORR mechanism and explored five-
coordinate model, with the five-coordinate model predicting a closer starting potential to experimental results. Copyright 2022, 
American Chemical Society, Reproduced with permission[59]; (F) Illustrative diagram of TM considered in this study, with distinct colors 
representing corresponding ranges of ORR/OER overpotentials (η); (g) Potential overvoltages for ORR and OER across all TM-Nx-C 
catalysts; Volcano plots for ORR (H) and OER (I) on the TM-Nx-C system. Copyright 2021, Springer Nature, Reproduced with 
permission[60]. ORR: Oxygen reduction reaction; TM: transition metals; OER: oxygen evolution reaction.

The widespread use of DFT and AIMD in SACs
Graphdiyne, as an emerging two-dimensional carbon material, possesses unique electronic structures and 
exhibits highly efficient catalytic reduction properties[61]. Based on DFT, Ullah et al. designed and studied 
the application of 3d TM SACs for the hydrogen evolution reaction (HER) on graphyne (GY) surfaces[62]. By 
optimizing the geometric structure of the TM@GY composite and conducting frequency analysis, they 
confirmed the minimal energy state of the structure. Among all the systems considered, the nickel SAC 
anchored to the GY support demonstrated the highest thermodynamic stability. The adsorption energies 

 were calculated to evaluate the hydrogen adsorption 
performance and HER catalytic activity of the SACs. The results indicated that Ni@GY possesses the lowest 

 change, showcasing the best HER performance [Figure 3C]. 
This catalyst represents an excellent SAC with outstanding HER catalytic activity and stability, while also 
being abundant and cost-effective. Overall, this research offers a theoretical basis for the design of low-cost, 
high-performance HER catalysts, particularly in the context of integrating TM on two-dimensional carbon 
materials.

and hydrogen adsorption free energy (ΔGH*)

hydrogen adsorption energy and surface ΔGH*

dx2-y2 . 

adsorption on titanium: interaction between dz2
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Figure 3. (A and B) Energy and temperature variations of two catalysts over 5 ps at 400 K vs. the AIMD simulation time. Copyright 2021, 
Springer Nature, Reproduced with permission[60]; (C) Free energy diagram of HER over TM@GY SACs. Copyright 2021, Elsevier, 
Reproduced with permission[62]; (D) Binding energies of various dopant atoms (Zn, Ni, Mn, Fe, Cu, and Co); (E) DOS for Cu-graphdiyne; 
(F) Gibbs free energy changes of Co-graphdiyne along the CO2RR pathway. Copyright 2021, American Chemical Society, Reproduced 
with permission[63]; (g) γ-Al2O3 (110) and γ-Al2O3 (100) crystal surface structures; (H) Surface free energy of γ-Al2O3 (110) and (100) 
crystal planes at different temperatures; (I) Stability test of Ag/(Al-900) sample; (J) Time dependence of bond lengths (Å) during the 
AIMD simulation (10,000 fs); (K) Snapshot of single Ag atom on the γ-Al2O3 (100) surface at different simulation times. Copyright 
2024, Springer Nature, Reproduced with permission[64]. AIMD: Ab initio molecular dynamics; HER: hydrogen evolution reaction; SACs: 
single-atom catalysts; DOS: density of states.

Liu et al. have also explored the CO2 reduction reaction (CO2RR) utilizing 3d TM SACs supported on 
graphdiyne[63]. Through DFT calculations, they optimized the geometric structures of single atoms (Mn, Fe, 
Co, Ni, Cu, and Zn) on the GY support, calculating the binding energies of each doped atom [Figure 3D], 
the density of states (DOS) with orbital hybridization [Figure 3E], and the Gibbs free energy changes of the 
intermediates along the CO2RR pathway [Figure 3F]. This analysis allowed the identification of the rate-
limiting steps (RDS) and energy barriers, ultimately reporting several high-activity CO2RR catalysts. The 
results indicated that the sp hybridization between carbon and metal plays a crucial role in modulating 
catalytic activity. Additionally, Kan et al. systematically investigated the dissociation energy of O2 when Pt is 
supported on different MXene surfaces, determining that the ORR on MXene-Pt doping proceeds primarily 
via a four-electron coupled mechanism rather than a dissociation mechanism[30]. Further research revealed 
that high coverage of Pt does not enhance the catalyst’s activity, providing theoretical validation for the 
rational design and feasibility of SACs[31].

Using AIMD can reveal the influence of temperature on the phase transition of γ-Al2O3 and the anchoring 
of Ag. In the study of Li et al., understanding the “terminal hydroxyl anchoring mechanism” of Ag on the 
Al2O3 surface is essential for optimizing the state of Ag as an active species and enhancing catalytic 
performance[64]. DFT was employed to investigate the surface hydroxyl content of γ-Al2O3 (100) and (110) 
facets. It was found that the (100) facet has a higher density of terminal hydroxyls [Figure 3G], providing 
more anchoring sites for the dispersion of Ag atoms. By calculating the surface free energies of γ-Al2O3 (110) 
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and (100) facets at different temperatures [Figure 3H], it was observed that the surface free energy of the 
(110) facet increases at high temperatures, while that of the (100) facet decreases, explaining the phase 
transition due to high-temperature calcination.

AIMD simulations of the γ-Al2O3 (110) facet at high temperatures showed that elevated temperatures lead to 
the rearrangement of surface atoms, forming a structure similar to the (100) facet and increasing the 
terminal hydroxyl content. Stability simulations of Ag single atoms on the γ-Al2O3 (100) facet [Figure 3I] 
indicated that it could stably anchor to the (100) surface without aggregation, explaining the dispersion of 
Ag single atoms in the Ag/(Al-900) sample. Further AIMD simulations of the thermal stability of Ag single 
atoms on the γ-Al2O3 (100) facet [Figure 3J and K] demonstrated that Ag single atoms can remain stable for 
10,000 s at 773 K, indicating that the Ag/(Al-900) sample exhibits good thermal stability.

Additionally, Wang et al. at Tsinghua University reported the oxidation mechanism of CO at the interface 
through static DFT and AIMD simulations[65]. They constructed Au clusters on the surface of CeO2, where a 
single Au+ atom on the cluster surface acts as an electron acceptor during the reaction, enhancing the 
adsorption and transport of CO. This significantly lowers the barrier for the reduction of CeO2 and 
effectively promotes the CO oxidation reaction. Interestingly, the Au+-CO ion appears only in the presence 
of CO. Once CO is removed, Au+ recombines with the Au nanoparticles. This single atom effectively 
couples the redox process with that of the support, thereby enhancing the overall redox activity, while the 
Au nanoparticles show little evidence of coupling with the oxidation state of the oxide during the catalytic 
cycle. This study clarifies an important concept: the actual catalytic active sites may only manifest during the 
reaction, becoming hidden before and after the process. Thus, the formation of active sites is a dynamic 
process occurring at the interface between the supported oxide and the metal particles.

Fan et al. from Xiamen University believe that sub-nanometer metal clusters in catalysts possess numerous 
metastable structures, which can interconvert during catalytic reactions, leading to complex catalytic 
behaviors. Furthermore, comparing the diffusion energy barriers calculated by DFT and AIMD reveals that 
the static energy barriers from DFT calculations are higher than those from dynamic reactions. Further 
studies indicate that the formation of Cu3O increases the melting temperature of the clusters, resulting in a 
decrease in the entropy of the dissociation products[66]. This work demonstrates the significant impact of 
surface adsorption on the dynamic phase transition behavior of clusters and provides a new perspective on 
dynamic catalysis.

By synergistically employing DFT and AIMD, researchers can deeply assess the catalytic performance and 
thermodynamic stability of SACs from both static electronic structures and dynamic reaction behaviors. 
However, DFT and AIMD still possess certain limitations, such as system size constraints and increased 
computational costs for large systems. The computational cost of AIMD is a barrier for large-scale, long-
duration simulations, and it struggles to capture rare microscopic events.

Advanced simulation tools and methods for enhancing DFT calculations
In laboratory research, activity and selectivity are commonly used parameters to evaluate the performance 
of SACs, while the importance of stability is often overlooked[67]. SACs exhibit exceptional atomic efficiency 
and catalytic performance, yet stability remains a significant challenge[25,68]. The intricate relationship 
between structure and stability is seldom explored due to degradation complexity and reaction conditions. 
To achieve more accurate electrochemical simulations, it is essential to consider the environmental impact, 
including solvents, pH, and electrical potentials.
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The Pourbaix diagram directly indicates system stability under specific potential and pH. Di Liberto et al. 
utilized DFT and Pourbaix diagrams to anticipate SAC stability across various pH and voltage ranges[69]. By 
integrating experimental data with DFT, the stability of four TM atoms such as Cr, Mn, Fe, and Co dropped 
on three carbon-based supports was examined. DFT was instrumental in calculating binding energies and 
Gibbs free energies, and constructing Pourbaix diagrams that visualize SACs stability under varied 
conditions. It was discovered that under operational conditions, many potential catalysts may dissolve or 
transform, particularly under oxidizing conditions.

Traditional DFT calculations are conducted under the constant charge model (CCM), whereas practical 
electrochemical reactions occur under the constant potential model (CPM). Tan et al. compared hydrogen 
adsorption of metal SACs on graphene (M-NC) under both models by employing DFT and Grand 
Canonical DFT methods, contrasting CCM with CPM[70]. CCM neglects the influence of the electrode 
potential, causing deviations in the calculation of ΔG(*H). In contrast, CPM provides a more accurate 
depiction of electrocatalytic conditions, and is vital for evaluating HER activity of M-NC SACs.

Cui et al. also established a structure-stability relationship for N-doped carbon-supported SACs under CO2 
reduction conditions through advanced CPM and DFT[71]. Using CP-VASP (a patch to the Vienna Ab-Initio 
Simulation Package) code, they simulated actual CO2RR operations, accounting for pH and potential, 
thereby rendering the computational results closer to real-world scenarios. The study systematically 
analyzed various factors influencing stability and highlighted metal atom leaching as a critical concern. 
Strategies for enhancing stability were further experimentally validated.

These findings fill the current stability knowledge gap of SACs under practical operating conditions and are 
expected to propel their widespread application in sustainable energy systems.

Micro-kinetics is crucial for unraveling catalytic mechanisms and kinetics. Implicit and explicit solvation 
models can address solvent effects[72]. Implicit model using a polarizable medium while constructing an 
electric field to describe the charge distribution of solvent. In contrast, explicit model precisely incorporates 
solvent molecules, atoms, and cations into the computational system, allowing for direct observation of 
interactions. Zhang and Li conducted large-scale sampling and investigated the point of zero charge (PZC) 
and solvation effects of M-N-C catalysts, finding explicit models that can offer more precise predictions[73]. 
Incorporating PZC and solvation effects into micro-kinetic models could be considered in future studies to 
enhance prediction accuracy.

Fe-N-C materials are promising for ORR catalysis, but pH-dependent activity and origins have been a 
development hurdle. Liu et al. unraveled the pH-dependent mechanism in Fe-N-C materials through first 
principle and micro-kinetic[74]. By considering the effects of pH, solvation, and electrode potential in micro-
kinetic simulations, it was found that the FeN4 centers are covered by *OH and *O intermediates in acidic 
and alkaline media, respectively. The *O intermediate optimizes the electronic structure more effectively 
than the *OH intermediate, leading to higher ORR activity in alkaline media. Micro-kinetic model was 
employed to simulate polarization curves and Tafel slopes, with results consistent with laboratory 
observations. This work provides a quantitative description for understanding ORR performance of Fe-N-C 
catalysts.

Machine-learned force fields (MLFFs) enhance simulation efficiency and accuracy, overcoming traditional 
force field limitations. AIMD accelerated by MLFFs can reduce simulation times dramatically, aiding in 
predicting microscopic dynamics[75,76]. Zhang et al. have integrated MLFFs into molecular dynamics, 
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overcoming limitations in accuracy and timescale[77]. Their work has shown that MLFFs can achieve high 
accuracy while improving computational efficiency, but further enhancements are needed, particularly in 
high-quality data generation.

In this section, an overview of novel methodologies, including Pourbaix diagrams, CPM, micro-kinetics, 
and MLFFs, in materials computing highlights potential in advancing understanding and application of 
SACs in sustainable energy systems.

High-throughput computational acquisition data
Compared to traditional experimental exploration methods, DFT significantly enhances the efficiency of 
catalyst screening but is limited to single calculations. In the bulk screening of efficient catalysts, substantial 
human effort is still required to organize and submit computational tasks, often leading to resource idling 
and waste. Therefore, reducing labor input and simplifying repetitive operations has become a critical issue.

High-throughput computing effectively addresses this challenge. By enabling batch submissions of 
computational tasks, HTS accelerates the screening process as an efficient method for data collection and 
processing. When combined with DFT and AIMD results, HTS can systematically gather structural and 
performance data of various SACs, creating a comprehensive database[78]. Additionally, HTS allows for the 
rapid selection of samples with target structures from large databases, systematically evaluating catalyst 
performance. This method can identify and eliminate inefficient catalysts in the early stages, expediting the 
design and discovery of efficient SACs. By narrowing the experimental scope, HTS not only saves time and 
costs but also significantly improves the efficiency of identifying effective catalysts.

Comparative studies on the catalytic performance of carbon-based SACs are relatively scarce. To efficiently 
identify catalysts for the ORR from a multitude of candidates, HTS is a commonly used and effective 
approach[79]. Researchers established a database of 48 candidate SACs composed of six TM elements and 
eight carbon-based supports. Using DFT, they conducted HTS on 180 SACs formed from these eight 
carbon supports and 3d, 4d, and 5d TM elements[80]. Using adsorption free energy of OH* 
screening criterion for ORR catalytic activity, accurately predicting the overpotentials on different carbon-
based supports and establishing a volcano relationship between 
Through systematic rapid screening, a series of carbon-based SACs with excellent ORR catalytic activity and 
stability were successfully identified. This study not only elucidated the influence of metal-support 
interactions on ORR performance but also provided strong theoretical guidance for the design and selection 
of carbon-supported SACs by saving experimental time and costs.

HTS can provide a valuable reference framework for screening of other multi-step reactions. Yue et al. 
investigated the nitrogen reduction reaction (NRR) performance of four surface termination structures 
WB2(001) using a two-step HTS methodology [Figure 4C-F]. In the first step, they calculated the adsorption 
energies of N2 and H2, along with the free energies of the reaction pathways, to identify SACs with potential 
NRR activity. In the second step, they further calculated the free energies for NH3 synthesis and desorption 
to select SACs with excellent NRR performance[81]. Through this two-step screening process, they identified 
four notably effective SACs: V@(B-1@3), Mn@(B-2@3), Cr@(W-1@1), and Cr@(W-2@1).

Using HTS combined with first-principles calculations, researchers investigated the application of TM-
tetragonal carbon nitride (TM@T-C2N) catalysts [Figure 4G] in the electrochemical nitrate reduction 
reaction (NO3RR)[82]. They proposed a five-step screening criterion [Figure 4H], outlining the elimination 
sequence and stages for potential NO3RR candidates based on different reaction phases.

(ΔGOH*) as a 

ΔGOH*  and overpotential [Figure 4A and B]. 
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Figure 4. (A) Summary diagram of ORR overpotential for TM atom-doped different carbon-based carriers; (B) The volcano plot of 
The blue regions indicate strong binding energy of OH*; red dashed lines represent overpotential of Pt (111). Copyright 2021, Springer 
Nature, Reproduced with permission[80]; (C and D) The first step of NRR screening results is to evaluate the performance of SACs 
supported on B-1 for N2 fixation and conversion to N2H; (E) The second step screening results of SAC supported on B-1 for NRR based on 
its NH2-to-NH3 formation and desorption performance; (F) Adsorption free energy diagram of H and N2 on ten selected candidates, with 
white regions indicating NRR selectivity. Copyright 2022, Elsevier, Reproduced with permission[81]; (G) The structure of TM@T-C2N; (H) 
3D screening diagram illustrating three types of free energies; (I) Schematic representation of a screening framework for identifying 
potential NO3RR catalysts. Copyright 2024, Elsevier, Reproduced with permission[82]. ORR: Oxygen reduction reaction; NRR: nitrogen 
reduction reaction; SACs: single-atom catalysts.

The Gibbs free energy descriptors from the first three steps were used to construct a three-dimensional (3D) 
screening map, as shown in Figure 4I. The pink, blue, and yellow cross-sections visualize the screening 

 < 0.7, and ΔG6-min < 0.70 eV, respectively. This process retained six candidate 
materials (Ti-, V-, Cr-, Mn-, Zr-, and Tc@T-C2N) for further consideration. These criteria facilitated the 
rapid exclusion of unsuitable candidates, narrowing the focus of the study and allowing for the efficient pre-
screening of a large number of candidates. Ultimately, V@T-C2N and Cr@T-C2N were selected as potential 
high-performance NO3RR catalysts.

In a word, DFT and AIMD provide an atomic-level perspective for understanding catalyst performance, 
while HTS enables rapid evaluation of numerous candidates based on specific criteria, effectively reducing 
research time and scope. The integration of these methods offers robust support for the efficient 
development of SACs. It remains noteworthy that discrepancies may exist between the models employed in 
HTS and actual material structures, leading to deviations in the prediction results. Materials with high 
performance identified through screening may encounter difficulties during experimental preparation, and 

criteria: ΔG*NO3  < 0, ΔG*NH2→*NH3
 

ΔGOH* . 
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the screening outcomes necessitate extensive experimental validation.

APPLICATIONS OF ML AT VARIOUS STAGES IN THE DEVELOPMENT OF SACS
Development stage: feature importance analysis using regression models
HTS generates a wealth of computational data, providing a foundational basis for subsequent analysis and 
model building[83-85]. However, it does not directly assess the importance of factors influencing catalyst 
activity. For example, in Pt-doped Janus-MXenes, the binding energy between Pt atoms and the substrate, 
work function, and the number of electrons gained by Pt atoms are closely related to catalyst activity[86]; 
however, the ranking of importance of different features remains unclear. Similar reports indicate that there 
is a strong linear relationship between the d-band center of metal atoms, the number of electrons 
transferred, and catalytic activity[34]. However, this relationship cannot be quantified in percentage terms to 
express the importance of the d-band center.

ML, particularly regression models, can predict material performance from existing data[87,88]. Common 
regression models, such as random forests, support vector machines, and decision trees, can handle 
multidimensional data and analyze feature contributions to catalytic performance. ML can predict new 
catalyst performance based on feature engineering, accelerate screening process of SACs and provide a 
theoretical basis for designing efficient catalysts, making research more targeted. Furthermore, the 
importance analysis of features deepens the understanding of how different characteristics influence 
catalytic performance, expediting the identification of high-efficiency catalysts.

Application of regression models to the performance analysis of SACs
Among various ML models, regression models require fewer data points and can perform feature 
importance analysis[89]. Therefore, they are more suitable for integration with DFT calculations and HTS of 
SACs.

In this context, Chen et al. introduced a method for rapidly screening CO2 reduction electrocatalysts based 
on simple features and ML models[90]. The researchers constructed a database consisting of 1,060 metal-
nonmetal CO-doped graphene structures, and optimized the feature set through Pearson correlation 
heatmaps [Figure 5A] and feature importance ranking [Figure 5B]. This led to the identification of an 
optimal feature set containing eight features. Various ML algorithms were tested, including K-nearest 
neighbors (KNN), random forest regression (RFR), support vector regression (SVR), gradient boosting 
regression (GBR), extreme GBR (XGBR), and a kind of composited algorithms produced by tree-based 
pipeline optimization tool (TPOT) [Figure 5C-H], with cross-validation used to evaluate the prediction 
performance of different algorithms. Among all the algorithms tested, the XGBR exhibited superior 
predictive performance, characterized by a higher coefficient of determination (R2) value and a lower root 
mean square error (RMSE) value. When compared to the composite algorithms generated by TPOT, XGBR 
boasts a simpler structure, higher controllability, and greater ease in hyperparameter tuning and model 
optimization. The predictive model established based on the XGBR model successfully predicts changes in 
CO adsorption free energy (ΔGCO), thereby enabling the evaluation of the catalytic activity. Moreover, the 
XGBR model showed excellent generalization ability. To assess the impact of the HER on CO2 reduction, 
another XGBR model was developed specifically to predict the HER catalytic activity of the 1,060 materials. 
By combining the predictions from both models, 94 potential CO2 reduction electrocatalysts were 
successfully screened.

Additionally, Zhang et al. employed interpretable ML models to directly predict the Gibbs free energy for 
evaluating the electrocatalytic nitrogen reduction activity of SACs[91]. It is noteworthy that all the features 
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Figure 5. (A) Heatmap of Pearson correlation coefficient matrix for the ΔGCO- predicted optimal feature set; (B) Ranking of feature 
importance within the optimal feature set; (C-H) Predictive performance of various models trained using different ML methods. 
Copyright 2020, American Chemical Society, Reproduced with permission[90]; (I and J) Feature importance of the top ten significant 
features predicted by GBR and XGBR models; (K) Utilizing SHAP analysis to consider the overall impact of different features on model 
prediction; (L) Predicting reaction free energy via the GBR model: excellent agreement between predicted values and DFT calculations. 
Copyright 2024, Elsevier, Reproduced with permission[91]. ML: Machine learning; GBR: gradient boosting regression; XGBR: extreme 
gradient boosting regression; SHAP: Shapley Additive Explanations; DFT: density functional theory.

used in the model were not derived from DFT calculations. Instead, a dataset of 90 graphene-based TM 
SACs was collected from available literature, which included the catalyst’s structure and reaction free 
energies, along with 41 basic features extracted from the periodic table, such as atomic number, atomic 
mass, covalent radius, and d-electron count. Pearson correlation heatmaps were used to eliminate highly 
correlated features, and independent features were selected for model training. Based on the independent 
feature set database, various ML models, including GBR, XGBR, and RFR, were successfully trained. 
Ultimately, GBR was selected as the optimal ML model for predicting Gibbs free energy of NRR. It 
demonstrated the highest prediction accuracy during both training and testing phases with an R2 score 
exceeding 0.97 and RMSE less than 0.1 eV. These performance metrics significantly outperform other 
models, such as XGBR and RFR. In terms of interpretability, feature importance analysis and Shapley 
Additive Explanations (SHAP) can uncover the working mechanisms of GBR model, providing insights into 
the specific influence of individual features on prediction outcomes and guiding the SAC design. Figure 5I 
and J show the feature importance analysis, emphasizing feature importance within the context of the 
model structure and training process. Figure 5K presents the SHAP analysis, which considers the overall 
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impact of different features on model predictions, accounting for feature interactions and correlations. GBR 
possesses exceptional feature capture capabilities, enabling effective identification of key features related to 
the active center and coordination environment, such as the radius of TM (rTM), average radius of TM 
(rTM-ave), number of d-electrons (Nd), and heat of formation (Hof). It was evident that the covalent radius of 
active center atom was consistently one of the most important features influencing NRR activity.

The analysis results based on the GBR can guide the improvement of SACs through considerations of 
coordination types, d-electron count, and covalent radius. For instance, selecting SACs with pyrrole-type 
coordination (flag = 0) can significantly reduce Gibbs free energy for NH3 desorption, thereby enhancing 
NRR activity. Furthermore, by optimizing d-electron count and the difference in covalent radius, it is 
possible to enhance N2 activation, suppress HER, and improve selectivity of NRR. Figure 5L demonstrates 
the predicted reaction free energies obtained through GBR align well with those calculated by DFT, 
validating the reliability of the model.

The studies by Chen et al. and Zhang et al. highlight the significant role of regression models in predicting 
catalyst performance[90,91]. Regression models can rapidly screen potential materials, exhibiting significantly 
higher efficiency compared to HTS. This approach drastically reduces research costs by eliminating the 
need for extensive DFT calculations. Feature importance assessment can quantify the impact of different 
features on the catalytic performance of SACs, helping identify and focus on the most informative features. 
These results not only accelerate the discovery and screening process of SACs but also help understand the 
internal mechanisms of ML models. Furthermore, the trained ML models exhibit excellent transferability 
and robustness, making them powerful tools for future catalyst research and development.

Feature importance analysis accelerates the screening process of SACs and provides a theoretical foundation 
for designing efficient catalysts, making the research process more targeted[92-94]. In a recent study, Pritom 
et al. combined DFT and ML methods to investigate the influence of porphyrin-supported SACs on the 
charging behavior of non-aqueous magnesium-carbon dioxide (Mg-CO2) batteries[95]. The study reveals the 
high efficiency of SACs in both the binding of MgCO3 and promoting its decomposition. By employing a 
ML model, the adsorption energy of MgCO3 on SACs was successfully predicted, and the key factors 
influencing the adsorption energy were analyzed. The results indicate that the ionization potential of the 
TM is a crucial parameter for selecting SACs.

In the process of constructing the ML model, the authors selected electronic structure features closely 
related to the adsorption performance of SACs as inputs. These features include the distance between the 
TM and N/S, the charge of the TM, the Nd, the average charge of nitrogen, electronegativity, ionization 
energy, and electron affinity. Correlation analysis using the Pearson correlation coefficient was performed 
to select independent features and identify redundant ones. For example, it was found that the TM charge 
was significantly correlated with other features, so it was removed from the model. Additionally, the authors 
used violin plots [Figure 6A and B] to show how the adsorption energy of MgCO3 exhibited different 
distributions at various levels under different environments, clearly revealing the heterogeneity of the data 
distribution and the differences across configurations, providing an intuitive basis for feature selection.

To predict the adsorption energy, the authors selected two models, GBR and artificial neural networks 
(ANNs), due to their advantages in handling nonlinear relationships and complex data. Prior to model 
training, the data was standardized to ensure comparability between different features, and K-fold cross-
validation was employed to assess the model’s generalization ability and avoid overfitting. By training the 
GBR and ANN models with DFT-calculated results and adjusting the model parameters and structures, the 
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Figure 6. (A and B) Violin plots illustrating the adsorption energies of MgCO3 across various environments; (C and D) Graphic 
representation of feature importance utilizing MDI from GBR model and permutation importance technique from ANN model. Copyright 
2024, Royal Society of Chemistry, Reproduced with permission[95]; (E) Representation of predictions generated by a training model 
using a 3D matrix composed of the three most influential descriptors, with four distinct regions classified by k values, highlighting a 
matrix of calcination and pyrolysis temperatures and enlarging the area with high k values; (F) Violin plot of SHAP values for the XGBR 
model (left) and summary plot of SHAP analysis (right). Copyright 2023, American Chemical Society, Reproduced with permission[41]; 
(G) Illustrating the cruciality of six features through gain value and SHAP value; (H) SHAP summary plot for ML models; (I and J) Violin 
plots of SHAP values for NV and SHAP dependence for Nn, with blue indicating eligible catalysts and red indicating ineligible ones. 
Copyright 2023, John Wiley and Sons, Reproduced with permission[100]. MDI: Mean decrease in impurity; GBR: gradient boosting 
regression; ANN: artificial neural network; SHAP: Shapley Additive Explanations; XGBR: extreme gradient boosting regression; ML: 
machine learning.

authors achieved high prediction accuracy.

To gain deeper insights into model predictions, the authors employed multiple methods such as SHAP, 
permutation importance, and mean decrease in impurity (MDI) [Figure 6C and D] to analyze feature 
importance. These methods evaluated the influence of each feature on the model’s predictions from 
different perspectives and revealed that ionization energy and the Nd were key features influencing the 
MgCO3 adsorption energy. It suggests that future improvements in the catalytic performance of SACs can 
be achieved by optimizing these key features.

For the optimization of multi-step chemical transformations, a ML framework has been developed to guide 
catalyst design by analyzing key steps in the multi-step process to enhance reaction efficiency[96-99]. In 
another study, Fu et al. reported the use of ML algorithms to accelerate the design process of highly efficient 
Fenton-like SACs[41]. The XGBR prediction model built using ML algorithms accurately predicted the 
degradation rate (k-value) of SACs for phenol. The SHAP explanation method quantified the impact of 
various parameters on the model’s predictions, as shown in Figure 6E and F, revealing that Fe loading, 
carbonization temperature, and carbonization heating rate are key factors influencing the k-value. Through 
ML-guided optimization, they identified efficient SACs dominated by Fe-N5 sites, exhibiting excellent 



Page 16 of Yu et al. J. Mater. Inf. 2025, 5, 9 https://dx.doi.org/10.20517/jmi.2024.7832

Fenton-like activity (k = 0.158 min-1). This work provides an example of ML-assisted optimization of single-
atom coordination environments and demonstrates its feasibility in accelerating the development of high-
performance catalysts, thereby helping researchers gain a deeper understanding of the structure-
performance relationship of SACs.

Materials with high performance identified through screening may encounter difficulties during 
experimental preparation, and the screening outcomes necessitate extensive experimental validation. Sun 
et al. proposed a strategy based on interpretable ML and HTS to understand and predict the performance of 
NRR catalysts[100]. Through DFT calculations, a catalyst space containing 168 types of carbon-supported 
SACs was constructed. A four-step screening strategy was employed to identify 33 promising candidate 
catalysts. Using the interpretable ML model XGBR, the key features influencing NRR performance were 
analyzed. The feature importance, SHAP value distribution, and dependency plots [Figure 6G-J] revealed 
that the valence electron count (NV) and nitrogen substitution number (Nn) of the metal atom are the two 
key factors affecting catalytic performance. Further analysis showed that active centers with lower NV and 
moderate Nn could better balance charge distribution, thereby enhancing NRR catalytic activity. Ultimately, 
six catalysts with excellent NRR performance were selected, and reaction pathways and rate-determining 
steps were analyzed.

To sum up, ML models are crucial for SAC studies, enabling precise prediction and optimization of catalyst 
performance, thus enhancing design efficiency and understanding of catalytic mechanisms. AI methods rely 
heavily on data quality and quantity, which are costly and hard to obtain. Many ML models, especially deep 
learning, lack interpretability, making it difficult to understand the physical mechanisms behind 
predictions. Additionally, their generalization ability may be limited when faced with new, unseen data. As 
ML advances, continuous optimization of algorithms and models will improve accuracy and reliability, 
driving the progress of catalytic science.

Growth stage: using NN to analyze the structural characteristics of SACs and screen high-
performance catalysts
By using ML regression models, researchers have successfully identified key features that influence catalyst 
activity and conducted feature importance analysis[36,101-103]. A critical challenge now is leveraging these 
important features to screen and predict the catalytic performance of new structures, which is key to 
simplifying the screening process and reducing costs.

NNs [such as deep neural networks (DNNs), convolutional neural networks (CNNs), and graph neural 
networks (GNNs)] are particularly well-suited for this task due to their layered structure, with each layer 
containing multiple neurons. These networks can process input data through activation functions, 
capturing complex nonlinear relationships. By automatically learning high-dimensional features, NNs can 
better describe and predict the properties of materials[104], making them ideal for handling complex models 
and large-scale datasets. Consequently, NNs hold great promise for screening high-performance catalysts 
from complex structures.

DNNs can significantly reduce computational time, quickly eliminating large numbers of ineffective 
catalysts, and saving computational resources[105-107]. At the same time, these models help reveal the 
relationship between structural features and reaction mechanisms[39,108]. Zafari et al. utilized coulomb 
matrices and principal component analysis (PCA) to reduce the dimensionality of geometric structure 
features of SACs, which helped extract relevant features and reduce model complexity[109]. The optimized 
structural information, consisting of seven features, was used as the input for the DNN model with an input 
layer, two hidden layers, and an output layer [Figure 7A]. The DNN model predicts N2 adsorption energy 
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Figure 7. (A) An illustrative diagram of the ANN architecture (featuring 10 neurons per hidden layer), utilizing optimized SAC geometric 
models as input data, with each structural geometry possessing seven distinct features. Copyright 2020, Royal Society of Chemistry, 
Reproduced with permission[109]; (B) Classification of SACs into three categories using PCA and K-means clustering of XANES data 
(with different colors representing distinct clusters); (C) Comparison of experimental XANES spectra (in black) with theoretical XANES 
spectra reconstructed from descriptor values predicted by NN; (D and E) The prediction accuracy of NN models on the test dataset. 
Copyright 2022, Royal Society of Chemistry, Reproduced with permission[110]; (F) Volcano plot and CNN-based catalyst performance 
analysis pipeline: integrative use of volcano plots for predictive assessment of existing catalysts, with eDOS as input for predicting and 
tuning adsorption energies, and extraction of chemical information from CNN model; (G) Prediction of adsorption energies for 
intermediates in the CO2RR process using a CNN model; (H and I) Limiting potential volcano plot and periodic table. Copyright 2024. 
This publication is licensed under CC-BY-SA 4.0[112]; (J) AC-STEM image of Pt1/NC with ML-detected overlapping atoms highlighted in 
yellow circles. Magnified view emphasizing potential elements for detection and quantification (indicated by blue circles); (K) The 
representative prediction maps generated by CNN for elements in (J), with interatomic distance analysis in the left image and 
overlapping features addressed using Gaussian Mixture Models assignment in the two images on the right; (L) Inference of 
corresponding atomic position assignments by CNN models and prediction of atomic chemical properties through VAE latent space 
clustering; (M) Comparison of performance metrics for ML models versus manual tasks executed by domain experts: ML model 
detection on test images accomplished in minutes versus hours required for human expert tasks. Copyright 2023, John Wiley and Sons, 
Reproduced with permission[116]. ANN: Artificial neural network; SAC: single-atom catalyst; PCA: principal component analysis; XANES: 
X-ray absorption near-edge structure; NN: neural network; CNN: convolutional neural network; eDOS: electronic density of states; AC-
STEM: aberration-corrected scanning transmission electron microscopy; ML: machine learning; VAE: variational autoencoders.

and hydrogenation free energy, successfully screening three NRR electrocatalysts-CrB3C1, TcB3C1, and 
HfB1C2 with low overpotential and high selectivity.
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X-ray absorption near-edge structure (XANES) analysis is a powerful technique for probing the structural 
changes in SACs. However, traditional XANES analysis struggles to handle structural heterogeneity, making 
it challenging to accurately identify the number of SAC species. In the study by Xiang et al. on 
photocatalytic CO2 reduction, the NN model could extract structural information from XANES data, 
enabling a more accurate and efficient identification of SAC species and structural variations during 
reaction processes[110].

Using methods such as PCA, K-means clustering, and NNs, the XANES data was successfully analyzed to 
obtain quantitative structural information about the local atomic environment of SACs. This approach 
allowed the classification of SAC species into three categories [Figure 7B], identifying their number and 
providing a foundation for subsequent structural analysis. By employing the NN-XANES method, the local 
geometry of Co-cyclaml-CO was refined. A large set of theoretical XANES data was trained to establish a 
mapping relationship between the XANES features and structural descriptors. The trained NN model 
showed consistency with experimental data [Figure 7C-E], and it could predict structural descriptors from 
experimental XANES data, such as bond lengths and bond angles. Additionally, it provided more detailed 
structural information, allowing for the distinction of Co-O and Co-N contributions.

CNNs are a type of feedforward NN composed of convolutional layers, pooling layers, and fully connected 
layers[111]. With features such as local connections, weight sharing, and pooling, CNNs excel in processing 
images or structural data of materials. Unlike traditional methods such as the d-band center model, CNNs 
automatically extract features from electronic DOS (eDOS) without manual intervention, establishing 
complex relationships with adsorption energy. Yang et al. proposed a workflow that combines CNNs with 
volcano plots [Figure 7F] to screen and predict two-dimensional SACs in CO2RR[112]. By establishing 
correlation plots between intermediate adsorption energies and various descriptors, a CNN model was used, 
with 2D eDOS as input, to predict adsorption energies and understand the impact of electronic structure 
perturbations. The CNN model predicted the adsorption energies of nine intermediates in CO2RR with an 
average mean absolute error (MAE) of 0.06 eV [Figure 7G], demonstrating high prediction accuracy 
compared to DFT. It also exhibited strong generalization ability in handling species containing oxygen, 
hydrogen, carbon atoms, and different substrates. In addition, a hybrid descriptor combining C-type and O-
type CO2RR intermediates was introduced to construct optimized volcano plots and periodic tables 
[Figure 7H and I], providing a visual approach to efficiently screen for CH4 reduction catalysts.

CNNs also play a crucial role in the structural characterization of SACs, enabling rapid, accurate, and 
automated detection of metal centers[113-115]. Due to the current lack of research focused on metal centers, it 
is challenging to design atomically precise structural materials. However, the use of CNNs enables rapid and 
standardized detection of metal centers[116]. CNNs can identify pixel patterns in aberration-corrected 
scanning transmission electron microscopy (AC-STEM) images, distinguishing between metal atoms and 
background pixels accurately. Threshold segmentation and bounding box recognition techniques allow for 
thresholding of the probability map output by CNNs and the use of bounding boxes to identify the 
coordinates of metal atoms [Figure 7J and K]. CNNs and Gaussian mixture models can perform chemical 
specificity analysis on multi-metal ultra-high-density (UHD)-SACs [Figure 7L], distinguishing metal 
centers of different chemical types and quantifying mixing degrees between metal centers. Compared to 
manual methods, CNNs demonstrate higher accuracy and repeatability, as shown in Figure 7M, greatly 
improving detection efficiency.

GNNs further expand the application of NNs and are tailored for processing graph-structured data, 
particularly useful for handling molecular or crystal structures[117]. By representing material structure as 
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graph networks with nodes (atoms) and edges (bonds), GNNs can efficiently extract both local and global 
structural information, propagating information between adjacent nodes and learning complex structural 
relationships[118]. For SACs, GNNs can model the interactions between metal atoms and supports, predicting 
catalytic performance based on these interactions.

In material design, surface structural changes at the nanoscale are especially important. Small molecule 
adsorption energy is a key indicator of catalyst activity, but linear scaling relations limit performance 
improvement. Surface strain can break these scaling relationships. Surface strain engineering involves a 
high-dimensional search space, and comprehensive DFT screening is impractical. GNNs can efficiently 
handle high-dimensional data by learning nonlinear functions and generalizing from relatively small 
training datasets, allowing for efficient exploration of the strain space. Using GNNs to predict the 
adsorption energy response of catalyst/adsorbate systems under surface strain patterns, Price et al. proposed 
a GNN model [Figure 8A], effectively bridging the gap between experimental and theoretical results[119]. The 
normalized confusion matrix of the GNN + strain model for experimental data [Figure 8B] successfully 
predicts the strain patterns in 85% of unseen test data, outperforming linear models. The model also 
predicted strain responses in ammonia synthesis reaction intermediates [Figure 8C], revealing the role of 
compressive strain in breaking linear scaling relations. This study provides a new approach for identifying 
strain patterns that can break the adsorption energy scaling relationships. By generating phase diagrams of 
adsorption energy versus strain [Figure 8D and E], it offers an intuitive method for strain engineering, 
guiding catalyst design and improving performance.

It is clear that both CNN and GNN models have their own strengths. The crystal graph convolutional 
neural network (CGCNN) combines the advantages of both CNNs and GNNs, enabling it to learn material 
properties from atomic connections within crystals and providing highly accurate predictions. CNNs excel 
at processing image data and can be used to identify the crystal structures of materials. In contrast, GNNs 
are well-suited for handling graph-structured data to capture atomic interactions and chemical bonding 
information.

Figure 8F indicates that the CGCNN accelerates high-performance dual-atom catalyst (DACs) screening by 
learning the structure-activity relationships of existing DACs, enabling the prediction of 
facilitating the selection of graphene-based DACs with ideal conductivity and stability for HER, thereby 
reducing the computational cost of DFT by half[120]. By combining CGCNN with DFT [Figure 8G], the 
model screened 435 dual-atom combinations of nitrogen-doped graphene (N6Gr) and identified two high-
performance HER catalysts (AuCo@N6Gr and NiNi@N6Gr). DFT confirmed these two catalysts exhibited 
excellent reaction kinetics, and an analysis of electronic states, 
strength revealed the crucial role of metal synergy in HER.

CGCNN avoids the need for feature engineering by directly learning the chemical structure from the 
material’s geometric configuration, which simplifies the screening process and saves computational 

 predicted by the CGCNN model shows a high agreement with the DFT results, with a 
MAE and RMSE of 0.22 and 0.27 eV, respectively [Figure 8H], demonstrating the model’s high accuracy. 
The CGCNN is effectively applied to the screening of DACs, contributing to the acceleration of catalyst 
discovery.

Overall, both CNNs and GNNs offer significant advantages in analyzing complex catalyst structures. By 
learning high-dimensional features automatically, they improve the description and prediction of material 
properties, advancing materials science. These methods help researchers identify promising high-
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Figure 8. (A) The architecture of GNNs for classification and regression tasks; (B) The normalized confusion matrix for test data. Each 
row corresponds to different true classes, and each column corresponds to predicted classes; the diagonal represents the percentage of 
correct predictions for each class; (C) Prediction diagram of strain response for single-molecule NH3 synthesis on Cu4S2 (110) surface by 
regressor; (D and E) Verification and comparison of strain phase diagrams for HfCu3(100) surface adsorption with *N and *NO2 using 
DFT. Copyright 2022, The American Association for the Advancement of Science, Reproduced with permission[119]; (F) Diagram of the 
GNN architecture applied in this study; (G) The workflow diagram of combining ML with DFT screening; (H) The pairing diagram of 

. Copyright 2023, American Chemical Society, Reproduced with 
permission[120]. GNNs: Graph neural networks; DFT: density functional theory; ML: machine learning; CGCNN: crystal graph 
convolutional neural network.

performance catalysts from numerous SAC combinations, significantly reducing experimental efforts. 
Future work should address the high computational costs and complex training processes of NNs for large-
scale material structures. Additionally, attention is needed to prevent over-smoothing in deep, multi-layer 
networks, as it can reduce model performance.

Maturity stage: design the SAC structure and predict its performance with a generation model
In the mature phase of integration between AI and materials science, generative network models have 
demonstrated immense potential in catalytic structure design. In this reverse design process, users can 
define catalytic properties of SACs and generate model structures with precisely defined attributes. For 

CGCNN model, DFT-calculated ΔGH* , and ML-predicted ΔGH*
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instance, generative models such as GANs and variational autoencoders (VAE) can learn low-dimensional 
representations from training data and continuously alter parameters[121,122]. These models coupled with 
computational methods such as DFT to validate whether the generated structures meet required 
performance criteria, thereby optimizing the design. In specific applications, generative models extract 
synthesis steps and catalytic properties from literature, employ active learning to explore the chemical space 
of specific catalysts, and leverage models such as GANs and VAE to generate hypothetical alloys and 
ligands[123].

Generative models offer an efficient, diverse, and interpretable approach to swiftly generating and 
evaluating a variety of catalyst structures, thus accelerating the discovery and design process[124,125]. GANs 
can help automate the improvement of catalyst materials by generating new catalyst surfaces with higher 
activity. Ishikawa proposed a novel approach that combines computational chemistry and ML to 
“extrapolate” new catalytic surfaces[126]. DFT is used to calculate the energy of basic reactions on a given set 
of catalyst materials, and then the results are input into the GANs.

Using a GAN trained on a DFT dataset, researchers have successfully generated more complex and diverse 
catalyst structures, expanding the possibilities for catalyst design [Figure 9A]. These newly generated surface 
structures, not included in the initial dataset, exhibit higher turnover frequency (TOF) values for the 
ammonia synthesis reaction. Through iterative training [Figure 9B], the model continuously learns patterns 
and trends from the DFT dataset, applying them to create novel catalyst surface structures. This approach 
leverages GANs in combination with DFT calculations to “extrapolate” catalysts with enhanced catalytic 
activity, optimizing key factors such as reaction energy and activation energy.

In this method, DFT calculations are used to compute the energy (ΔE) of elementary reactions for all 
surfaces present in the initial dataset. TOF values for ammonia synthesis are then obtained from ΔE values, 
and metal surfaces are labeled according to their TOF. A GAN, composed of a discriminator and generator, 
is trained on this DFT dataset, enriched with TOF values and metal surface information.

The generator of the GAN creates samples not contained in the current dataset. In this case, a conditional 
GAN is employed to generate surfaces with higher TOF values. Figure 9C demonstrates the GAN to learn 
and recognize key factors affecting catalyst activity, such as step sites adjacent to adsorbing atoms and to 
apply this knowledge to produce new catalyst surface structures with enhanced activity. DFT calculations 
are then performed on the newly generated samples, with results integrated back into the dataset. Figure 9D 
and E illustrate the iterative process, starting with 100 random steps and alloy surfaces created through 
atomic substitution. After five iterations, a previously unobserved Rh8Ru76 surface was successfully obtained, 
achieving a TOF more than ten times higher than the best TOF value in the original dataset.

All in all, samples generated in later iterations typically exhibit higher TOF values, indicating that the 
iterative DFT-GAN approach effectively enhances NN training within the GAN. Moreover, the generated 
surfaces tend to show a higher proportion of Ru atoms, aligning with experimental observations. This 
improvement is attributed to a lower activation energy for the RDS due to the reduced dissociation energy 
of N2 and a lower formation energy of NH3, which decreases NH2 coverage on the surface and mitigates 
NH2 poisoning. These characteristics contribute to higher TOF values in the generated surfaces. This study 
demonstrates that combining DFT with GAN is a promising strategy for the automated, continuous 
improvement of catalyst performance. Compared to traditional catalyst design methods, GANs enable the 
rapid and efficient generation of novel catalyst surfaces with higher catalytic activity, facilitating catalyst 
material optimization without the need for manual intervention, thus enhancing both the efficiency and 
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Figure 9. (A) Flow chart of the DFT-GAN program structure: training and evaluation phases; (B) Discriminator and generator losses in 
DFT-GAN, with each iteration comprising 2,000 epochs; (C) The distribution maps of Ru and Rh atoms on the initial surface (iter = 0) 
and GAN-generated surfaces (iter = 1-5); (D) The TOF of NH3 formation on Rh-Ru alloy surface, with TOF values from different DFT-
GAN iterations (iter = 1-5) encoded in distinct colors; (E) Box plot and violin plot of TOF values for iter = 0-5. Left-side points on violin 
represent raw TOF values for each iteration. Copyright 2022, Springer Nature, Reproduced with permission[126]; (F) Application potential 
of DL techniques in image-based catalyst screening, with recognizable image types including chemical images, morphological images, 
and catalytic images; (G) The workflow diagram of ML and DL for discovering HER electrocatalysts. Copyright 2021, American Chemical 
Society, Reproduced with permission[127]; (H) Flow chart of the VAE network in AGoRaS: decompression of chemical database 
information into a high-dimensional latent space; (I) The flow chart of data collection, training, and validation steps employed by 
AGoRaS for generating synthetic data; (J) t-SNE visualizations of training and generated datasets. Upper panel: a sample of 7,000 
equations from the training dataset, alongside 7,000 randomly selected equations from the generated dataset. Lower panel 
representation of 70,000 equations extracted from the generated dataset. Copyright 2022, Springer Nature, Reproduced with 
permission[128]. DFT: Density functional theory; GAN: generative adversarial network; TOF: turnover frequency; DL: deep learning; ML: 
machine learning; HER: hydrogen evolution reaction; VAE: variational autoencoders; t-SNE: t-distributed stochastic neighbor embedding.

accuracy of catalyst design.

Deep learning image-based recognition offers distinct advantages in processing various types of image data, 
such as chemical, morphological, and catalytic images. Figure 9F highlights the potential of deep learning 
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techniques in image-based catalyst screening. These images can provide valuable information, enabling 
researchers to rapidly identify and screen efficient TM-based electrocatalysts for HER. By introducing the 
latest advancements for identifying highly active TM-based HER electrocatalysts, representative studies 
utilize deep learning NN architectures [Figure 9G] to screen catalysts based on chemical and morphological 
images. This approach enhances the understanding of the relationship between the intrinsic properties of 
TM-based materials and their electrocatalytic performance[127].

This generative design approach transforms AI from merely a tool for predicting material properties to an 
active driver in the discovery of new materials. Tempke and Musho have introduced an AI model known as 
AGoRaS, based on a VAE, designed for synthesizing new chemical reaction datasets[128]. The AGoRaS VAE 
model is structured with embedding layers, bidirectional long short-term memory (LSTM), and latent space 
sampling, enabling the generation of an unbiased chemical reaction dataset by encoding reaction data into a 
latent space [Figure 9H]. By sampling within this latent space, the model generates novel chemical reactions, 
circumventing the biases typically present in traditional datasets. The model incorporates a rigorous data 
collection, training, and validation pipeline to ensure the validity and stability of generated reactions 
[Figure 9I].

Figure 9J illustrates a t-distributed stochastic neighbor embedding (t-SNE) plot that reduces high-
dimensional data to two dimensions, showcasing the model’s application on a training dataset of 7,000 
reactions. This approach successfully produced over seven million new reactions, including 20,000 
molecular species previously absent from the dataset, broadening the predictive capabilities of ML 
algorithms. Additionally, the AGoRaS model predicts thermodynamic properties for new reactions, such as 
Gibbs free energy, entropy, and dipole moments. Semi-empirical calculations help validate the stability of 
the predictions. By enabling targeted reaction searches that include specific molecular species, this model 
provides new avenues for experimental research. AGoRaS is thus poised to facilitate the generation of novel 
chemical reactions, guiding experimental efforts while enhancing the robustness and accuracy of AI 
algorithms in chemical science.

ML, coupled with genetic algorithms and Bayesian optimization, enables the continuous evolution of 
catalyst structures, optimizing performance. This approach accelerates SAC discovery and facilitates custom 
designs for clean energy and environmental protection. By leveraging structure-performance databases, 
GANs generate efficient catalysts with novel atomic arrangements, enhancing activity and stability for 
specific reactions such as CO2 reduction and oxygen reduction.

The demand for novel functional materials necessitates effective strategies to expedite material discovery, 
where crystal structure prediction is foundational[129,130]. Generative models such as GANs serve as a 
powerful means to explore hidden regions within chemical space[122]. Kim et al. proposed a GAN-based 
approach for crystal structure prediction[131], structured with a generator, discriminator, and classifier. The 
generator produces new crystal structures from random noise vectors and encoded composition vectors; the 
discriminator computes the Wasserstein distance between real and generated data to assess authenticity, 
and the classifier ensures the generated structures align with specified composition. Applying the GAN 
model to Mg-Mn-O systems enabled generative high-throughput virtual screening for photoanode 
properties. The crystal structures generated by the GAN model demonstrated reasonable stability and Heyd, 
Scuseria, and Ernzerhof (HSE)-calculated band gaps, some of which possess unique configurations 
compared to existing materials.



Page 24 of Yu et al. J. Mater. Inf. 2025, 5, 9 https://dx.doi.org/10.20517/jmi.2024.7832

Another innovative approach, the CGCNN, has been developed for predicting the properties of crystalline 
materials[132]. This method represents crystal structures as graphs and builds CNN upon them [Figure 10A]. 
CGCNN learns and automatically extracts atomic connectivity features within crystal structures to predict 
various material properties, such as formation energy, band gap, and elastic properties. By leveraging 
CGCNN, researchers can estimate energy contributions of atoms within perovskites, uncovering empirical 
design rules of materials.

In summary, generative models offer distinct advantages in exploring chemical space, especially in 
uncovering regions that traditional methods miss. They enable researchers to evaluate the impact of local 
chemical environments on global properties and perform combinatorial searches for synthesizable 
materials, providing valuable insights and design rules. This approach narrows the search and accelerates 
discovery.

GANs can pinpoint local maxima within the material design space, guiding materials toward optimal 
performance. For SACs, catalytic properties are closely linked to the local environment of metal atoms on 
support materials, including electronic structure, atomic spacing, and coordination numbers[133,134]. By 
simulating these local environments, GANs can generate catalyst models with ideal electronic structures, 
achieving improved activity and selectivity in catalytic processes. Moreover, the generative and 
discriminative mechanisms of GANs allow the swift screening of numerous candidate structures, making 
this approach especially effective for optimizing heterogeneous catalysts, where traditional experimental 
screening would be prohibitively costly and time-intensive.

On the data-driven front, AI/ML can develop performance surrogate models that generate catalyst 
structures with specific chemical properties or reaction pathways based on given input conditions[135]. These 
models can also predict the properties of unknown substances by training NNs to correlate input 
parameters with catalytic performance, enabling the identification of new active sites and guiding the 
optimization of experimental conditions [Figure 10B]. However, the field faces challenges, such as system 
complexity, data diversity, and target variability. To address these, techniques such as genetic algorithms 
[Figure 10C] and Bayesian optimization are explored to guide optimization, providing structured 
approaches to refine catalyst design amidst these complexities[136].

NNs face limitations, including extensive data and computational needs, and lack of interpretability, 
necessitating integration with other technologies. High-entropy alloy catalysts are notable for superior 
catalytic performance; however, traditional trial-and-error methods hinder systematic exploration of 
structure-performance relationships. By training NNs on small unit structures and using inverse design for 
larger structures [Figure 10D], high-entropy alloy models can be efficiently generated to analyze structure-
performance relationships. NNs predict key catalytic features, such as adsorption energies at active sites, 
identifying the most influential sites. Combined with Bayesian optimization [Figure 10E], this accelerates 
discovery of high-performance high-entropy alloy catalysts by automatically identifying optimal 
compositions and predicting activities[137].

An innovative AI-driven catalyst optimization workflow, incorporating large language models (LLMs), 
Bayesian optimization, and active learning loops, can accelerate catalyst optimization[138-140]. This workflow 
effectively combines advanced language understanding with robust optimization strategies, translating 
knowledge extracted from diverse literature into practical parameters for experimentation and optimization. 
Lai et al. demonstrated the application of AI workflow in the synthesis of ammonia synthesis catalysts; the 
results indicated that this workflow simplifies the catalyst development process[141]. Figure 10F and G 
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Figure 10. (A) CGCNN process diagram. CGCNN converts crystal structures into feature vectors, learning and predicting material 
properties. Copyright 2018, American Physical Society, Reproduced with permission[132]; (B) Process diagram for building predictive 
models using ML. This performance model holds the capability to forecast catalytic-related properties based on computational data and 
information sourced from material databases; (C) The general steps of catalyst optimization genetic algorithm supported by AI. 
Copyright 2024, American Chemical Society, Reproduced with permission[136]; (D) Roadmap for generating NES; (E) Workflow of 
Bayesian Optimization algorithm. Copyright 2021, OAE Publishing Inc. Reproduced with permission[137]; (F) Initial state model with 
limited data points; (G) Advanced stage of optimization, model improved through a larger dataset; (H) Predicted optimal point by 
Bayesian optimization algorithm, along with experimental data points obtained. Copyright 2023, American Chemical Society, 
Reproduced with permission[141]. CGCNN: Crystal graph convolutional neural network; ML: machine learning; AI: artificial intelligence; 
NES: neural evolutionary structures.

illustrate that Bayesian optimization leverages the information extracted by LLMs to approximate the 
unknown complex function mapping catalyst synthesis parameters to performance indicators through the 
construction of probabilistic models, which are continuously updated through active learning loops, 
ultimately converging to the global optimal solution [Figure 10H]. This workflow effectively combines 
knowledge extraction with practical experimentation, providing a rapid, efficient, and high-precision 
alternative for catalyst optimization.

All in all, the roles of generative model in SAC design include generating new structures, optimizing 
performance, reducing costs, and enabling inverse design. GANs show immense potential in enhancing the 
efficiency and precision of the entire “design-screen-optimize” process in materials science. However, their 
poor extrapolation capability in material design limits accurate prediction of properties outside the training 
data scope, especially for phenomena with unclear physical mechanisms, where these models may lack in-
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depth explanations.

CONCLUSION
AI technology demonstrates comprehensive potential in the development of SACs, spanning data 
generation, feature analysis, and materials design. By leveraging high-throughput DFT calculations to 
produce extensive datasets, coupled with ML models for feature importance analysis and performance 
prediction, researchers can significantly accelerate the development process of SACs. With further 
application of NNs and generative models, AI not only facilitates the identification of high-performance 
catalysts but also enables the generation of new material structures tailored to specific needs. This AI-driven 
approach to inverse design opens up vast possibilities for innovation in SACs, promising profound impacts 
in fields such as electrocatalysis and energy conversion. We foresee AI applications in catalysis advancing in 
the following three directions:

(1) AI-Assisted Simulation of Catalytic Processes Under Realistic Environmental Conditions: AI can play a 
pivotal role in simulating catalytic reactions by incorporating realistic environmental factors such as 
temperature, pressure, and the presence of solvents or gases, along with new methods such as CPM, explicit 
solvation models, and Pourbaix diagram to simulate electrochemical interfaces. By integrating ML 
algorithms with computational methods, researchers can create more accurate models that are closer to 
actual reaction processes, and reflect the complexities of real-world catalytic processes, leading to better 
predictions of catalyst performance in practical applications and achieving targeted design and optimization 
of electrocatalysts.

(2) Expanding DFT Research Capabilities: Another important function of AI is to enhance DFT studies by 
enabling the exploration of larger systems. Currently, DFT calculations are typically limited to hundreds of 
atoms due to computational constraints. AI can facilitate the scaling of DFT calculations to systems 
containing thousands or even millions of atoms, allowing for the study of more complex materials and 
catalytic mechanisms. For instance, the application of MLFFs enables rapid and accurate simulations of a 
broader range of novel and complex multi-atomic systems that were previously challenging to model. This 
advancement could significantly broaden our understanding of catalysts at a fundamental level and enable 
the design of more efficient materials.

(3) Theoretical Models Construction and Validation: AI can assist in building comprehensive datasets that 
combine experimental and computational data; critical information is extracted from vast data, aiding in 
identifying key steps and influencing factors in electrocatalytic reactions. AI constructs universal descriptors 
for various systems, linking electronic structure to performance. Researchers can refine theoretical models, 
thereby enhancing predictive capabilities. AI delves into mechanisms of electrocatalytic reactions by 
simulating and predicting the processes and outcomes of these reactions. It not only serves to interpret 
existing experimental results but also guides the design of novel catalysts. For instance, the development of 
the Digital Catalysis Platform (DigCat) exemplifies the promising application of AI in electrocatalysis 
research.
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