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Abstract
This review investigates the transformative potential of neuromorphic computing in advancing biointegrated 
electronics, with a particular emphasis on applications in medical sensing, diagnostics, and therapeutic 
interventions. By examining the convergence of edge computing and neuromorphic principles, we explore how 
emulating the operational principles of the human brain can enhance the energy efficiency and functionality of 
biointegrated electronics. The review begins with an introduction to recent breakthroughs in materials and circuit 
designs that aim to mimic various aspects of the biological nervous system. Subsequent sections synthesize 
demonstrations of neuromorphic systems designed to augment the functionality of healthcare-related electronic 
systems, including those capable of direct signal communication with biological tissues. The neuromorphic 
biointegrated devices remain in a nascent stage, with a relatively limited number of publications available. The 
current review aims to meticulously summarize these pioneering studies to evaluate the current state and propose 
future directions to advance the interdisciplinary field.
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INTRODUCTION
Recent strides in biointegrated electronics have significantly advanced our ability to monitor and interpret 
physiological activities within organs. Notable among these developments are bioimplants, including 
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multichannel electrocorticography (ECoG) devices and other technologies enabling real-time monitoring of 
brain activities[1,2]. Operating within the frequency range of approximately 1 kHz and across multiple 
channels, these implants offer deep insights into organ function, surpassing their initial role as simple 
biosignal measurement devices to encompass diagnostic capabilities and therapeutic interventions[3,4]. This 
paradigm shift in medical technology, exemplified by precise electrical stimulation to regulate abnormal 
neural activity, holds promise for personalized interventions in conditions such as epileptic seizures, 
benefiting patients with spinal and brain injuries[5-8].

The integration of artificial intelligence (AI) technology with biointegrated devices enhances biosignal 
interpretation, propelling the field toward future medical care with real-time, targeted interventions. 
Despite these promising developments, challenges such as real-time processing and high-power 
consumption involved need to be addressed[9-11]. The energy demands of conventional bioimplants for 
physiological monitoring primarily stem from functions related to data acquisition, conversion, and 
transmission for further processing. Wireless communication to external processors, crucial for freely 
moving patients, often requires additional equipment to meet power supply needs. Alternative on-site 
processing can be beneficial in terms of reducing the response time and the amount of data communication. 
However, incorporating high-performance processors in implants raises other concerns about volume, 
mass, heat generation, and power supply. More advanced systems that provide intervention mechanisms 
further contribute to overall power requirements, underscoring the importance of energy-efficient design 
strategies.

Neuromorphic computing, inspired by the structure and function of the human brain, presents a natural 
alliance with such demands. The human brain’s superior energy efficiency (~20 W) and performance in 
solving problems that require parallel or stochastic processing distinguishes it from conventional 
computers[12]. These remarkable capabilities stem from the unique structure of large-scale networks of 
neurons connected through synapses, enabling simultaneous data storage and processing with low power 
consumption. The communication mechanism between neurons in a biological neural network involves 
time-dependent spikes, contrasting with the logic-based computing process of the modern computers with 
von Neumann architecture. Neuromorphic hardware mimics these structural and communication features 
of the brain with various levels of abstraction using current-voltage (I-V) relationships of different 
electronic materials[13,14].

This review comprehensively elucidates the scope of the implementation and application of neuromorphic 
computing for biointegrated electronics. It initiates with an overview of the concept of neuromorphic 
computing, providing a foundation for exploring various abstraction levels pertaining to the hardware 
implementation. Examples of neuromorphic systems capable of energy-efficient acquisition and analysis of 
healthcare-related data are presented, highlighting examples based on emerging memristive materials. The 
discussion extends to innovative devices and circuit designs, underscoring their significance in interpreting 
sensed signals from biology and aiding in disease diagnostics. Finally, the review addresses recent studies on 
neuromorphic devices that are integrated and communicate with biology, illustrating the potential for 
replacing biological neurons to cure diseases or enhance biological functionality. Despite being in the early 
stages of development, neuromorphic systems utilizing emerging materials and circuit designs are 
anticipated to progress towards more intricate architectures, significantly contributing to the intelligence of 
biointegrated healthcare systems.
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UNDERSTANDING THE RECENT EMERGENCE OF NEUROMORPHIC COMPUTING
The evolution of neuromorphic systems, serving as hardware abstractions of the brain, has become a focal 
point in recent research on electronic materials and devices. While the conventional approach to mimicking 
the brain has primarily involved benchmarking the algorithms used in brain processing, there is a growing 
interest in hardware that physically replicates the brain itself. This shift is partially driven by the necessity to 
accelerate the execution of artificial neural network (ANN) algorithms[15]. As the fields of computer science 
and neuroscience have advanced AI to a significant level, successful examples of ANNs have expanded into 
various domains, including natural language processing, image recognition, computer vision, autonomous 
vehicles, and other sectors, as demonstrated by AlphaGo and AlphaFold[16-21]. Nevertheless, the 
computational expenses associated with training ANNs and performing inference present a significant 
challenge with conventional central processing units (CPUs).

The major computational costs stem from the unoptimized serial processing of CPUs and the limited 
bandwidth for communication between processing and memory units, decelerating the speed of the 
computation, storage and loading of synaptic weights or other parameters in ANNs. Accelerators such as 
graphics processing units (GPUs) and neural processing units (NPUs), optimized for parallel processing, are 
actively utilized and under development to accelerate the computation with the aid of high-bandwidth 
memory (HBM) [Figure 1A][22,23]. Additional efforts are directed towards reducing latency and energy 
consumption associated with fetching data from external memory by locating more memory in proximity to 
processors inside the same module, often referred to as process near memory (PNM)[24].

An advanced approach eliminates the boundaries between memory and processors by incorporating the 
storage of relevant data into the physical state of processing units. In contrast to the traditional von 
Neumann architecture, where data storage and processing occur in physically separate locations, these novel 
efforts introduce the innovative concept of processing in memory (PIM) [Figure 1A]. The distributed 
memory structure in PIM where memory and logic devices are located on the same chip can be further 
advanced to resemble the brain’s operations, where data undergo processing while moving across neurons 
(the processing element) through synapses (the memory element in the brain) in space. Such structure is 
called computing in memory (CIM) to distinguish it from PIM, but it is often presented as an advanced 
type of PIM in much of the literature.

The term “neuromorphic hardware” encompasses hardware that possesses the features of the brain 
distinguished from conventional computers at various levels and abstractions[25-28]. As previously mentioned, 
distributed memories and processors represent one of such distinguishing features. Other features pertain to 
event- or pulse-based signal communication during processing. Such hardware can be implemented using 
various electronic materials, with the most sophisticated demonstration achieved through silicon-based 
memory and logic devices[29]. Alternatively, emerging materials capable of processing analog data directly 
are also being explored, which will be discussed further in subsequent sections.

Despite variations in abstraction levels and applied materials and circuits, the anticipated advantages remain 
consistent. The overarching benefits expected from neuromorphic hardware encompass functions known to 
be inherently superior when executed by the brain compared to conventional computers. While computers 
excel in specific tasks requiring speed, accuracy, and large-scale repetitive data processing, the human brain 
remains superior in its capacity to execute a broad spectrum of cognitive functions with exceptional 
efficiency, adaptability, and creativity. Among these benefits, energy efficiency stands out as particularly 
noteworthy for edge computing for the devices with limited power sources.
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Figure 1. Advances in computing architectures and neuromorphic biointegrated electronics. (A) Schematic diagram illustrating 
conventional computing architectures and their evolution with advancements in data processing; (B) Schematic representation of 
biointegrated electronic systems designed for on-device neuromorphic computing; (C) The application of neuromorphic processing 
extends to transmitting external information to biological systems, processing biosignals for diagnostics, and facilitating therapeutic 
interventions; (D) Comparison between conventional (top) and neuromorphic (bottom) processing approaches.

COMBINING NEUROMORPHIC COMPUTING WITH BIOINTEGRATED ELECTRONICS
Figure 1B illustrates the schematic representation of neuromorphic biointegrated electronic systems 
characterized by brain-like signal processing performed on-site. The integration of high-performance 
processors into conventional biointegrated systems raises concerns regarding heat generation and excessive 
power demand. Consequently, the functionality of conventional bioimplants is primarily confined to tasks 
associated with data acquisition, conversion, and transmission, particularly for facilitating wireless 
communication with external processors. Neuromorphic computing, inspired by the energy-efficient 
structure and function of the human brain, emerges as a promising solution to these challenges. By 
emulating the brain’s intricate communication mechanisms within its dynamic network structure, 
neuromorphic systems hold the potential to enhance the functionality of the biointegrated systems that can 
extend to effectively conveying external information to biological entities or facilitating the acquisition and 
interpretation of biosignals [Figure 1C].

Figure 1D reveals the essential characteristics of neuromorphic computing systems by comparing with 
conventional processing approaches in managing continuously generated biopotentials sensed by 
multichannels of a biointegrated device. In the conventional system, a multiplexer (MUX) is employed for 
serial processing to accommodate numerous input signals, subsequently selecting and conveying the 
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necessary data for output. An amplifier is simultaneously integrated with the output to enhance information 
within predetermined bandwidth and temporal constraints. The acquired signal modifications are then 
processed by an analog-to-digital converter (A/D) and stored and processed in a separate computer with 
dedicated processors and memories for subsequent analysis[30]. This conventional approach to data 
processing is characterized by complexities leading to issues such as elevated energy consumption and 
diminished processing speed, especially when handling large datasets in parallel.

In contrast, neuromorphic computing is characterized by parallel processing of input data during signal 
transmission over time through physical space interconnected by distributed processing and memory 
elements[25,31,32]. PIM or CIM is a commonly employed term to delineate this processing paradigm, 
attributable to the processing occurring during signal transmission through those elements situated in close 
proximity[33]. Prior to delving into the specifics of biointegrated neuromorphic systems, the subsequent 
chapters provide a succinct overview of neuromorphic hardware from a broad perspective.

PROCESSING IN THE BRAIN
The current trajectory of research in neuromorphic electronics is centered on the development of small-
scale replications of specific components of the human brain rather than the complete emulation of the 
brain’s integrative functionality. Since previous reviews have extensively covered the structural organization 
of biological neurons and emulating unit devices, a brief description suffices here[34-38].

Biological neurons, the fundamental units of the nervous system, consist of distinct anatomical 
components: dendrites, soma (cell body), and axons [Figure 2A][39]. Dendrites function as receivers for input 
signals originating from neighboring neurons. The input signals are transmitted via synapses, the sites of 
contact between the axon terminal of the signal-sending (presynaptic) neuron and the dendrite terminal of 
the signal-receiving (postsynaptic) neuron [Figure 2B]. Synaptic strength, determined by factors such as the 
amount of neurotransmitter release and receptor sensitivity, plays a pivotal role in modulating the 
amplitude of the response of the receiving neuron. Subsequently, the received signals are transmitted to the 
soma. Here, the soma integrates incoming signals from its multibranched dendrites, undergoing a nonlinear 
processing phase when the cumulative input exceeds a predefined threshold. This process culminates in a 
voltage spike called an action potential featuring an amplitude of approximately 110 mV and a duration 
spanning 1 to 10 ms [Figure 2C]. The action potentials are then conveyed to other neurons through axonal 
pathways[40].

The integrate and fire (IF) model captures the firing event of neurons. In the circuit model of IF, the 
capacitor (C) discharges accumulated charges when the potential developed across the capacitor (Vmem) 
exceeds a certain threshold. Figure 2D shows an example of such a circuit that utilizes a volatile threshold 
switch (TS) for the discharging process. This firing mechanism effectively captures the precise moment 
when an event of reaching the threshold voltage occurs. Inclusion of a leaky element in the circuit 
demonstrates leaky IF (LIF) model that can simulate the returning dynamics to the resting potential during 
the period without input signals. The IF or LIF model assumes that the specific shape of the spike holds 
minimal significance in processing information. Recent studies demonstrate advanced neuron models using 
supplementary circuits and rich dynamics of memristors to simulate neuronal memory effects such as 
adaptation and bursting[41,42].

In addition to the IF model, the Hodgkin-Huxley (HH) model demonstrates a more detailed biophysical 
process of generating action potentials by explicitly incorporating circuit components to simulate the ionic 
current flow across the cell membrane. The HH model consists of several variable resistors and voltage 
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Figure 2. Biological neurons and artificial neuron model for neuromorphic computing. (A) Components of biological neurons; (B) 
Synapse as the site of transmission of electric and chemical signals between two neurons; (C) Membrane potential changes and the 
generation of action potential; (D) Circuit diagram of a LIF model, implemented using a capacitor, resistor, and TS; (E) HH model. The 
membrane potential (Vm) of the circuit is determined by the conductance of variable resistors that represent ion channels. LIF: Leaky 
integrate and fire; TS: threshold switch; HH: Hodgkin-Huxley.

sources that correspond to the ion channels with different resting potentials to elucidate the membrane 
potential changes [Figure 2E]. The node voltage (Vm) across the capacitor (Cm) varies according to the 
changes in the conductance of Na+ and K+ channels (GNa+, GK+). The HH model can be advanced to include 
adaptation variables and stochasticity. However, the computer simulation of a large network composed of 
the HH model demands increased computational costs due to the high complexities involved in nonlinear 
dynamics of the components[43]. Building hardware that utilizes electronic circuits that physically reproduce 
the dynamics of biological neurons can provide potential solutions to these challenges[34,44-47].

EMERGING MATERIALS FOR NEUROMORPHIC COMPUTING
Modulation of membrane potential is critical in neuromorphic hardware that aims to mimic neuronal 
signal processing. Current research endeavors are focused on physically simulating the signal processing 
mechanisms of the neurons by utilizing various components including capacitors, resistors, TSs, and 
complementary metal-oxide-semiconductor (CMOS) technologies[48-52].

Among various options for electronic components in these hardware-level simulations, the CMOS 
technology is capable of supporting the most sophisticated demonstrations of neuromorphic computing 
due to its advanced design and fabrication capabilities[53-55]. However, implementing neuronal dynamics in 
such digital devices presents challenges, requiring intricate configurations of components. For example, a 
spiking neural network (SNN) incorporating spike-timing-dependent plasticity (STDP), a well-known 
learning mechanism of SNNs, necessitates approximately 32 CMOS transistors per synapse[41,56-60].
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In this context, memristors emerge as promising candidates for neuromorphic computing owing to their 
characteristic history-dependent, analog-type physical states, beneficial for demonstrating the rich dynamics 
of neurons. Figure 3 illustrates representative emerging memristive devices that are often adopted for 
neuromorphic computing[41,59,61,62]. These devices can exhibit different resistance states, which depend on the 
formation of a conductive filament inside a high-resistance dielectric layer or the formation of a highly 
resistive phase inside a low-resistance surrounding phase[63]. Other materials with ferroelectric or magnetic 
properties have been utilized as memristive components in neuromorphic hardware. In this section, we will 
briefly overview the operation mechanisms of various types of resistive switching materials that are actively 
utilized for neuromorphic computing[64].

Figure 3A describes resistance changes induced by electrical bias at metal-insulator-metal junctions through 
the migration of charged ions or vacancies influenced by electrochemical potential and temperature 
gradients[65]. For example, memristors can be implemented through redox reactions between electrodes 
using electrochemically active metals such as Ag and Cu. In this mechanism, metal cations oxidized at the 
interface migrate into the solid electrolyte and reduce at the opposite electrode, forming nuclei that grow 
into metal filaments. The formation of metallic filaments in various dielectric layers has been demonstrated 
through a scanning tunneling microscope and energy-dispersive X-ray spectroscopy[66-69]. Redox-based 
memristors often use amorphous insulators, which, in their OFF state, contain local electronic states 
bounded by mobility edges. These states facilitate thermal transfer mechanisms such as electron hopping. 
When subjected to external electric fields and heat, the stoichiometry of the amorphous insulator deviates 
due to redox reactions, leading to the formation of overlapping impurity orbitals. These localized impurity 
states form a non-localized impurity band, similar to a heavily doped amorphous semiconductor, thereby 
becoming conductive.

Recently, significant research activity has been focused on transistors and electronic devices based on the 
oxides of V or Nb. According to classical band theory, the Mott insulator is predicted to be a conductor; 
however, in practice, the band is separated due to the repulsion between electrons in the d and f orbitals, 
with the Fermi energy located between the band gaps. When external stress is applied, lattice deformation 
occurs, leading to band bending and enabling control of the band gap [Figure 3B][64]. This ability to adjust 
the band gap not only allows for effective control but also enables the material to become conductive, 
making it suitable for a variety of electronic devices[70].

The operating principle of phase change memory (PCM) relies on the thermally induced phase transition of 
the material. The atomic structure transforms from a disordered amorphous state with high resistance to a 
crystalline state with lower resistance, thus acting as a memory through changes in resistance. The PCM 
memristor generates heat due to the Joule effect between the electrodes, altering the crystal structure of the 
phase change layer [Figure 3C]. The OFF state of PCM-based memristors is generally amorphous with high 
crystallographic disorder, generating many localized electronic fields with exponentially decreasing wave 
functions[65]. This localization state, divided by mobility edges, fixes the Fermi level within the bandgap, 
reducing electrical conductivity. In the crystalline ON state, increased crystallinity through annealing 
creates a higher mobility edge. Additionally, chalcogenide element vacancies lower the Fermi level to the 
valence band, increasing carrier concentration and electrical conductivity.

Ferroelectric materials, exhibiting reversible remanent polarization, can change the dipole moment inside 
the material under an external electric field. This polarization state has been utilized in ferroelectric random 
access memory (FeRAM) due to its bit-encoding capability. Recent developments have highlighted 
ferroelectric material-based memristors as promising components for neuromorphic computing 
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Figure 3. Example of memristive materials. Operational principles and band diagrams of (A) ReRAM, (B) Mott insulator, (C) PCM, and 
(D) Ferroelectric memristor. (B) Reproduced with permission Copyright 2017, Nature Communications[64]. (A, C, D) Reproduced with 
permission Copyright 2020, Nature Communications[65]. ReRAM: Resistive random access memory; PCM: phase change memory.

applications. Memristors based on ferroelectric tunnel junctions (FTJs) consist of a metal-non-ferroelectric-
ferroelectric-metal structure, where switched polarization alters the tunneling barrier and electron tunneling 
resistance [Figure 3D]. The electric field changes the direction and magnitude of the dipole within the 
ferroelectric, modifying the energy band structure and thereby the tunneling barrier and electron tunneling 
resistance[65]. The polarization dependence of the tunneling barrier is influenced by the ferroelectric-
electrode interface, with asymmetry arising from differences in the thickness of the non-ferroelectric 
interfacial layer (yellow layer in Figure 3D) and the screening performance of the electrode.
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TWO-TERMINAL NEUROMORPHIC DEVICES
The physical states of memristors can be modulated by adjusting both the amplitude and timing of spike 
signals, facilitating the implementation of a synapse, and leading to reduced power consumption during 
both information storage and processing. Memristors offer rapid read and write operations with a simple 
two-terminal architecture, and various data retention characteristics depending on materials and operation 
scheme[71,72]. Figure 4A presents the representative I-V characteristics of memristive devices. The top plot 
depicts an I-V curve of volatile resistance switching, often referred to as threshold switching. The 
characteristic of the TS is the volatility of the low-resistance state after the voltage bias is removed across the 
memristive layer. The threshold voltages that cause switching to the low-resistance (ON) state and the 
return to the high-resistance (OFF) state often differ. The former voltage is termed the threshold voltage 
(Vth), while the latter is termed the holding voltage (Vh). The volatile switch is frequently employed to 
illustrate the dynamics of neurons, as its characteristic behavior of conducting current above the threshold 
and subsequently returning to the original state effectively demonstrates the firing of action potential and 
subsequent returning to a rest state.

The bottom curve of Figure 4A describes I-V characteristics of nonvolatile resistance switching. Devices 
with this characteristic are called bipolar switches, as the switching to low- (SET) and high-resistance 
(RESET) occurs upon applying opposite bias polarity. The resistance state after switching is nonvolatile 
without external bias once the state is achieved. The nonvolatile switch is utilized to describe the long-term 
memory of the synapse. However, the classification between volatile and nonvolatile switches can 
sometimes be ambiguous, as the retention time of the state without bias spans a wide range of times. 
Retention times below several seconds but longer than the period of the input signal pulses can induce 
hysteresis that can occasionally manifest complex dynamics of memory.

Numerous studies have investigated the effectiveness of hardware that operates computation during data 
flow through these volatile or nonvolatile memory devices. For example, integrating memristors in a 
crossbar array [Figure 4B] can capitalize on the resistance dependence of current output (Iout) to perform 
matrix-vector multiplication[73]. In this setup, vectors are represented as input voltages (Vin) to one electrode 
whereas matrix values are expressed as conductance values of a memristor (G) located between the top and 
bottom electrodes. The measured output physically performs the multiplication (Iout = G∙Vin). The two-
terminal structure can be scaled up in large-scale crossbar arrays or random networks of nanowires 
[Figure 4B and C][74-76]. Despite the accuracy limits stemming from non-idealities in analog-type processing 
through passive electronic devices, this approach offers promising solutions to mitigate the computational 
costs associated with training and inference in ANNs, as the operation maintains a constant time 
complexity regardless of the scale of the computation[77-80].

Various studies have demonstrated that two-terminal memristor devices can effectively emulate the leaky 
integration and firing processes, which are essential characteristics of biological neurons. Figure 4D shows 
the circuit diagram of an adaptive LIF (ALIF) neuron based on the two-terminal VO2 memristor. Each spike 
from the LIF part charges C2 and increases Vg. The impact of the gate voltage (Vg) applied to M3 on the spike 
frequency is depicted in Figure 4E. When Vg is below the threshold voltage of M3, M3 remains off, and the 
spiking frequency remains constant within this range. However, once Vg exceeds this threshold, M3 turns 
on, leading to an increase in leakage current, which subsequently reduces the charging amount of C1. This 
results in a decrease in membrane potential Vm and, consequently, a reduction in the spiking frequency. 
This indicates that the spiking frequency can be modulated by Vg. The study shows that the implementation 
of a LIF circuit typically involves various resistor-capacitor (RC) circuits in addition to the memristor.
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Figure 4. Two-terminal memristive devices and their implementation of LIF model. (A) Representative current-voltage (I-V) 
characteristics of volatile (top) and nonvolatile (bottom) memory devices; (B) Stacked 5 × 5 crossbar array utilizing memristive devices. 
The output current varies depending on the state of the memristor; (C) Schematic diagram of the nanowire-based memristor system 
used to implement the random network; (D) Circuit diagram of the VO2 memristor-based ALIF neuron; (E) Impact of Vg on the 
operational mechanism and spike frequency of ALIF neurons; (F) Schematic representation of a vertically stacked LIF device 
incorporating an analog resistive switching unit (Au/WO3/W)-Threshold switching unit (W/Ag/Pt); (G) IF processes measured in the 
resistive component. (D and E) Reproduced with permission Copyright 2023, Nature Communications[70]. (F and G) Reproduced with 
permission Copyright 2022, IEEE Electron Device Letters[81]. LIF: Leaky integrate and fire; ALIF: adaptive LIF; IF: integrate and fire.

Figure 4F presents a LIF neuron device constructed exclusively with nonvolatile and volatile memristors[81]. 
The analog resistive switching (ARS) unit, constructed with Au/WOx/W, exhibits nonvolatile 
characteristics, allowing its resistance to gradually decrease with the integration of input pulse voltage. 
Consequently, the voltage applied to the TS unit in series increases, eventually surpassing the threshold 
voltage and triggering a spike. Following this, the TS unit spontaneously reverts to a high resistance state 
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(HRS) within a brief period due to its volatile nature [Figure 4G].

Figure 5 summarizes recently published neuromorphic computing systems for electroencephalogram 
(EEG)-based epileptic seizure diagnostic systems. Figure 5A employs α-In2Se3-based dynamic memristor 
reservoir computing to streamline the training process[82]. The operating characteristics of the fabricated 
memristor were validated through the I-V transfer curve [Figure 5B]. The presence of a pinched hysteresis 
curve, which signifies memristive behavior, can be attributed to the ferroelectric properties of In2Se3. This 
behavior arises from the displacement of the Se atom situated at the center of the crystal structure.

The efficacy of the proposed system was validated through epileptic seizure prediction analyses conducted 
on EEG data procured from six patients. The data, representative of EEG signals acquired from 18 distinct 
scalp locations, was concurrently fed into a memristor array, serving as the input to the reservoir 
[Figure 5C]. Reservoir computing, characterized by its input layer, reservoir, and readout layers, 
significantly mitigates training overheads by necessitating training solely for the readout layer[83-85]. 
Furthermore, the integration of memristor technology, renowned for its PIM attributes, facilitates the 
development of compact, cost-efficient closed-loop systems. This approach underscores the potential of 
memristor-based reservoir computing in reducing the complexities and expenses associated with the 
training processes of diagnostic systems. The reservoir states correspond to the current output through the 
memristor. The upper panel of Figure 5D exhibits the 32 sampled response currents acquired from the 
interictal (non-seizure) input, whereas the lower panel showcases those obtained from the ictal (seizure) 
input. Notably, the ictal input data clip elicits a greater and accumulative response current compared to the 
interictal data, effectively capturing the temporal information embedded within the input data.

Another report presents an enhanced performance epileptic seizure detection system that processes 
intracranial electroencephalogram (iEEG) signals via a memristor array employing a 1T-1R (one transistor-
one resistor) configuration. This system comprises 1k alternating arrays of TiN/TaOx/HfOy/TiN multilayer 
memristors; each memristor sits on top of the transistor drain terminal [bit line (BL)] [Figure 5E][86]. The 
methodology for signal input involves the sequential transmission of the input signal across the word line 
(WL), segmenting it into equal lengths, and subsequently delivering these segments to the memristors 
situated in the corresponding row. This technique of signal division facilitates the temporal storage of 
information pertaining to the dynamically changing input signals within the memristor, thereby ensuring 
high accuracy. Notably, there exists a correlation between the amplitude of the input signal and the 
conductance change (ΔG) within the memristor, with an increase in signal amplitude prompting a 
significant augmentation in ΔG [Figure 5F]. Figure 5G illustrates the conductance variation observed under 
various pulse patterns. The change in conductance (ΔG) correlates with both the amplitude of the input 
pulse and the subsequent pulse. This modulation of conductance enables precise encoding of signal 
wavelengths generated in the brain.

The system’s efficacy was corroborated using pre- and post-seizure iEEG signals sourced from the Kaggle 
Seizure Prediction dataset as the input signals. The analysis revealed that despite similar signal energy and 
variation levels, the average ΔG for preictal signals was markedly higher, thereby enabling precise seizure 
prediction [Figure 5H][86]. These investigations affirmed the high compatibility of memristors with 
transistors used in conventional semiconductor devices, highlighting the potential for seamless integration 
within existing technological frameworks. The accuracy and sensitivity of the previous α-In2Se3 and TaOx/
HfOy-based computing showed higher performance compared to simple logistic regression method.
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Figure 5. Neuromorphic computing for EEG-based seizure detection based on two-terminal devices. (A) Schematic of a-In2Se3-based 
two-terminal memristor; (B) Current-voltage (I-V) characteristics of the device; (C) Process of computation involved in seizure 
detection within the system; (D) Current output from dynamic memristor from interictal and ictal data input. The ictal data clip showed 
a higher response current than the interictal data clip; (E) Crossbar array connected to multichannel sensors. Detailed structure of the 
1T-1R memristor device (right); (F) Analog conductance modulation behaviors in RESET process for different VSL; (G) The average 
conductance change of 128 memristors in response to pulse train applications across different input signal waveforms; (H) Relationship 
between average ΔG and signal energy across eight consecutive segments depending on the interictal or preictal states. (A-D) 
Reproduced with permission Copyright 2023, APL Machine Learning[82]. (E-H) Reproduced with permission Copyright 2020, Science 
Advances[86]. EEG: Electroencephalogram.

THREE-TERMINAL NEUROMORPHIC DEVICES
While a two-terminal crossbar array architecture enables simple device integration and matrix calculation, 
the configuration inherently shares electrodes during the read-write process, resulting in unavoidable 
leakage currents and subsequent errors during the programming of synaptic weights[87-89]. In contrast, a 
synaptic device with three or more numbers of terminals employs a gate electrode that acts as a switch to 
control the channel conductance between the source and drain, enabling more accurate programming by 
allowing independent control of presynaptic and postsynaptic signals[90,91].

Figure 6A-C illustrates a schematic diagram of an artificial visual sensory neuron implemented using a 
GeSe2-based three-terminal ovonic threshold switching (OTS) device[92]. OTS materials exhibit threshold 
switching through carrier trap-hopping by valence-alternating pairs (VAP) found in amorphous 
chalcogenide materials[93,94]. Initially, the application of a positive gate voltage causes Ag+ ions to migrate 
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Figure 6. Three-terminal neuromorphic devices. (A) Optical micrograph of the OTS device and transport mechanism; (B) Schematic 
diagram comparing biological RGCs and artificial RGCs; (C) Output spike measured from the device connected in series with a resistor 
(Vds = 5 V). Change in device output with and without illumination; (D) Schematic of an electric double-layer transistor based on VO2. 
(A-C) Reproduced with permission Copyright 2022, Nano Letters[92]. (D) Reproduced with permission Copyright 2012, Nature[95]. OTS: 
Ovonic threshold switching; RGCs: retinal ganglion cells.

An artificial neuron was implemented by connecting the OTS element and a resistor (ROTS,ON < R < ROTS,OFF) 
in series, and subsequently examining the spike characteristics. When an external voltage is applied to Vg in 
the OTS in the off state, Vds increases due to the parasitic capacitance of the OTS. Once Vds exceeds Vth, the 
device transitions to the on state, producing a spike. As the gate voltage increases, the spike frequency also 
grows (200~400 kHz), which is analogous to the behavior of biological neurons. Utilizing this property, an 
artificial visual sensory neuron was constructed by connecting a photoelectric diode to the gate electrode. It 
was observed that the spike frequency approximately doubled when the light was activated [Figure 6C].

Figure 6D shows an electric-double-layer transistor (EDLT) involving a VO2 channel and an organic ionic 
liquid that can induce the surface charge density of the channel up to 1015 cm-2[95]. Electronic and structural 
phase transitions occur simultaneously owing to collective electron-lattice interactions at different 
temperatures depending on gate voltages (VG). Metal-insulator transition temperatures decrease 
dramatically with applied gate voltages above 0.3 V, indicating that the bulk region has been induced to 
enter the metallic state.

near the bottom electrode in the Ag-doped GeSe2 layer, acting as a trap source and reducing the distance
between hopping sites, facilitating the Poole-Frenkel transport. Additionally, the capacitance 
decreases as the gate voltage becomes more negative, indicating charge redistribution induced by Vg.
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Figure 7A presents an approach utilizing organic electrochemical transistors (OECTs) based on organic 
mixed ion-electron conductors. OECTs emulate biological systems through their soft nature and ability to 
interact directly with ions in aqueous electrolytes[96]. Additionally, OECTs can function as either P-type or 
N-type depending on the channel material, enabling them to meet diverse requirements and exhibit high 
usability[97-100]. This versatility makes them highly adaptable for a range of applications. Initially, the input 
voltage pulse (Vg) mobilizes ions within the ion gel, doping the channel and altering its conductance, 
resulting in a postsynaptic current[99]. When the voltage pulse is removed, the ions within the ion gel return 
to equilibrium, causing the postsynaptic current to gradually decrease.

Figure 7B illustrates the circuit diagram of a neuromorphic device constructed with P-type OECTs. In this 
configuration, T1 [poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel] and T2 
{poly(2-(3,3’-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-[2,2’-bithiophen]-5-yl) thieno [3,2-b] thiophene) 
[p(g2T-TT)] channel} operate in depletion and enhancement modes, respectively[96]. Both the channel and 
the gate of the OECTs are in direct contact with the electrolyte. When a positive gate voltage (Vg) is applied, 
positive ions migrate into the polymer channel, reducing the hole concentration [Figure 7C]. Various 
driving methodologies of OECTs can emulate the excitation-inhibition dynamics observed in neural 
networks, making them suitable for diverse biointegrated neuromorphic systems. Moreover, the imperative 
for wearable and implantable electronic devices necessitates materials that are flexible, adherent to the skin, 
and capable of accommodating physical deformations. OECTs, predominantly composed of organic 
polymers and flexible nanowires, fulfill these criteria and have found application in a wide array of 
biointegrated electronic devices.

Figure 7D illustrates a schematic representation of stretchable OECTs utilizing poly(3-hexylthiophene) 
(P3HT)/polyethylene oxide (PEO) nanowires, where a poly(vinylidene fluoride-co-hexafluoropropylene) 
(PVDF-HFP)/1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM-TFSI)-based ion 
gel adheres to a stretchable P3HT/PEO nanowire channel fabricated via electrospinning on a pliable silicone 
rubber substrate[101]. The synaptic behavior of these stretchable OECTs in response to presynaptic voltage 
spikes to the ion gel is analyzed in Figure 7E. Notably, the applied tensile strain elongates the channel, 
thereby attenuating the postsynaptic current output. Leveraging these characteristics, the extent of 
deformation can be quantified using postsynaptic currents, enabling precise detection of finger movements 
with high accuracy [Figure 7F]. The postsynaptic current and stretching velocity of the stretchable motion 
sensor, evaluated through finger gestures collected from three subject [Figure 7G]. This study demonstrates 
the potential of developing hardware-based ANNs capable of interacting with biological tissues, offering 
promising applications in biomonitoring and biosignal analysis.

ORGANIC ELECTROLYTE TRANSISTORS BASED BIOINTEGRATED NEUROMORPHIC 
SYSTEMS
In biological systems, peripheral afferent nerves convey sensory information to the brain, while peripheral 
efferent nerves transmit stimulation signals from the brain to other parts of the body, crucial for muscle 
contraction and relaxation[102]. Disruptions to this intricate nervous network can severely affect basic motor 
functions. Neuroprosthetics, involving the replacement of damaged nervous and sensory organs with 
electronic devices, hold considerable promise in addressing various nerve-related disorders. Successful 
implementation of biointegrated neuroprosthetics requires incorporating sensing or motor elements 
capable of signal processing within their architecture, with input and output designed to emit pulse-based 
signals similar to biology to ensure compatibility in signal communication.
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Figure 7. Schematic diagram of a neuromorphic system based on OECTs. (A) Schematic diagram illustrating the working mechanism of 
an electrolyte gate transistor; (B) Circuit diagram of an OAN, comprising two p-type OECTs (T1, T2) including an RC element; (C) 
Transfer curves of T1 (depletion mode) and T2 (enhancement mode) measured in the drain voltage range of 0.1 to 0.4 V; (D) Schematic 
illustration of the stretchable neuromorphic transistor; (E) Postsynaptic current of the device measured under tensile strain ranging from 
0% to 50%; (F) Dataset of 270 hand shapes collected from a total of three individuals; (G) Tensile rate and postsynaptic current for 
hand gesture samples classified into three distinct motions. (B and C) Reproduced with permission Copyright 2022, Nature 
Electronics[96]. (D-G) Reproduced with permission Copyright 2022, ACS Nano[101]. OECTs: Organic electrochemical transistors; OAN: 
organic artificial neuron; RC: resistor-capacitor.

Artificial neurons based on memristors are gaining significant attention in the field of neuromorphic 
systems due to their high integration and accuracy. However, the susceptibility of solid memristor devices to 
moisture damage poses a challenge for their integration with living organisms, which have high moisture 
and ion concentrations. While research on biological signal processing before and after data acquisition by 
memristor arrays is active, their use for biointegrated real-time data analysis remains underdeveloped. The 
following study presents instances of neuromorphic devices seamlessly integrated with afferent and efferent 
nerve components, demonstrating the potential of bioimplantable closed-loop neuromorphic systems.

Artificial afferent nerves can convey the external information such as tactile stimulation, temperature, or 
other chemical environment to biology[103]. These biological sensory signals enable the performance of 
complex tasks by gathering information about the external environment [Figure 8A][104]. While intricate 
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Figure 8. Biointegrated artificial afferent nerve and proprioception. (A) Schematic diagram illustrating the body’s stimulus recognition 
process; (B) Schematic diagram of an OECT-based artificial afferent nerve integrated with a CNT-based pressure sensor and an organic 
ring oscillator; (C) Changes in postsynaptic current as a function of the intensity of applied pressure; (D) Schematic diagram of the 
artificial sensorimotor system; (E) Correlation between pressure and twitching angle measured in four rats; (F and G) The SNEN-based 
artificial proprioception. (F) The concept of artificial proprioception to recover voluntary motor function of a mouse through the use of 
SNEN (right). (G) Presynaptic gate voltage spikes and output drain current (EPSC) with frequencies from 1 to 11 Hz; (H) Comparison of 
EPSCs without proprioceptive feedback (black) and with proprioceptive feedback (red). (A, D, E) Reproduced with permission Copyright 
2023, Science[104]. (B and C) Reproduced with permission Copyright 2018, Science[108]. (F-H) Reproduced with permission Copyright 
2022, Nature Biomedical Engineering[111]. OECT: Organic electrochemical transistor; CNT: carbon nanotube; SNEN: stretchable 
neuromorphic efferent nerve; EPSC: excitatory postsynaptic current.

silicon circuits have been developed to emulate the peripheral nervous system and replicate biological skin-
like perception, the construction of soft and deformable electronic skin (e-skin) using conventional Si-based 
circuits faces significant cost and material limitations[105]. Figure 8B shows that the pressure-sensitive 
synaptic device can be realized through the utilization of electrolyte gate transistors (EGTs) featuring 
multiple input gates in conjunction with a carbon nanotube (CNT) pressure sensor and a ring 
oscillator[106-108]. Upon application of a negative gate voltage, negative ions within the ion gel migrate in 
proximity to the channel, and induce subsequent turning on of the channel[109]. The electrical characteristics 
of the employed EGTs were scrutinized by examining their transfer curves. The lingering negative ions 
during the voltage sweep induce clockwise hysteresis, attributed to polarization effects.
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The pressure-sensitive synaptic device operates by leveraging the responsiveness of the CNT pressure 
sensor, wherein an increase in pressure induces a corresponding reduction in the sensor’s resistance owing 
to enhanced contact area. Concurrently, the applied pressure intensity modulates the input voltage of the 
ring oscillator, boosting the amplitude of the output voltage signal [Figure 8C][108,110]. Subsequently, this 
pulse signal serves as the gate voltage input for the EGTs, thereby influencing the output drain current, akin 
to the postsynaptic current. Notably, the frequency of the output drain current tends to align with the 
frequency of the input pulse voltage. The intensity of the pressure applied to the sensor is proportional to 
the amplitude of the postsynaptic current, which is used to control the contractile force of the tibial flexor 
muscle in the discoid cockroach leg according to the temporal and intensity characteristics of the applied 
pressure.

Figure 8D presents a schematic diagram of a biointegrated neuromorphic system implemented using 
stretchable synaptic transistors based on single-ion conducting polymer electrolyte {poly[(1-vinyl-3-propyl-
imidazolium) bis(trifluoromethanesulfonyl)imide] (PiTFSI)}[104]. The synaptic behavior of the transistor was 
assessed via transfer curves under strain conditions of up to 50%, revealing the maintenance of a substantial 
hysteresis window. Initially, the pressure applied to the pressure sensor modulates its resistance, and the 
signal encoded through the ring oscillator integrated with the e-skin is conveyed to the somatosensory 
cortex of the rat, eliciting a feedback response in the motor cortex. The evoked motor signals traverse the 
artificial synapse, where they are summed and subsequently stimulate downstream muscles via the 
PEDOT:PSS electrode connected to the sciatic nerve, resulting in the contraction of the biceps femoris 
muscle. High-frequency voltage pulses stimulate the somatosensory cortex, and depending on the degree of 
stimulation, artificial postsynaptic currents induce leg movements in the rat within a range of 44.6° to 70.2°, 
successfully simulating a neuroprosthetic neuromorphic system [Figure 8E].

Existing neural prostheses that deliver the stimulation signals to the muscles often face limitations in their 
application to living bodies due to their high rigidity and power consumption, leading to non-physiological 
movements with rapid and unnatural muscle contractions and relaxations. Figure 8F presents the concept 
of stretchable neuromorphic efferent nerve (SNEN), designed to restore motor function by circumventing 
damaged neural pathways in the legs of mice afflicted with neuromotor impairments[111]. Synapse 
transistors, employing organic semiconductor nanowires as channels coupled with ion gel, demonstrate the 
ability to modulate channel conductivity by altering the concentration of anions near the channel in 
response to voltage pulses (action potentials)[112]. Notably, when applying action potentials with frequencies 
ranging from 5.5 to 11 Hz, surpassing the mobility rate of ions, a gradual increase in current at the drain 
electrode is observed, closely mimicking excitatory postsynaptic currents (EPSCs) and facilitating natural 
muscle movements [Figure 8G]. Furthermore, a CNT-based strain sensor with a resistance range of 100 kΩ 
to 3 MΩ adjusts the amplitude of the input pulse to the synapse transistor[113-115]. Consequently, modulation 
of the synapse transistor’s input pulse according to the degree of muscle contraction and relaxation 
effectively mitigates the risk of muscle damage [Figure 8H][111].

OUTLOOK
The advancements in diverse characteristics of emerging materials have catalyzed the development of 
neuromorphic computing systems that can be utilized for analyzing data generated from the biology. While 
these endeavors herald a promising convergence between neuromorphic computing and bio-related fields, 
it is imperative to acknowledge the inherent limitations of current technology.

Primarily, the presented research in disease diagnosis heavily relies on data from pre-existing repositories 
rather than direct acquisition from integrated sensors. As research progresses, a critical need arises for the 
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creation of devices endowed with integrated sensors capable of directly capturing biosignals. The authors 
contend that the application of neuromorphic computing to external devices with sufficient power sources 
may be limited, as such scenarios may prioritize processing methods that guarantee accuracy and speed. 
Leveraging the energy efficiency inherent in neuromorphic computing, on-site processing of biosignals 
becomes feasible, necessitating the integration of sensors and neuromorphic processing units within 
biointegrated devices. Also, the current trajectory of research predominantly emphasizes diagnostic 
capabilities over therapeutic interventions despite the commendable accuracy and cost-effectiveness 
demonstrated by neuromorphic-based systems in disease identification. Consequently, existing systems 
often require the transmission of results to external devices for further processing for treatment.

Other notable challenges persist regarding the chemical and mechanical compatibility between electronic 
and biological systems, as well as the unverified reliability of their operation in the biological 
environment[116-122]. For example, chalcogenide-based OTS is easily oxidized by the surrounding 
moisture[123]. Considering the biointegrated devices are in constant contact with biofluids, addressing the 
encapsulation issues is crucial for the practical application of neuromorphic computing for biointegrated 
systems.

The current neuromorphic systems have not yet achieved the scale and networking complexity of the 
human brain. The studies on biointegrated neuromorphic systems using emerging memristive materials are 
confined to simple electronic configurations composed of a small number of devices with limited scalability. 
While thin films are beneficial in fabricating flexible and stretchable devices, their current scale and 
sophistication levels fall short of conventional CMOS-based biochips or other medical apparatuses.

Discoveries in neuroscience suggest that many superior brain functions are attributed to the scale and 
network structure of the brain. The neuromorphic systems are anticipated to recognize and implement the 
importance of the specialized sub-parts of the brain interconnected on a large scale. Since advanced insights 
into the mechanisms involved in information processing provide valuable guidance for advancing 
biointegrated electronics, a close and continuous collaboration between engineering and neuroscience is 
essential for bridging the gap between current neuromorphic computing capabilities and the complexities of 
brain function. Addressing the aforementioned challenges and capitalizing on emerging opportunities, 
researchers are positioned to usher in a new era of advanced healthcare through the judicious integration of 
neuromorphic computing principles into medical devices.

CONCLUSION
The advances in biointegrated electronics, exemplified by bioimplants and their integration with AI, mark 
the onset of a new era in personalized medical care. Despite these strides, challenges related to real-time 
processing and high-power consumption necessitate innovative solutions. Neuromorphic computing 
emerges as a promising ally, drawing inspiration from the human brain’s efficiency and unique structural 
features. This review comprehensively explored the implementation and application of neuromorphic 
devices, showcasing their potential in achieving energy-efficient data acquisition, analysis, and disease 
diagnostics. More advanced forms of biointegrated systems demonstrated the potential for direct 
communication with biology to substitute or enhance the functionality of human body parts. Although 
systems utilizing emerging materials for neuromorphic systems are currently in the early stages of 
development, it is anticipated that these systems will evolve into more complex architectures, significantly 
contributing to the intelligence of embedded healthcare systems.
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