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Abstract
The irregular structure and high porosity of corrosion deposits create suitable conditions for the retention, 
accumulation and adsorption of microplastics (MPs) and nanoplastics (NPs) transported by distributed water. Due 
to the low mass and continuous degradation of MPs, under certain conditions (e.g., changes in water composition 
or hydraulic conditions, network failures), these particles can be re-released into the water, causing secondary 
contamination. This paper presents preliminary results on the degree of MP contamination of sediments lining the 
inner surface of metal alloy pipes taken from a municipal drinking water distribution network. The isolated particles 
were assessed in terms of number, shape, residence time in the network, and origin. Plastic fragments classified as 
MPs and NPs were found in all analyzed corrosion deposits. Fragments smaller than 50 μm predominated, 
indicating a high level of plastic fragmentation associated with advanced degradation and prolonged residence in 
the environment. The predominant plastics identified were polyethylene (PE), polyethylene terephthalate (PET), 
and polyamides. High-carbon particles, most likely NP particles, whose presence in drinking water may pose a high 
health risk to consumers due to their potential to migrate into body tissues, were very abundant in the sediments 
but impossible to count with the techniques used. The results indicate the need to intensify research on the content 
of MPs and NPs not only in drinking water, but also in the sediments covering the interior of distribution pipes, and 
to identify factors that may cause their secondary release into bulk water.
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INTRODUCTION
Corrosion deposits covering the internal surfaces of metal-alloy water pipes are formed by co-existing 
chemical, electrochemical, and biological corrosion[1-9]. The Fe oxides and hydroxides formed in the 
processes are deposited on the internal surface of the pipes, forming corrosion scales often shaped as 
undulating “tubercles”[9-12].

The presence of corrosion deposits in water pipes can adversely affect the organoleptic parameters of 
drinking water[7-9,12,13]. The irregular structure, high porosity, and high undulation of corrosion deposit layer 
create suitable conditions for the retention, accumulation, and adsorption of various water admixtures, 
including microplastic (MP) and nanoplastic (NP). Characterized by their small size and irregular shape, 
MPs[14-17] have a high potential to accumulate on the sediment surface and between tubercles. Due to their 
small masses and continuous degradation, these particles can be re-released into the bulk water, e.g., when 
changing the hydraulic conditions in the pipeline, during pipe repairs, or even when changing the quality of 
the transmitted water. It can, therefore, be assumed that corrosion deposits are one of the potential sources 
of MPs in drinking water[18].

The occurrence of MP particles in drinking water is highly undesirable. A growing number of literature 
reports indicate that MP particles can accumulate in the tissues of living organisms[19-23], have the ability to 
penetrate the blood-brain barrier[24,25], and have the ability to adsorb and carry contaminants that are toxic 
to living organisms and humans[20,26-28]. For this reason, MP has been included in the list of monitored 
substances in drinking water in the EU[29].

This article presents the results of a study to determine the extent of MP contamination of sediments 
deposited on the inner surface of metal alloy pipes used in a metropolitan drinking water distribution 
network. The isolated particles were assessed in terms of their abundance, shape, residence time in the 
network, and origin.

EXPERIMENT
Corrosion deposits were taken from fragments of metal alloy pipes from an operational municipal 
distribution network [Table 1]. Scraped with a steel chisel and dried, the deposits were dissolved using 
concentrated HCl (Stanlab, Poland). The resulting solutions were vacuum filtered through GF/D glass fiber 
filters (Whatman, China). The filters with the remaining mineral particles (mainly sand grains) and MP 
particles were transferred to glass Petri dishes and dried at room temperature.

Microscopic images were taken using a Quanta FEG 250 scanning electron microscope (SEM) (FEI), in low 
vacuum (70 Pa), at accelerating beam voltages of 10 and 30 kV. Elemental analysis was performed using an 
Octane silicon-drift detector (SDD) energy dispersive X-ray spectroscopy (EDS) detector (EDAX). 
Acquisition of EDS spectra was performed at a beam accelerating voltage of 30 kV[18,21,30].

EDS mapping of the carbon regions was used to characterize the MP. To increase particle visibility, images 
were magnified and contrast was increased. Only particles with clearly visible and edge-limited shapes were 
counted and sized in precisely scaled 1.5 mm × 2 mm images. The area of the filter area in a single map was 
0.025 cm2, accounting for 1/2,500 of its total area. For each sample, 12-20 images were recorded. The results 
of the counts were averaged and then converted per cm2 of filter area and per gram of corrosion deposit 
[Table 1].



Page 3 of Magnucka et al. Water Emerg Contam Nanoplastics 2024;3:17 https://dx.doi.org/10.20517/wecn.2024.21 9

Table 1. Characteristics of tested water pipes, abundance and size distribution of isolated MP particles

Pipes characteristics Average 
abundance Size distribution (µm)

Material Diameter 
(mm)

Exploitation 
(years)

Weight of corrosion 
deposit (g) MPs/g MPs/cm2 < 50 50-

100
100-
150

150-
200 > 200

Steel 1 32 53 82.48 30,637 10,276 95.57% 1.91% 0.49% 0.12% 0.05%

Steel 2 42 40 69.82 49,760 27,476 98.79% 0.84% 0.13% 0.035% -

Steel 3 32 30 40.72 41,979 13,661 97.60% 1.61% 0.225% - 0.009%

Cast iron 1 150 118 16.28 37,665 9,638 98.97% 0.96% 0.07% - -

Cast iron 2 115 45 11.34 63,959 11,401 94.39% 4.87% 0.53% 0.21% -

MP: Microplastic.

A Raman spectrometer equipped with a video microscope (i-Raman® Plus from BWTek) and a 785 nm laser 
was used for MP identification[29,31-34]. Raman spectra were recorded with BWspec software [BWTek 
(Metrohm, Poland)][35].

RESULTS AND DISCUSSION
MP particles were found in all sediments, and their numbers ranged from 30-64 × 103 particles/g [Table 1]. 
The highest abundance of MPs was found in the sediment from a cast iron pipe with a diameter of 115 mm, 
which is probably related to the large volume of water transported through it at a pressure lower than in a 
pipe with a diameter of 150 mm (high water pressure limits MPs retention). For steel pipes with small 
diameters (connections to buildings), the number of isolated particles was comparable, and slight variations 
can be related to the volume of water transported and the average flow rate. No correlation was observed 
between operating time and the number of retained MPs. Isolated MPs can originate both from water 
entering the distribution network and from the degradation processes of plastic transmission pipes[30,36]. The 
particle counts of MPs were high compared to studies by other authors (500-800 MPs/kg of sludge in[18]), 
which may be related to the longer lifetime of the pipes in this study and/or the underestimation of the 
number of MPs resulting from the use of Image-Fourier transform infrared spectroscopy (FTIR) for 
quantitative studies in[18]. The FTIR technique allows reliable estimation of particles > 10 μm in size, whereas 
the accuracy of the SEM/EDS method is determined in nanometres.

EDS mapping of carbonaceous areas allowed the size distribution of MPs to be determined. Five main size 
ranges were distinguished: < 50, 50-100, 100-150, 150-200, and > 200 μm [Table 1 and Figure 1]. In all 
sediments studied, more than 90% were particles < 50 μm. As the size of the particles increases, their content 
in the sediments decreases. A similar trend was observed in studies for tap water, where particles < 10 μm 
accounted for the largest percentage among the identified MPs[33,37]. Only two of the analyzed sediments 
contained particles > 200 μm, probably originating from the degradation of plastic pipes operating in other 
areas of the network, which is also confirmed by the reported high removal efficiency (up to 90%) of MPs > 
10 μm in water treatment processes[13,38,39]. In the case of particles in the 50-200 μm range, an uneven 
distribution has been observed, most likely linked to the different pipe diameters, thickness, porosity, and 
build-up time of corrosion deposits. In addition, an important aspect influencing the presence of larger size 
fractions in the sediments is the remoteness of the intake site from the treatment plant, as plastic water pipes 
can be a source of secondary contamination of drinking water with MPs.

The origin and estimated residence time of MPs in the distribution network were determined using EDS 
spectra [Figure 2] and Raman spectra [Figure 3]. Elemental EDS analysis conducted for numerous MP 
fragments showed that they varied in carbon, chlorine, and oxygen content, indicating their different 
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Figure 1. Examples of dimensioned MP particles. MP: Microplastic.

residence times in the water supply network[40] [Figure 2]. The results of the EDS analysis also showed that 
the MPs accumulated in the sediments originated mainly from plastics consisting of carbon, oxygen, and 
hydrogen [e.g., polyethylene (PE)/polypropylene (PP), polyethylene terephthalate (PET)], while polymers 
containing nitrogen in the structure (e.g., polyamides, polyimides, nylon or polyureas) were a less abundant 
fraction. No fragments of plastics containing high levels of chlorine [e.g., polyvinyl chloride (PVC)] were 
found. Raman spectroscopy technique was used to identify the isolated particles. The spectra were 
interpreted on the basis of analysis of the bands constituting “finger prints” of individual polymers[31,32,34] and 
by comparison with spectra of reference materials. This allowed confirmation of the origin of the isolated 
particles from PE and PET, and less frequently, from polyamides [Figure 3]. However, with the technique 
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Figure 2. Elemental composition of selected MP particles. MP: Microplastic.
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Figure 3. Raman spectra of identified MP particles showing characteristic “finger print” bands. MP: Microplastic.

used, it was not possible to carry out a complete identification of the isolated MP particles, especially those 
with the smallest dimensions. The results obtained were consistent with those of Johnson et al.[41], while in 
the study of Chu et al.[18], the predominant MPs of corrosion deposits were PVC. However, it should be 
borne in mind that the type of MPs identified is determined by the prevalence of specific plastics in a given 
area.
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CONCLUSION
Plastic fragments classified as MPs and NPs were found in all analyzed corrosion deposits. Among the 
isolated particles, only a small percentage were MPs > 50 μm, indicating the relatively high efficiency of the 
applied drinking water treatment technology in removing larger MP fragments from raw water. Among the 
isolated particles, fragments < 50 μm predominated. The average MP content was 30-64 × 103 MPs/g, 
indicating a high potential for accumulation of the finest MP fractions in corrosion scales. Identification 
studies showed that the materials forming the MP particles were mainly PE, PET, and polyamides. In 
addition to particles whose sizes allowed quantitative and qualitative analysis, very abundant particles with 
high carbon content and very fine sizes were also present in the scales. It was impossible to count and 
identify them using the techniques used. Most likely, these were NP particles, whose presence in drinking 
water, due to their potential to migrate into body tissues, could pose a high health risk to consumers. The 
results indicate the need to intensify research on the content of MPs and NPs in corrosive sludge and the 
identification of factors that can cause their release into bulk water, and draw attention to the global 
problem of the ubiquity of the fine fraction of MPs and NPs in the water environment, and the need to 
monitor the presence and content of these particles not only in drinking water, but also in distribution 
pipes.
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