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Abstract
Ovarian cancer is one of the deadliest gynecologic cancers affecting the female reproductive tract. This is largely 
attributed to frequent recurrence and development of resistance to the platinum-based drugs cisplatin and 
carboplatin. One of the major contributing factors to increased cancer progression and resistance to chemotherapy 
is the tumor microenvironment (TME). Extracellular signaling from cells within the microenvironment heavily 
influences progression and drug resistance in ovarian cancer. This is frequently done through metabolic 
reprogramming, the process where cancer cells switch between biochemical pathways to increase their chances of 
survival and proliferation. Here, we focus on how crosstalk between components of the TME and the tumor 
promotes resistance to platinum-based chemotherapy. We highlight the role of cancer-associated fibroblasts, 
immune cells, adipocytes, and endothelial cells in ovarian tumor progression, invasion, metastasis, and 
chemoresistance. We also highlight recent advancements in targeting components of the TME as a novel 
therapeutic avenue to combat chemoresistance in ovarian cancer.
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INTRODUCTION
Ovarian cancer is predicted to be the 6th leading cause of cancer-related death in women in the United 
States despite only accounting for ~ 2% of female cancer cases expected in 2024[1]. The first-line therapy for 
ovarian cancer consists of platinum-based chemotherapeutic drugs, such as carboplatin or cisplatin, in 
combination with paclitaxel[2]. Recently, the poly (ADP-ribose) polymerase (PARP) inhibitors olaparib[3,4] 
and niraparib[5], as well as the vascular endothelial growth factor (VEGF) inhibitor bevacizumab[4], have 
been used as maintenance therapies for ovarian cancer. However, 80% of ovarian cancer patients develop 
resistance to treatment through various complex mechanisms, utilizing transporters[6], DNA repair 
pathways[7], and evading apoptosis[8,9]. Interestingly, growing evidence supports that the contribution of 
tumor microenvironment (TME) plays a major role in chemoresistance. Cancer cells have the capacity to 
adapt their metabolism in response to stress conditions and environmental demands[10,11]. The metabolic 
adaptation of cancer cells is important for switching between different modes of energy production and 
communicating signals to the TME. Glucose and glutamine are used for ATP generation and biosynthesis 
of key metabolites for the rapidly proliferating cells[12,13]. Both are directly linked to the tricarboxylic acid 
(TCA) cycle, replenishing metabolic intermediates in a process called anaplerosis[12,14]. The key enzymes of 
the glutamine metabolism pathway are glutaminase (GLS), glutamate dehydrogenase (GLUD), glutamic 
oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and glutamine synthetase (GS)[13]. 
GLS is responsible for the conversion of glutamine into glutamate, while GLUD, GOT, and GPT transform 
glutamate into metabolites such as α-ketoglutarate, which is a key intermediate for the TCA cycle[13]. GS is 
responsible for pushing the metabolic flux in the opposite direction by enabling the synthesis of glutamine 
from glutamate[13]. Another key metabolite synthesized from glutamate besides α-ketoglutarate is 
glutathione, an important antioxidant that protects the cell from oxidative stress by neutralizing reactive 
oxygen species (ROS)[13,15]. Overexpressed GS takes glutamate away from the synthesis of glutathione and 
redirects it through glutamine into nucleotide biosynthesis[15]. Chemoresistance occurrence in ovarian 
cancer is also due to the increased antioxidant capacity of ovarian cancer cells, such as elevated levels of 
glutathione[16].

Metabolic adaptations in ovarian cancer affect the response and effectiveness of chemotherapy. Studies have 
shown that platinum-resistant epithelial ovarian cancer cells have elevated glutamine metabolism, 
overexpression of GLS, and high levels of glutathione production, which contributes to the resistant 
phenotype by binding to cisplatin with high affinity to export the drug out of the cell[17,18]. Ovarian cancer 
cells interact with the non-cancer components of their heterogeneous TME, also called the tumor stroma. 
This includes cancer-associated fibroblasts (CAFs), endothelial cells, adipocytes, and immune cells. These 
components are associated with the initiation and progression of ovarian cancer, utilizing metabolites and 
other secreted factors to enhance the tumorigenic potential[19-21]. Yang et al. comprehensively reviewed these 
interactions[20], which we are building upon in this review, focusing on the involvement of cell signaling 
pathways. Previous reviews on this topic have detailed the importance of TME in cancer progression and 
chemoresistance[19-22]. Here, we will describe recent discoveries from the past 5 years (2019-2024) regarding 
the contributions of the TME, with a focus on CAFs, immune cells, adipocytes, and endothelial cells, to 
platinum-based drug resistance in ovarian cancer setting [Table 1].

CAFS
Characteristics of CAFs
CAFs are centrally agreed upon as fibroblasts that are activated by signals from cancer cells and promote 
tumor survival[41,42]. Thus, CAFs share many markers with normal activated fibroblasts, including fibroblast 
activation protein α (FAP), α-smooth muscle actin (α-SMA), and vimentin[41] [Figure 1]. CAFs are the 
principal constituent of the TME, maintaining the extracellular matrix (ECM) and tumor stroma to support 
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Table 1. Factors released by components of the tumor microenvironment affect tumor progression and chemoresistance

Components Factors Process

CXCL14[23] 
miR-296-3p[24] 
CCL5[25] 
miR-98-5p[26] 
IFN1β[27] 
Wnt5a[28] 
CXCL12[29] 
Jagged 1[30]

Promotes chemoresistance

MMP[22] Promotes cancer invasion

CAFs

FAP[20] 
CXCL14[23]

Promotes tumor metastasis

CXCL16[31] 
GATA3[32] 
miR-221-3p[33] 
CXCL12[20]

Promotes chemoresistanceTAMs

IL-10[20] 
CCL17[20] 
CCL22[20]

Promotes tumor growth

IGF-1[34] 
Adipokines[35] 
Free Fatty Acids[36]

Promotes chemoresistanceCancer-associated adipocytes

MCP-1[37] 
TIMP1[37]

Promotes tumor metastasis

VEGF[38] Induces angiogenesis Cancer-associated endothelial cells

VEGF[39] 
Jagged 1[40]

Promotes chemoresistance

CAFs: Cancer-associated fibroblasts; TAMs: tumor-associated macrophages; CXCLs: C-X-C chemokine ligands; CCLs: C-C chemokine ligands; 
IFNβ: interferon beta; MMP: matrix metalloproteinases; FAP: fibroblast activation protein; GATA3: GATA binding protein 3; IL-10: interleukin-10; 
IGF-1: insulin-like growth factor-1; MCP-1: monocyte chemoattractant protein-1; TIMP1: tissue inhibitors of metalloproteinases 1; VEGF: vascular 
endothelial growth factor.

the growth of cancer cells[41]. CAFs secrete matrix proteins such as collagen, laminin, and fibronectin 
alongside factors such as matrix metalloproteinases (MMP), which are involved in tissue remodeling and 
angiogenesis, and tissue inhibitors of metalloproteinases (TIMPs), which are endogenous MMP 
regulators[43]. To create CAFs, resting fibroblasts are activated through signaling from cancer cells or other 
CAFs [Figure 1][44,45]. CAF formation is also induced by a hypoxic environment through the increased 
presence of microRNA-210 and transforming growth factor-β (TGF-β)[22]. Extracellular matrix protein-1 
(ECM1) secreted by ovarian cancer cells promotes CAF activation by increasing the expression of FAP and 
α-SMA [Figure 1][46]. Interestingly, platinum-drug treatment also increases FAP expression, induces 
hypoxia, and alters the metabolism of normal fibroblasts to promote transformation[47].

Effect of CAFs on cancer invasion and metastasis
The proteolytic activity of the MMPs secreted by CAFs promotes cancer invasion by degrading the ECM in 
the microenvironment[22]. CAFs utilize their increased expression of FAP, which acts as a protease, to 
further degrade the matrix and promote tumor metastasis[20]. Overexpression of CAF-induced chemokine 
ligands (CXCL12 and CXCL14) has been associated with cancer growth and metastasis [Figure 1][20,23]. 
CXCL14 promotes glycolysis, tumor growth, and metastasis by interacting with the enzyme 6-
phosphofructo-2-kinase/Fructose-2,6-biphosphatase 2 (PFKFB2)[23]. Ovarian cancer cells also secrete high 
levels of interleukin-1β (IL-1β) and TGF-β, which induce the activation of CAFs[48,49] and thereby promote 
invasion and metastasis [Figure 1]. A recent study showed that TGF-β also promotes the expression of 
cation amino acid transporter solute carrier family 7 member 1 (SLC7A1) in CAFs[50]. CAFs with high 
SLC7A1 promote invasion, migration, and metastasis in ovarian cancer cells[50]. SLC7A1 is also expressed in 
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Figure 1. Intercellular crosstalk between CAFs and ovarian cancer cells. Cancer cells, CAFs, and cisplatin can all contribute to the 
activation of normal fibroblasts. CAFs secrete factors and exosomes to alter key pathways involved in chemoresistance. Lastly, CAFs 
communicate through cell-cell contact, and certain subtypes such as myCAFs are known for their close proximity. CAFs: Cancer-
associated fibroblasts; myCAFs: myofibroblastic cancer-associated fibroblasts; FAP: fibroblast activation protein α; α-SMA: α-smooth 
muscle actin; ECM-1: extracellular matrix protein-1; TGF-β: transforming growth factor-β; IFN1: interferon 1; IL-1β: interleukin-1β; STAT3: 
signal transducer and activator of transcription 3; PTEN: phosphatase and tensin homolog; SOCS6: suppressor of cytokine signaling; 
CDKN1A: cyclin-dependent kinase inhibitor 1A; Akt: protein kinase B.

tumor cells and promotes epithelial-to-mesenchymal transition (EMT), the process where epithelial-like 
cancer cells exhibit mesenchymal phenotype[50]. This is indicated through decreased expression of the 
epithelial marker E-cadherin and increased expression of the mesenchymal marker N-cadherin[50]. Overall, 
CAFs and ovarian cancer cells work in tandem. As ovarian cancer cells promote CAF activation, those 
activated CAFs secrete factors that promote further activation alongside tumor invasion and metastasis.

CAF-mediated chemoresistance
Recently, many advancements have been made to improve our understanding of how CAFs promote 
platinum resistance in ovarian cancer[41,42]. CAFs in the TME induce a shift to a more fibrotic environment, 
changing the mechanical properties of the ECM and altering the efficacy of anti-cancer drugs[22]. 
Furthermore, the occurrence of angiogenesis causes hypervascularization and an increase in the activation 
of CXCR4 [Figure 1][22]. This promotes phosphoinositide 3-kinases (PI3K), Rho factor, and mitogen-
activated protein kinase signaling, which reduce direct drug interaction with the target cancer cells[22]. 
Eckert et al. reviewed that platinum-based drugs also alter the CAF secretion factors or secretome[47]. Here, 
we will elaborate on how CAF-secreted extracellular vesicles, myofibroblastic CAFs (myCAFs), and 
utilization of Wnt and Notch signaling by CAFs contribute to chemoresistance.
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Extracellular vesicles
CAFs utilize exosomes to induce chemoresistance in ovarian cancer[24,25]. Exosomes are a type of 
extracellular vesicle, small membrane-bound bubbles that act as an intercellular communication system by 
merging with the cell membrane[51]. Platinum-based chemotherapy can induce CAFs to secrete exosomes 
containing microRNAs, short RNA sequences that bind to the 3’UTR of mRNAs to prevent translation. 
CAFs have been shown to deliver miR-296-3p, which targets the mRNAs of phosphatase and tensin 
homolog (PTEN) and suppressor of cytokine signaling 6 (SOCS6)[24] [Figure 1]. PTEN is a negative 
regulator of the PI3K/protein kinase B (Akt) survival pathway, and its inhibition subsequently increases cell 
proliferation, metastasis, and cisplatin resistance[24,52]. SOCS6 also functions as a negative regulator, acting in 
the signal transducer and activator of transcription 3 (STAT3) pathway[24]. By inhibiting SOCS6, the STAT3 
pathway is activated further, increasing cancer progression and cisplatin resistance[53]. miR-98-5p is also 
transported by CAF exosomes and targets the mRNA for cyclin-dependent kinase inhibitor 1A (CDKN1A), 
a cell cycle regulator that, when inhibited, causes resistance [Figure 1][26]. Overall, exosomes are an effective 
way for CAFs to communicate within the TME and induce resistance to platinum-based chemotherapies in 
ovarian cancer.

Another study found that the chemokine (C-C motif) ligand 5 (CCL5) secreted from CAFs increases STAT3 
and Akt phosphorylation[25]. Both STAT3 and Akt are activated when phosphorylated, and their respective 
pathways both promote cisplatin resistance[25]. Additionally, CAFs secrete the exocrine protein periostin, 
which increases Akt phosphorylation[54]. Interestingly, cisplatin-induced DNA damage was found to 
instigate the transfer of DNA fragments from ovarian cancer cells to CAFs[27]. The CAFs then detect the 
damage through the binding of DNA to cyclic GMP-AMP synthase (cGAS), which activates the stimulator 
of interferon genes (STING) inflammation pathway[27,55]. This pathway causes the CAFs to release interferon 
beta 1 (IFN1B), an inflammatory cytokine that increases cisplatin resistance by upregulating DNA repair 
mechanisms, preventing apoptosis, and increasing proliferation[27]. These unique communication methods 
facilitated by CAFs all work to promote ovarian cancer survival in the presence of platinum-based 
chemotherapy.

myCAFs
CAFs can be further divided into distinct subtypes, one of which is called myCAFs. MyCAFs are 
characterized by close proximity to tumor cells and high expression of α-SMA [Figure 1]. This subtype has 
been shown to promote chemoresistance in ovarian clear cell carcinoma (OCC)[56]. OCC cells release 
platelet-derived growth factor (PDGF), which binds to its receptor on myCAFs[56]. The myCAFs then induce 
the downstream release of hypoxia-inducible factors 1-α (HIF1-α) in the OCC cells[56]. HIF-1-α is 
traditionally activated during hypoxia, where its continual degradation is halted to allow it to function[57]. 
Activation of HIF-1-α promotes chemoresistance through several mechanisms in ovarian cancer, including 
inhibition of p53 to prevent tumor suppression and increased autophagy to conserve energy and prevent 
apoptosis[57,58]. Thus, myCAFs contribute to chemoresistance via HIF-1-α.

Wnt signaling
The Wnt signaling pathway is involved in the progression, therapy resistance, and invasion of many 
cancers, including ovarian cancer[59-61]. Its canonical form is the most well-characterized, and involves a Wnt 
ligand binding to the Frizzled receptor and receptor tyrosine kinase-like orphan receptor 1 or 2 (ROR1/2) 
coreceptors[59]. This stops the continuous degradation of the β-catenin protein[59]. This allows β-catenin to 
enter the nucleus and recruit transcription factors to promote processes such as EMT and cancer stem cell 
dedifferentiation[59]. The non-canonical Wnt pathways are defined by their lack of β-catenin involvement, 
but are still initiated by Wnt binding to Frizzled and ROR1/2[59].
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Non-canonical Wnt signaling is utilized in CAF-to-ovarian cancer communication and induction of 
chemoresistance. CAFs near ovarian cancer cells increase chemoresistance and dedifferentiation to cancer 
stem cells (CSC) by releasing the Wnt5a ligand[28]. CSCs are cancer cells that act as stem cells for the tumor 
by differentiating and rapidly dividing to increase or maintain their size[62]. CSCs have been shown to resist 
chemotherapy in many different cancers, including ovarian cancer[62]. The CAF-mediated transformation of 
ovarian cancer cells to CSCs involves non-canonical Wnt5a binding to ROR1 and ROR2[28,63]. Wnt5a 
binding to ROR2 activates the protein kinase C (PKC) cAMP response element binding protein 1 (CREB1) 
pathway (PKC/CREB1), which induces dedifferentiation into CSCs and chemoresistance[28]. Binding to 
ROR1 activates the Akt/extracellular signal-regulated kinase (ERK)/STAT3 pathway, which promotes 
chemoresistance, CSC development, and EMT[27].

Additionally, CAFs release stromal-derived factor-1α (CXCL12), which binds to the CXCR4 receptor on 
ovarian cancer cells and increases resistance to cisplatin-induced apoptosis[29]. This causes activation of the 
canonical Wnt/β-catenin pathway, which increases EMT and cisplatin resistance [Figure 1][29,64]. In 
malignant peripheral nerve sheath tumors, CXCR4 activates this pathway by repressing glycogen synthase 
kinase-3 β (GSK-3β), one of the kinases that phosphorylates β-catenin to mark it for degradation, but 
whether that is the same in ovarian cancer remains to be elucidated[65].

Notch3 pathway
Notch3 appears to be particularly important in ovarian cancer, as it has the greatest increase in Notch3 
expression compared to every cancer in the TCGA database[66]. The Notch3 pathway is heavily involved in 
CSC development, proliferation, and chemoresistance of different drugs for multiple cancers and is often 
activated through cell-cell contact[66]. CAFs express the Jagged 1 ligand, which binds and activates the 
Notch3 pathway, resulting in an increase in growth, EMT, and chemoresistance [Figure 1][30]. This also 
induces the release of vascular endothelial growth factor A (VEGFA), a known promoter of angiogenesis 
that also causes further dedifferentiation of CSC[30]. CAFs release the chemokine interleukin-8 (IL8), also 
called CXCL8, which binds to CXCR1/2 receptors and promotes the transformation of normal 
fibroblasts[67]. IL-8 binding to CXCR1/2 also promotes CSC development and cisplatin resistance in ovarian 
cancer by activating Notch3[67]. However, the mechanism of Notch3 activation through this chemokine is 
still unclear[67].

CANCER-ASSOCIATED IMMUNE CELLS
Immune cells are another critical component of the TME. Ovarian cancer cells directly interact with 
immune cells to form an immunosuppressive TME, evading detection and destruction[68]. The main 
immune cells that play a role in ovarian cancer are macrophages and tumor-associated macrophages 
(TAMs)[69]. Classically activated macrophages (M1) associated with cancer cells are pro-inflammatory with 
tumor suppression and cytotoxicity activity. M1 macrophages secrete cytokines, such as interleukin 1 (IL-1), 
IL-12, tumor necrosis factor α (TNF-α), and CXCL12[20]. Cisplatin promotes a tumor-suppressive immune 
response by recruiting M1 macrophages and tumor-specific CD8+ T cells[70]. Conversely, the alternatively 
activated macrophages (M2) are the predominant macrophages in ovarian cancer and promote tumor 
growth through the secretion of immunosuppressive cytokines [e.g., IL-10, chemokine (C-C motif) ligand 
17 (CCL17), CCL22] [Figure 2][20]. In addition, fibroblast growth factor-9 (FGF-9) is secreted from ovarian 
cancer cells to induce M2 polarization of TAMs [Figure 2][71]. M2 macrophages are also associated with 
remodeling the ECM by producing MMPs. In the TME, the high levels of cytokines, such as IL-4 and IL-13, 
promote the differentiation of monocytes to M2 macrophages[20]. This maintains the immunosuppressive 
behavior that allows tumor survival and progression by producing signaling molecules that participate in 
tumorigenesis, metastasis, and angiogenesis[20].
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Figure 2. Intercellular crosstalk between the predominant M2 TAMs and ovarian cancer cells. Cisplatin activates M2 TAMs to secrete 
exosomes and cytokines (IL-10, CCL17, CCL22) that activate chemoresistance mechanisms in ovarian cancer cells. Specifically, the 
cytokine CXCL16 interacts with the CXCR6 receptor, increasing WTAP and YTHDF1 and decreasing ALKBH5 expression. This results in 
increased DNA repair mechanisms and leads to chemoresistance. WTAP: Wilms tumor 1-associated protein; YTHDF1: YTH N6-
methyladenosine RNA binding protein F1; ALKBH5: alkB homolog 5; CXCR6: C-X-C chemokine receptor type 6; CXCL16: C-X-C 
chemokine ligand 16; IL-10: interleukin-10; CCLs: chemokine (C-C motif) ligands; FGF9: fibroblast growth factor-9; TAMs: tumor-
associated macrophages.

TAMs
TAMs can have either an M1 or M2 phenotype but are predominately M2 and act to promote cancer 
metastasis and chemoresistance[72]. TAMs secrete the CXCL16 cytokine, which binds to the CXCR6 receptor 
on ovarian cancer cells [Figure 2][31]. This binding increases the expression of Wilms tumor 1-associated 
protein (WTAP) and YTH N6-Methyladenosine RNA Binding Protein F1 (YTHDF1), both of which are 
involved in N6-methyladenosine (m6A) RNA methylation[31]. M6A RNA methylation is a type of post-
transcriptional RNA modification that is mediated by protein complexes called “writers”, “readers”, and 
“erasers”[31,73,74]. The writers, which includes WTAP, methylate the RNA while the readers, such as YTHDF1, 
interpret the modifications and direct the RNA[31,73,74]. The erasers, α-ketoglutarate-dependent dioxygenase 
(FTO) and alkB homolog 5 (ALKBH5), remove the modifications[73,74]. The expression of these components 
is altered in cancer to dysregulate downstream pathways and promote tumor survival[74]. In ovarian cancer, 
activating the CXCR6 receptor increases the expression of the WTAP writer and YTHDF1 reader while 
decreasing the ALKBH5 eraser, suggesting increased m6A methylation[31]. This then induces 
chemoresistance through an increase in DNA repair, which counteracts the toxicity of platinum-based 
chemotherapy, and a decrease in expression of pro-apoptotic proteins[31]. However, the mechanism 
connecting CXCR6 activation and increased m6A methylation remains to be determined[31].
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TAMs use of extracellular vesicles
Like CAFs, TAMs use exosomes for intercellular communication with ovarian cancer cells, promoting 
tumor progression and chemoresistance. GATA binding protein 3 (GATA3) is a transcription factor that is 
transported into ovarian cancer cells through EVs and increases the expression of CD24 [Figure 2][32]. CD24 
then promotes the expression of the Siglec-10 receptor and increases chemotherapy resistance by 
downregulating the apoptosis regulators B-cell lymphoma (BCL-2) and caspase-3[32]. TAMs in ascites also 
use exosomes to transport microRNAs. TAMs export miR-221-3p, which targets the expression of A 
disintegrin and metalloproteinase with thrombospondin motifs 6 (ADAMTS6) in ovarian cancer 
[Figure 2][33]. This reduction in ADAMTS6 causes an upregulation of the epidermal growth factor receptor 
(EGFR)/TGF-β/Akt pathway, which promotes EMT and CSC-related genes alongside the multidrug 
resistance (MDR) gene, contributing to chemoresistance[33]. TAMs and CAFs using exosomes to induce 
chemoresistance present a potential for therapies targeting this communication mechanism to inhibit the 
action of both cell types.

CANCER-ASSOCIATED ADIPOCYTES
Several studies have found a close relationship between adipocytes and ovarian cancer[75,76]. Adipocytes 
produce fatty acids, cytokines, and chemokines such as IL-6, IL-8, monocyte chemoattractant protein-1 
(MCP-1), and TIMP1, which promote cancer growth and metastasis [Figure 3][37]. The proximity between 
the ovaries and the omentum generates a predisposition for this fat region to become the primary site of 
ovarian cancer metastasis[75]. It has been reported that ovarian cancer cells modify their lipid metabolism by 
upregulating fatty acid-binding protein 4 (FABP4) in the adipocyte-cancer cell interface at omental 
metastases[75]. This promotes fatty acid uptake from the neighboring adipocytes to stimulate tumor 
progression[75]. Inhibiting FABP4 decreases metastasis and increases sensitivity to carboplatin, indicating it 
plays a role in chemoresistance and is a potential target for new therapies[77]. Additional members of the 
FABP protein family, FABP5 and FABP (PM), also contribute to chemoresistance by increasing fatty acid 
uptake[78].

Insulin-like growth factor-1 (IGF-1) secreted from adipocytes promotes chemoresistance by binding to 
IGFR on OCC and can be targeted to increase cisplatin sensitivity [Figure 3][34]. This further indicates that 
adipocytes are critical components of the ovarian cancer TME, strongly influencing its metastatic and 
chemoresistant properties. A clinical and genomic data analysis showed that higher expression levels of 
genes related to obesity or lipid metabolism, particularly fatty acid receptor CD36 and TGF-β, are associated 
with poor prognosis[79]. Specifically, CD36 participates in angiogenesis regulation and fatty acid uptake by 
ovarian cancer cells, promoting cell migration and proliferation[79]. Liu et al. investigated the contribution of 
obesity to ovarian cancer metastasis and found an increased expression of sterol regulatory element-binding 
protein 1 (SREBP-1)[69]. SREBP-1 is a transcription factor involved in fatty acid synthesis and lipid 
homeostasis[69,80]. Thus, high expression levels are associated with increased lipogenesis gene 
transcription[69,80]. Its association with enhanced ovarian cancer tumor burden has led to the investigation of 
its properties as a therapeutic target for ovarian cancer in obese women[81].

Adipocytes and inflammation
Moreover, obesity is characterized by producing chronic inflammation. Hence, there is an accumulation of 
immune cells secreting cytokines alongside adipokines secreted by adipocytes[81]. This creates a highly 
immunosuppressive microenvironment that provides a proliferative advantage for ovarian tumor growth. A 
recent study found that ovarian cancer cells also release IL-6 and IL-8 to induce pyroptosis, inflammation-
based apoptosis, in adipocytes[36]. The death of these adipocytes causes the release of free fatty acids, which 
are taken up by ovarian cancer cells and cause an upregulation of acetylated STAT3 and carnitine 
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Figure 3. Intercellular crosstalk between cancer-associated adipocytes and ovarian cancer cells. Adipocyte secretions promote 
metastasis and chemoresistance. Adipocytes release free fatty acids, which are taken up by the tumor cells and are metabolized through 
fatty acid oxidation, which promotes chemoresistance. STAT3: Signal transducer and activator of transcription 3; CPT1B: carnitine 
palmitoyltransferase 1B; IGF-1: insulin-like growth factor-1; TIMP1: tissue inhibitors of metalloproteinases 1; MCP-1: monocyte 
chemoattractant protein-1; Akt: protein kinase B.

palmitoyltransferase 1B (CPT1B) [Figure 3][36]. Acetylated STAT3 increases the expression of CPT1B[82], 
which is an important enzyme in fatty acid oxidation[83]. An increase in fatty acid oxidation induces 
chemoresistance [Figure 3][36,78,84].

Cancer-associated adipocytes are critical for chemoresistance in ovarian cancer[35]. Their secreted adipokines 
activate the pro-survival Akt signaling pathway that facilitates cancer persistence[35]. Cisplatin has been 
associated with increased lipolysis in adipocytes while inhibiting lipogenesis[85]. This leads to elevated fatty 
acid secretion from adipocytes, serving as an energy source for ovarian cancer cells. Amino acid metabolism 
can also be associated with acquired chemoresistance in ovarian cancer. Chemoresistant epithelial ovarian 
cancer has increased dependence on glutamine as an energy source, which fuels the TCA cycle. It is 
currently being investigated as a glutamine-mediated form of platinum resistance[86].

Ahmed et al. evaluated the metabolic plasticity of chemotherapy-treated ovarian cancer cells and 
demonstrated that chemotherapy stimulates oxidative phosphorylation-mediated lipid metabolism[19]. 
Several enzymes were upregulated, including the pyruvate dehydrogenase phosphatase regulatory subunit 
(PDPR), which inhibits acetyl-CoA production from pyruvate[19]. This suggests that chemotherapy 
contributes to metabolic reprogramming that fuels the TCA cycle, allowing for direct oxidative 
phosphorylation. The correlation and implications between cancer-associated adipocytes and amino acid 
metabolism in chemoresistance need further investigation.
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CANCER-ASSOCIATED ENDOTHELIAL CELLS
Endothelial cells from the vascular endothelium become a key player in the TME. These cells aid in 
maintaining metabolic homeostasis, transporting metabolites and oxygen, and participating in angiogenesis, 
i.e., the formation of new blood vessels[20,87,38]. As the tumor grows, it becomes hypoxic and acidic, leading to 
the activation of hypoxia-inducible factors (HIFs) [Figure 4][38]. HIFs regulate the initiation of vessel 
sprouting, where the endothelial cells secrete proangiogenic factors, such as VEGF [Figure 4][38]. VEGF is an 
angiogenesis activator and induces the migration of endothelial cells toward the tumor to form new vessels 
[Figure 4][38]. In ovarian cancer, studies have shown that expression of VEGF is elevated at later stages and is 
associated with cisplatin resistance[39].

Newly formed vessels usually lack cell-to-cell connections, facilitating intravasation, a process where the 
cancer cells enter the vasculature[38]. Thus, cancer-associated endothelial cells are crucial in cancer migration 
and metastasis. In addition, these cells show high plasticity, which facilitates endothelial-to-mesenchymal 
transition (EndoMT), wherein they become CAFs [Figure 4][38]. This process is mediated by TGF-β, which is 
also associated with cancer cell invasion[38].

Similar to CAFs, endothelial cells are able to cause resistance to chemotherapy through crosstalk with 
ovarian cancer cells. Activation of the PI3K/Akt pathway in endothelial cells promotes angiogenesis and 
increases expression of the Jagged1 ligand [Figure 4][40]. Like in CAFs, the Jagged1 ligand then binds to and 
activates the Notch3 pathway in OCC, which increases resistance to cisplatin [Figure 4][40].

Altogether, the dynamic TME affects the metabolic behavior of ovarian cancer by promoting its survival, 
progression, and resistance to chemotherapy. In contrast, ovarian cancer cells can subvert the metabolic 
activity of these neighboring cells for their proliferative advantage. It has been suggested that this metabolic 
reprogramming directly influences the effectiveness of chemotherapy.

TARGETING THE TME
Several therapeutic strategies that target the TME components include anti-angiogenesis therapy inhibiting 
VEGF and its receptor VEGFR, as well as immune checkpoint inhibitors such as anti-CTLA-4 and anti-
PD1/PD-L1[20,88,89]. Over the last 5 years, many advancements have been made in targeting CAFs and TAMs 
to reduce chemoresistance in ovarian cancer. Therefore, our focus will be primarily on them.

Due to the high population of CAFs in the ovarian TME, CAF-targeted therapy is being used[20]. The STING 
inhibitor H-151 increases sensitivity by blocking downstream IFNB1 production in CAFs, which, as 
previously mentioned, induces platinum resistance[27]. Ripretinib is an U.S. Food and Drug Administration 
(FDA)-approved drug for treating advanced-stage gastrointestinal stromal tumors, acting as an inhibitor of 
tyrosine kinases to block downstream pathways that cancer cells rely on for survival[90]. Ripretinib has also 
shown high efficacy in killing CAFs and lowering resistance in ovarian cancer by blocking the PDGF 
receptor[56]. Ripretinib acts synergistically with carboplatin and presents itself as a promising combination 
therapy[56].

The same study that showed ECM1 secretion by ovarian cancer promotes CAF development and 
chemoresistance also tested the effects of the algae-extracted compound Wentilactone A[56]. Wentilactone A 
prevents the phosphorylation of inhibitor of κB kinase (IKK) and inhibitor of nuclear factor kappa B (IκB), 
which act upstream of NF-κB[56]. This inhibits the activation of NF-κB, causing a downstream reduction in 
ECM1[56]. Overall, Wentilactone A reduces ECM1 secretion to reverse cisplatin sensitivity in ovarian 
cancer[56].
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Figure 4. Crosstalk between cancer-associated endothelial cells and ovarian cancer cells. TGF-β from tumor cells induces EndoMT to 
transform endothelial cells into CAFs. Hypoxic conditions within the tumor cause the release of hypoxia-induced factors, which promote 
angiogenesis. Activation of the Akt pathway in endothelial cells causes increased expression of the Jagged1 ligand, which triggers 
activation of the Notch3 pathway through cell contact, promoting chemoresistance. TGF-β: Transforming growth factor-β; CAFs: cancer-
associated fibroblasts; HIFs: hypoxia-inducible factors; VEGF: vascular endothelial growth factor; EndoMT: endothelial-to-mesenchymal 
transition.

Similarly, other strategies are developed to target TAMs in the TME. Triptolide (TPL) is a biologically active 
diterpene triepoxide that has anti-inflammatory effects[91]. TPL has been shown to reduce the proliferation, 
survival, migration, and invasion of cisplatin-resistant ovarian cancer, and when given alongside cisplatin, 
prevents TAMs from shifting to the M2 phenotype[92]. A recent study showed enhanced stabilization of the 
FGF-9 mRNA, which increases secretion, through the interaction between the non-coding, circular RNA 
circITGB6 and the m6A methylation reader insulin-like growth factor 2 mRNA-binding protein 
(IGF2BP)[71]. Additional treatments act by suppressing macrophage recruitment through targeting kinase 
receptors such as colony-stimulating factor 1 receptor (CSF-1R), which is expressed on ovarian cancer 
cells[20]. This reduces the infiltration of M2 macrophages and increases cisplatin sensitivity[20].

CONCLUSION
Many advancements have been made to improve our understanding of the TME and how it affects 
chemoresistance in ovarian cancer. Specifically, many studies have been published focusing on how CAFs, 
TAMs, and adipocytes induce platinum resistance, making them exciting avenues for therapeutic 
intervention. Approximately 80% of ovarian cancer patients develop tumor recurrence and 
chemoresistance[9]. It is critical that new resistance mechanisms continue to be discovered and new 
therapies are developed to target these systems both within the cancer cells and in their extracellular TME.
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