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Abstract
Currently, there are a large number of tracking problems in the industry concerning nonlinear systems with unknown
dynamics. In order to obtain the optimal control policy, a multi-step adaptive critic tracking control (MsACTC) al-
gorithm is developed in this paper. By constructing a steady control law, the tracking problem is transformed into a
regulation problem. The MsACTC algorithm has an adjustable convergence rate during the iterative process by in-
corporating a multi-step policy evaluation mechanism. The convergence proof of the algorithm is provided. In order
to implement the algorithm, three neural networks are built, including the model network, the critic network, and the
action network. Finally, two numerical simulation examples are given to verify the effectiveness of the algorithm. Sim-
ulation results show that the MsACTC algorithm has satisfactory performance in terms of the applicability, tracking
accuracy, and convergence speed.
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1. INTRODUCTION
In practical engineering applications, the controller design should not only meet the basic performance re-
quirements but also need to further improve the control effect and reduce costs [1–4]. However, real industrial
systems are often complex nonlinear systems [5,6]. Solving the Hamilton-Jacobi-Bellman (HJB) equations is an
unavoidable obstacle when designing optimal control policies for nonlinear systems [7]. Considering that the
analytical solution of the HJB equation is difficult to obtain, adaptive dynamic programming (ADP) based on
the actor-critic framework approximates the solution of the HJB equation by the iteration [8,9]. The ADP algo-
rithm exhibits strong adaptive and optimization capabilities by incorporating the advantages of reinforcement
learning, neural networks, and dynamic programming [10,11]. Therefore, the ADP algorithm has a satisfactory
performance in solving the HJB equation. Through continuous development, the ADP algorithm has become
one of the key methods for solving optimal control problems of nonlinear systems [12–14]. In terms of the iter-
ative form, the ADP algorithms can be categorized into value iteration (VI) and policy iteration (PI) [15,16]. PI
has faster convergence but requires an initial admissible control policy [17]. However, it is difficult to obtain an
initial admissible control policy for nonlinear systems. VI does not require an initial admissible control policy
but has a slower convergence rate [18].

In the industry, we often need to solve more complex tracking problems for nonlinear systems [19–24], including
the consensus tracking problem for multi-agent systems [22] and the output tracking control for single-agent
systems [25]. In fact, the regulation problem can be seen as a simplified special case of the tracking problem. To
overcome these challenges, some scholars have started to develop optimal learning control algorithms based
on the ADP framework for solving tracking problems [26]. Currently, tracking control algorithms based on the
ADP framework can be categorized into three groups. The first class of tracking control algorithms constructs
the augmented system with respect to the original system and the reference trajectory and then builds the cost
function based on the state vector and the control input of the augmented system [27,28]. Although this type of
tracking control algorithm has a well-established theory, it cannot completely eliminate tracking errors. The
second class of tracking control algorithms utilizes the square of the tracking error at the next moment to build
a novel utility function [19]. With the novel utility function, the tracking error can be completely eliminated.
However, the second class of tracking control algorithms is currently only applicable to affine nonlinear sys-
tems with known system models, which greatly reduces the application value of the algorithm. The third type
of tracking control algorithm transforms the tracking problem into the regulation problem by constructing a
virtual steady control [29]. Thanks to the steady control, the third type of tracking control algorithm also com-
pletely eliminates tracking errors and is suitable for nonlinear systems. It should be emphasized that solving
the steady control imposes a large computational burden on the algorithm.

Therefore, we expected that a speed-up mechanism could be designed for the tracking control algorithm with
steady control to improve the convergence speed. Inspired by the idea of eligibility traces, Al-Dabooni 𝑒𝑡 𝑎𝑙.
designed an online 𝑛-step ADP algorithmwith higher learning efficiency [30]. Ha 𝑒𝑡 𝑎𝑙. introduced a relaxation
factor in the framework of the offline ADP algorithm [31]. By adjusting the value of the relaxation factor, the
convergence rate of the cost function could also be increased or decreased. Zhao 𝑒𝑡 𝑎𝑙. designed an incremental
ADP algorithm by constructing a new type of cost function, which showed higher learning efficiency in solving
zero-sum game problems for nonlinear systems [29]. Luo 𝑒𝑡 𝑎𝑙. successfully combined the advantages of VI and
PI by designing amulti-step policy evaluationmechanism [17,25,32]. The convergence speed of the algorithmwas
greatly improved by increasing the policy evaluation step, which did not require admissible control policies.

In this context, a multi-step adaptive critic tracking control (MsACTC) algorithm is established by introducing
amulti-step policy evaluationmechanism into the steady tracking control algorithm. Compared to the general
tracking control algorithm with steady control, the MsACTC algorithm exhibits higher learning efficiency as
the evaluation step increases. Furthermore, the convergence proof of the MsACTC algorithm is given. The
MsACTC algorithm is successfully implemented through neural networks and the least squaremethod. Finally,
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Table 1. Summary of mathematical symbols

R𝑠 ∥𝐴∥ 𝐼𝑠

The set of all 𝑠-dimensional real vectors The norm of vector 𝐴 The 𝑠 × 𝑠 identity matrix
R𝑠×𝑚 |𝑐 | T
The set of all 𝑠 × 𝑚 real matrices The absolute value of 𝑐 The transpose symbol
N N+ Ω

The set of all non-negative integers The set of all positive integers A compact subset of R𝑠

we verify the optimization ability and learning efficiency of the proposed algorithm through simulations of two
nonlinear systems. Table 1 explains the meaning of the mathematical symbols used in this article.

2. PROBLEM DESCRIPTION
Consider such a class of discrete-time nonlinear systems

𝑥𝑘+1 = 𝐹 (𝑥𝑘 , 𝑢(𝑥𝑘 )) , (1)

where 𝑥𝑘 ∈ R𝑠 represents the state vector, and 𝑢(𝑥𝑘 ) ∈ R𝑚 represents the control input. 𝐹 (·, ·) is the unknown
system function. In addition, we propose two assumptions to describe equation (1) more specifically.

Assumption 1 𝑥(𝑘) and 𝑢(𝑥𝑘 ) are observable, and there exists a continuous control policy on Ω such that the
system (1) is asymptotically stable.

Assumption 2 𝐹 (·, ·) is smooth differentiable with respect to its arguments.

The reference trajectory can be denoted as

𝑟𝑘+1 = 𝐻 (𝑟𝑘 ), (2)

where 𝐻 (·) denotes the known trajectory function. The tracking error 𝑒𝑘 is defined as

𝑒𝑘 = 𝑥𝑘 − 𝑟𝑘 . (3)

We assume that there exists a steady control 𝑣(𝑟𝑘 ) satisfying the following equation:

𝑟𝑘+1 = 𝐹 (𝑟𝑘 , 𝑣(𝑟𝑘 )) . (4)

The tracking control policy 𝜇(𝑒𝑘 ) is denoted as

𝜇(𝑒𝑘 ) = 𝑢(𝑥𝑘 ) − 𝑣(𝑟𝑘 ). (5)

According to equations (1)-(5), we can obtain the following error system:

𝑒𝑘+1 = 𝐹 (𝑥𝑘 , 𝑢(𝑥𝑘 )) − 𝐻 (𝑟𝑘 )
= 𝐹 (𝑒𝑘 + 𝑟𝑘 , 𝜇(𝑒𝑘 ) + 𝑣(𝑟𝑘 )) − 𝐻 (𝑟𝑘 )
= Φ(𝑒𝑘 , 𝜇(𝑒𝑘 )). (6)

The cost function is defined as

𝑉𝑘 =
∞∑
𝑧=𝑘

𝑈 (𝑒𝑧, 𝜇(𝑒𝑧))

= 𝑈 (𝑒𝑘 , 𝜇(𝑒𝑘 )) +
∞∑

𝑧=𝑘+1
𝑈 (𝑒𝑧, 𝜇(𝑒𝑧))

= 𝑈 (𝑒𝑘 , 𝜇(𝑒𝑘 )) +𝑉𝑘+1, (7)
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where 𝑈 (𝑒𝑘 , 𝜇(𝑒𝑘 )) = 𝑥T
𝑘 𝑄𝑥𝑘 + 𝜇T(𝑒𝑘 )𝑅𝜇(𝑒𝑘 ) is the utility function. 𝑄 and 𝑅 are positive definite matrices.

We need to minimize the cost function by continuously adjusting the tracking control policy. The optimal cost
function and the optimal control policy are expressed as follows:

𝑉∗
𝑘 = min

𝜇(𝑒𝑘 )

{
𝑈 (𝑒𝑘 , 𝜇(𝑒𝑘 )) +𝑉∗

𝑘+1
}
, (8)

and

𝜇∗(𝑒𝑘 ) = arg min
𝜇(𝑒𝑘 )

{
𝑈 (𝑒𝑘 , 𝜇(𝑒𝑘 )) +𝑉∗

𝑘+1
}
. (9)

So far, the tracking problem of the system (1) has been successfully transformed into the regulation problem
of the system (6).

3. MULTI-STEP ADAPTIVE CRITIC TRACKING CONTROL ALGORITHM
It should be noted that equation (8) is the HJB equation, and its analytical solution is difficult to obtain directly.
In addition, since the system function 𝐹 (·) is unknown, the steady control cannot be directly obtained by
solving equation (3) either. Therefore, the MsACTC algorithm is designed to overcome these challenges.

3.1 Algorithm design
According to equation (6), we have

𝑉𝑘 = 𝑈 (𝑒𝑘 , 𝜇(𝑒𝑘 )) +𝑉𝑘+1

= 𝑈 (𝑒𝑘 , 𝜇(𝑒𝑘 )) +𝑈 (𝑒𝑘+1, 𝜇(𝑒𝑘+1)) +𝑉𝑘+2

=
𝑘+𝑛−1∑
𝑧=𝑘

𝑈 (𝑒𝑧, 𝜇(𝑒𝑧)) +𝑉𝑘+𝑛, (10)

where 𝑛 ∈ N+ denotes the step size of policy evaluation. To integrate the convenience of VI and the efficiency
of PI, we introduce the multi-step policy evaluation mechanism. Based on this mechanism, the MsACTC
algorithm has a faster convergence rate without the need for an admissible control policy.

Construct the sequence of iterative cost functions
{
𝑉 (𝑖)
𝑘

}
and the sequence of iterative tracking control policies{

𝜇(𝑖) (𝑒𝑘 )
}
, where 𝑖 ∈ N is the iteration index. Define the initial cost function 𝑉 (0)

𝑘 = 𝑒T
𝑘 𝑃𝑒𝑘 , where 𝑃 is a

positive definite matrix. Then, the policy improvement is represented as follows:

𝜇(𝑖) (𝑒𝑘 ) = −1
2
𝑅−1

(
𝜕𝑒𝑘+1

𝜕𝜇(𝑒𝑘 )

)T 𝜕𝑉 (𝑖)
𝑘+1

𝜕𝑒𝑘+1
. (11)

The policy evaluation is expressed as follows:

𝑉 (𝑖+1)
𝑘 =

𝑘+𝑛−1∑
𝑧=𝑘

𝑈
(
𝑒𝑧, 𝜇

(𝑖) (𝑒𝑧)
)
+𝑉 (𝑖)

𝑘+𝑛. (12)

By iterating continuously between equations (11) and (12), the cost function and the control policy converge
to their optimal values as 𝑖 tends to infinity, respectively. In practice, it is not possible for the algorithm to
perform an infinite number of iterations. Therefore, we set the following stopping criterion:���𝑉 (𝑖+1)

𝑘 −𝑉 (𝑖)
𝑘

��� ≤ 𝜂, (13)

where 𝜂 is a positive constant. When inequation (13) is satisfied, the iteration stops. In this case, the cost
function and the control policy are considered to be approximately optimal.
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3.2 Theoretical analysis
To ensure that the cost function 𝑉 (𝑖)

𝑘 and the control policy 𝜇(𝑖) (𝑒𝑘 ) can converge to their optimal values, we
formulate and prove Theorem 1.

Theorem 1 If the sequences
{
𝜇(𝑖) (𝑒𝑘 )

}
and

{
𝑉 (𝑖)
𝑘

}
are updated according to equations (11) and (12), respectively,

and the following condition is satisfied:

𝑉 (0)
𝑘 ≥ min

𝜇(𝑒𝑘 )

{
𝑈 (𝑒𝑘 , 𝜇(𝑒𝑘 )) +𝑉 (0)

𝑘+1

}
, (14)

then the following conclusions hold:
1) ∀𝑖, 𝑉 (𝑖+1)

𝑘 ≤ min
𝜇(𝑒𝑘 )

{
𝑈 (𝑒𝑘 , 𝜇(𝑒𝑘 )) +𝑉 (𝑖)

𝑘+1

}
≤ 𝑉 (𝑖)

𝑘

2) lim
𝑖→∞

𝑉 (𝑖)
𝑘 = 𝑉∗

𝑘 and lim
𝑖→∞

𝜇(𝑖) (𝑒𝑘 ) = 𝜇∗(𝑒𝑘 ).

Proof. First, we prove the conclusion 1). When (14) holds, we have

𝑉 (1)
𝑘 =

𝑘+𝑛−1∑
𝑧=𝑘

𝑈
(
𝑒𝑧, 𝜇

(0) (𝑒𝑧)
)
+𝑉 (0)

𝑘+𝑛

=
𝑘+𝑛−2∑
𝑧=𝑘

𝑈
(
𝑒𝑧, 𝜇

(0) (𝑒𝑧)
)
+𝑈

(
𝑒𝑘+𝑛−1, 𝜇

(0) (𝑒𝑘+𝑛−1)
)
+𝑉 (0)

𝑘+𝑛

=
𝑘+𝑛−2∑
𝑧=𝑘

𝑈
(
𝑒𝑧, 𝜇

(0) (𝑒𝑧)
)
+ min

𝜇(𝑒𝑘 )

{
𝑈 (𝑒𝑘+𝑛−1, 𝜇(𝑒𝑘+𝑛−1)) +𝑉 (0)

𝑘+𝑛

}
≤

𝑘+𝑛−2∑
𝑧=𝑘

𝑈
(
𝑒𝑧, 𝜇

(0) (𝑒𝑧)
)
+𝑉 (0)

𝑘+𝑛−1

...

≤ 𝑈
(
𝑒𝑘 , 𝜇

(0) (𝑒𝑘 )
)
+𝑉 (0)

𝑘+1 = min
𝜇(𝑒𝑘 )

{
𝑈 (𝑒𝑘 , 𝜇(𝑒𝑘 )) +𝑉 (0)

𝑘+1

}
. (15)

So far, we have shown that the conclusion 1) holds for 𝑖 = 0. Next, we assume that the conclusion 1) holds for
the iteration index 𝑖 − 1, which means that

𝑉 (𝑖)
𝑘 ≤ min

𝜇(𝑒𝑘 )

{
𝑈 (𝑒𝑘 , 𝜇(𝑒𝑘 )) +𝑉 (𝑖−1)

𝑘+1

}
≤ 𝑉 (𝑖−1)

𝑘 . (16)

By further derivation, we get

𝑉 (𝑖)
𝑘 =

𝑘+𝑛−1∑
𝑧=𝑘

𝑈
(
𝑒𝑧, 𝜇

(𝑖−1) (𝑒𝑧)
)
+𝑉 (𝑖−1)

𝑘+𝑛

≥
𝑘+𝑛−1∑
𝑧=𝑘

𝑈
(
𝑒𝑧, 𝜇

(𝑖−1) (𝑒𝑧)
)
+ min

𝜇(𝑒𝑘 )

{
𝑈 (𝑒𝑘+𝑛, 𝜇(𝑒𝑘+𝑛)) +𝑉 (𝑖−1)

𝑘+𝑛+1

}
=

𝑘+𝑛∑
𝑧=𝑘

𝑈
(
𝑒𝑧, 𝜇

(𝑖−1) (𝑒𝑧)
)
+𝑉 (𝑖−1)

𝑘+𝑛+1

= 𝑈
(
𝑒𝑘 , 𝜇

(𝑖−1) (𝑒𝑘 )
)
+𝑉 (𝑖)

𝑘+1

≥ min
𝜇(𝑒𝑘 )

{
𝑈 (𝑒𝑘 , 𝜇(𝑒𝑘 )) +𝑉 (𝑖)

𝑘+1

}
. (17)
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Page 6 of 16 Li et al. Complex Eng Syst 2023;3:20 I http://dx.doi.org/10.20517/ces.2023.28

Based on inequations (16) and (17), we have

𝑉 (𝑖+1)
𝑘 =

𝑘+𝑛−1∑
𝑧=𝑘

𝑈
(
𝑒𝑧, 𝜇

(𝑖) (𝑒𝑧)
)
+𝑉 (𝑖)

𝑘+𝑛

=
𝑘+𝑛−2∑
𝑧=𝑘

𝑈
(
𝑒𝑧, 𝜇

(𝑖) (𝑒𝑧)
)
+𝑈

(
𝑒𝑘+𝑛−1, 𝜇

(𝑖) (𝑒𝑘+𝑛−1)
)
+𝑉 (𝑖)

𝑘+𝑛

=
𝑘+𝑛−2∑
𝑧=𝑘

𝑈
(
𝑒𝑧, 𝜇

(𝑖) (𝑒𝑧)
)
+ min

𝜇(𝑒𝑘 )

{
𝑈 (𝑒𝑘+𝑛−1, 𝜇(𝑒𝑘+𝑛−1)) +𝑉 (𝑖)

𝑘+𝑛

}
≤

𝑘+𝑛−2∑
𝑧=𝑘

𝑈
(
𝑒𝑧, 𝜇

(𝑖) (𝑒𝑧)
)
+𝑉 (𝑖)

𝑘+𝑛−1

...

≤ 𝑈
(
𝑒𝑘 , 𝜇

(𝑖) (𝑒𝑘 )
)
+𝑉 (𝑖)

𝑘+1 = min
𝜇(𝑒𝑘 )

{
𝑈 (𝑒𝑘 , 𝜇(𝑒𝑘 )) +𝑉 (𝑖)

𝑘+1

}
. (18)

According to mathematical induction, the proof of the conclusion 1) is completed.

Next, we prove the conclusion 2). Since the sequence of cost functions
{
𝑉 (𝑖)
𝑘

}
is a monotonically nonincreasing

sequence and 𝑉 (𝑖)
𝑘 ≥ 0, the limit of the sequence exists. Therefore, we can get

𝑉 (∞)
𝑘 ≤ min

𝜇(𝑒𝑘 )

{
𝑈 (𝑒𝑘 , 𝜇(𝑒𝑘 )) +𝑉 (∞)

𝑘+1

}
≤ 𝑉 (∞)

𝑘 , (19)

which means

𝑉 (∞)
𝑘 = min

𝜇(𝑒𝑘 )

{
𝑈 (𝑒𝑘 , 𝜇(𝑒𝑘 )) +𝑉 (∞)

𝑘+1

}
. (20)

By observation, equations (20) and (8) are equivalent. This means that lim
𝑖→∞

𝑉 (𝑖)
𝑘 = 𝑉∗

𝑘 . According to equation

(9), the corresponding tracking control policy also satisfies lim
𝑖→∞

𝜇(𝑖) (𝑒𝑘 ) = 𝜇∗(𝑒𝑘 ). The proof of Theorem 1 is
completed.

Theorem 2 Based on equations (1)-(6), 𝜕𝑒𝑘+1/𝜕𝜇(𝑒𝑘 ) = 𝜕𝑥𝑘+1/𝜕𝑢(𝑥𝑘 ) holds.

Proof. According to the error system (6), we have

𝜕𝑒𝑘+1

𝜕𝜇(𝑒𝑘 )
=

𝜕 (𝐹 (𝑒𝑘 + 𝑟𝑘 , 𝜇(𝑒𝑘 ) + 𝑣(𝑟𝑘 )) − 𝐻 (𝑟𝑘 ))
𝜕𝜇(𝑒𝑘 )

=
𝜕𝐹 (𝑒𝑘 + 𝑟𝑘 , 𝜇(𝑒𝑘 ) + 𝑣(𝑟𝑘 ))

𝜕 (𝜇(𝑒𝑘 ) + 𝑣(𝑟𝑘 ))
. (21)

Besides, we have

𝜕𝑥𝑘+1

𝜕𝑢(𝑥𝑘 )
=

𝜕𝐹 (𝑥𝑘 , 𝑢(𝑥𝑘 ))
𝜕𝑢(𝑥𝑘 )

=
𝜕𝐹 (𝑒𝑘 + 𝑟𝑘 , 𝜇(𝑒𝑘 ) + 𝑣(𝑟𝑘 ))

𝜕 (𝜇(𝑒𝑘 ) + 𝑣(𝑟𝑘 ))
. (22)

The proof of Theorem 2 is completed. In this section, Theorem 1 is successfully proved by utilizing mathe-
matical induction, and it provides a theoretical justification for the convergence of the MsACTC algorithm.
Theorem 2 gives an equivalence between 𝜕𝑒𝑘+1/𝜕𝜇(𝑒𝑘 ) and 𝜕𝑥𝑘+1/𝜕𝑢(𝑥𝑘 ). According to Theorem 2, the im-
plementation of the algorithm can be simplified.
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Figure 1. The structure diagram of the MsACTC algorithm. MsACTC: Multi-step adaptive critic tracking control.

Remark 1 To ensure that the condition (14) holds, 𝑉 (0)
𝑘 must be a positive definite function. It should be em-

phasized that the condition (14) is only a sufficient condition instead of a sufficiently necessary condition for the
convergence of the cost function. In fact, even if the cost function is initialized as 𝑉 (0)

𝑘 = 0, the cost function still
converges to the optimal value. This is verified by the simulation in Section 5, which shows that the convergence
of the algorithm deserves to be further investigated.

4. IMPLEMENTATION OF ALGORITHM
To implement the algorithm, three neural networks are constructed, including a model network (MN), a critic
network (CN), and an action network (AN). Figure 1 illustrates the overall structure of theMsACTC algorithm.
It should be noted that the training of the MN is carried out independently. The training of the CN and the
AN need to cooperate with each other iteratively. It should be noted that the implementation approach used
in this paper is similar to that in [22].

The MN is used to estimate the dynamics of the system (1) and to solve the steady control 𝑣(𝑟𝑘 ). Since the
MN is required for the training process of the CN and the AN, we should first complete the training of the
MN. The output of the MN can be expressed as

𝑥𝑘+1 = 𝑤
( 𝑗)T
2 𝜎

(
𝑤

( 𝑗)T
1 𝑥𝑘 + 𝛽

( 𝑗)
1

)
+ 𝛽

( 𝑗)
2 , (23)

where 𝑥𝑘 =
[
𝑥T
𝑘 , 𝑢

T(𝑥𝑘 )
]T

. 𝑤 ( 𝑗)
1 ∈ R(𝑠+𝑚)×𝑙𝑚 and 𝑤

( 𝑗)
2 ∈ R𝑙𝑚×𝑠 denote the weight vectors. 𝛽

( 𝑗)
1 ∈ R𝑙𝑚 and

𝛽
( 𝑗)
2 ∈ R𝑠 are bias vectors. 𝑙𝑚 denotes the number of neurons in the hidden layer for the MN. 𝑗 denotes the

training round index.

In order to make the MN with higher recognition accuracy, we utilize the neural network toolbox in Matlab
to train the MN. The training parameter settings are given in Section 5.

After the MN is trained, according to equation (4), we can obtain the steady control 𝑣(𝑟𝑘 ) by solving the
following equation:

𝑟𝑘+1 = 𝑤T
2 𝜎

(
𝑤T

1

[
𝑟T
𝑘 , 𝜈

T(𝑟𝑘 )
]T

+ 𝛽
( 𝑗)
1

)
+ 𝛽

( 𝑗)
2 . (24)

The CN is used to approximate the cost function, and its output can be expressed as

�̂� (𝑖)
𝑘 = 𝜙T(𝑒𝑘 )𝜔(𝑖) , (25)
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where 𝜔(𝑖) ∈ R𝑙𝑐 . The activation function 𝜙(𝑒𝑘 ) = [𝜙1(𝑒𝑘 ), · · · , 𝜙𝑙𝑐 (𝑒𝑘 )]T. 𝑙𝑐 denotes the number of neurons
in the hidden layer for the CN. According to equations (12) and (25), we have

𝜙T(𝑒𝑘 )𝜔(𝑖+1) =
𝑘+𝑛−1∑
𝑧=𝑘

𝑈
(
𝑒𝑧, 𝜇

(𝑖) (𝑒𝑧)
)
+ 𝜙T(𝑒𝑘+𝑛)𝜔(𝑖) . (26)

A sample set𝜓𝑀 =
{
𝑒 [𝑞] |𝑒 [𝑞]𝑘 ∈ Ω𝑒, 𝑞 = 1, 2 · · · , 𝑀

}
is collected onΩ, where𝑀 denotes themaximumnumber

of samples. Based on theMN and 𝜇(𝑖) (𝑒𝑘 ), we can predict the future error vector 𝑒 [𝑞]𝑘+𝑛. Considering the sample
set 𝜓𝑀 , equation (26) can be rewritten as

𝜙T
(
𝑒
[𝑞]
𝑘

)
𝜔(𝑖+1) = 𝜁 [𝑞] (𝑖) , 𝑞 = 1, 2, . . . , 𝑀, (27)

where 𝜁 [𝑞] (𝑖) =
𝑘+𝑛−1∑
𝑧=𝑘

𝑈
(
𝑒
[𝑞]
𝑧 , 𝜇(𝑖)

(
𝑒
[𝑞]
𝑧

))
+ 𝜙T

(
𝑒
[𝑞]
𝑘+𝑛

)
𝜔(𝑖) . Using the least-square method, 𝜔(𝑖+1) can be calcu-

lated as

𝜔(𝑖+1) = (𝜆T𝜆)−1𝜆T𝜁 (𝑖) , (28)

where 𝜆 =
[
𝜙T

(
𝑒 [1]𝑘

)
, 𝜙T

(
𝑒 [2]𝑘

)
, · · · , 𝜙T

(
𝑒 [𝑀]
𝑘

)]T
and 𝜁 (𝑖) =

[
𝜁 [1] (𝑖) , 𝜁 [2] (𝑖) , · · · , 𝜁 [𝑀] (𝑖) ]T.

The AN is used to approximate the tracking control policy, and its output can be expressed as

�̂�(𝑖) (𝑒𝑘 ) = 𝜑T(𝑒𝑘 )𝜛(𝑖) , (29)

where𝜛(𝑖) ∈ R𝑙𝑎 . The activation function 𝜑(𝑒𝑘 ) = [𝜑1(𝑒𝑘 ), · · · , 𝜑𝑙𝑎 (𝑒𝑘 )]T. 𝑙𝑎 denotes the number of neurons
in the hidden layer for the AN. According to equations (11) and (29), we have

�̂�(𝑖+1) (𝑒𝑘 ) = 𝜑T(𝑒𝑘 )𝜛(𝑖+1) = −1
2
𝑅−1

(
𝜕𝑥𝑘+1

𝜕𝑢(𝑖) (𝑥𝑘 )

)T 𝜕�̂� (𝑖+1)
𝑘+1

𝜕𝑢(𝑖) (𝑒𝑘+1)
. (30)

Considering the sample set 𝜓𝑀 , equation (30) can be rewritten as

𝜑T
(
𝑒
[𝑞]
𝑘

)
𝜛(𝑖+1) = 𝜃 [𝑞] (𝑖) , 𝑞 = 1, 2 · · · , 𝑀, (31)

where 𝜃 [𝑞] (𝑖) = − 1
2𝑅

−1
(

𝜕𝑥
[𝑞 ]
𝑘+1

𝜕𝑢 (𝑖) (𝑥 [𝑞]
𝑘

)

)T
𝜕�̂�

(𝑖+1)
𝑘+1

𝜕𝑢 (𝑖) (𝑒 [𝑞 ]
𝑘+1)

. Thus, 𝜛(𝑖+1) can be calculated as

𝜛(𝑖+1) = (𝜌T𝜌)−1𝜌T𝜃 (𝑖) , (32)

where 𝜌 =
[
𝜑T

(
𝑒 [1]𝑘

)
, 𝜑T

(
𝑒 [2]𝑘

)
, · · · , 𝜑T

(
𝑒 [𝑀]
𝑘

)]T
and 𝜃 (𝑖) =

[
𝜃 [1] (𝑖) , 𝜃 [2] (𝑖) , · · · , 𝜃 [𝑀] (𝑖) ]T.

5. SIMULATION RESULT
In this section, we complete two simulations. Example 1 is to illustrate the effectiveness of the MsACTC
algorithm and the correctness of Theorem 1. Example 2 is to show that the condition (14) is not sufficiently
necessary for the convergence of the cost function.
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Figure 2. Testing errors of the MN (Example 1). MN: Model network.

5.1 Example 1
Consider the modified Van der Pol’s oscillator system

𝑥𝑘+1 =

[
𝑥𝑘1 + 0.1𝑥𝑘2
−0.1𝑥𝑘1 + 1.1𝑥2

𝑘2 − 0.1𝑥2
𝑘1𝑥𝑘2

]
+
[

0.35 0
0 0.35

]
𝑢(𝑥𝑘 ). (33)

The reference trajectory is defined as

𝑟𝑘+1 =

[
1 0.05

−0.05 1

]
𝑟𝑘 . (34)

Before the neural networks are trained, we make a sample set of 𝑥𝑘 in the region where −1 ≤ 𝑥𝑘1 ≤ 1 and
−1 ≤ 𝑥𝑘2 ≤ 1. In order to obtain the sample set of error vectors 𝑒𝑘 , the sample set of the reference trajectory
𝑟𝑘 is also constructed in the region where −1 ≤ 𝑟𝑘1 ≤ 1 and −1 ≤ 𝑟𝑘2 ≤ 1. Assuming that the system
(33) is unknown, we need to construct the MN using the neural network toolbox and the data generated
by the system (33). The parameters of the toolbox are set as follows: the activation function is chosen as
𝜎(𝑧) = (𝑒𝑧 − 𝑒−𝑧)/(𝑒𝑧 + 𝑒−𝑧), the optimization algorithm is chosen as Levenberg-Marquardt backpropagation,
the maximum training number of the MN is set as 1000, and the loss function is chosen as the mean squared
normalized error function. The other parameters in theMsACTC algorithm are set as𝑄 = 𝐼2, 𝑅 = 5𝐼2, 𝑃 = 6𝐼2,
𝜂 = 10−7, 𝑀 = 961, 𝑙𝑚 = 20, 𝑙𝑎 = 5, and 𝑙𝑐 = 7. Figure 2 shows the testing error after the training of the MN,
and the result is satisfactory.

We construct the activation functions for the CN and the AN as{
𝜙(𝑒𝑘 ) =

[
𝑒2
𝑘1, 𝑒

2
𝑘2, 𝑒𝑘1𝑒𝑘2, 𝑒

2
𝑘1𝑒𝑘2, 𝑒𝑘1𝑒

2
𝑘2, 𝑒

3
𝑘1, 𝑒

3
𝑘2
]T

𝜑(𝑒𝑘 ) =
[
𝑒𝑘1, 𝑒𝑘2, 𝑒𝑘1𝑒𝑘2, 𝑒

2
𝑘1, 𝑒

2
𝑘2
]T (35)

In order to satisfy the condition (14), the weight vector 𝜔(0) of the CN is initialized by one pre-training. 𝜔(0)

satisfies �̂� (0)
𝑘 = 𝜙T(𝑒𝑘 )𝜔(0) = 𝑒T

𝑘 𝑃𝑒𝑘 . The weight matrix of the AN is initialized as zero. Before starting the
iteration, we set the maximum iteration number 𝑖M = 25. We use the different step sizes 𝑛 of policy evaluation
for the simulation to verify the effect of 𝑛 on the convergence speed of the MsACTC algorithm.
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Figure 3. Convergence processes of network weights with different values of 𝑛 (Example 1). AN: Action network; CN: critic network.

Figure 4. Convergence processes of the cost function for 𝑛 = 3 (Example 1).

In order to compare the convergence speeds under different values of 𝑛, Figure 3 utilizes the convergence
process of the norm of the weights to reflect the iterative process of the cost function and the tracking control
policy. According to Figure 3, we can observe that the larger the value of 𝑛, the faster the weights converge.
Moreover, the weights corresponding to different values of 𝑛 eventually converge to the same value, which
indicates the optimality of the MsACTC algorithm. Figure 4 shows the iterative process of the cost function
for 𝑛 = 3 through a mesh plot.
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Figure 5. Trajectories of state vectors and tracking errors (Example 1).

Figure 6. Trajectories of control inputs (Example 1).
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Figure 7. Testing errors of the MN (Example 2). MN: Model network.

We apply the optimal control policy obtained by the MsACTC algorithm for 𝑛 = 3 to the system (33) for 300
time steps. We set 𝑥0 = [0.2,−0.2]T and 𝑟0 = [−0.3,−0.3]T. The changing processes of the system state and
tracking error are shown in Figure 5. The variation of control inputs is shown in Figure 6. With the control
policy, the system states track the reference trajectory after 50 time steps.

5.2 Example 2
Consider the modified torsional pendulum system

𝑥𝑘+1 =

[
𝑥𝑘1 + 0.1𝑥𝑘2 + 0.12𝑢1(𝑥𝑘 )
−0.225 sin(𝑥𝑘1) + 0.975𝑥𝑘2 + 0.125(tanh (𝑢2(𝑥𝑘 )) + 𝑢2(𝑥𝑘 ))

]
. (36)

Due to the excellent adaptive ability, the MsACTC algorithm does not have strict requirements for the settings
of the parameters. Therefore, the parameter values and the setting of activation functions are kept the same
as those in Example 1. In Example 2, we set 𝑉 (0)

𝑘 = 0 to show that the condition (14) is not necessary for
the convergence of 𝑉 (𝑖)

𝑘 . That is, 𝜛(0) and 𝜔(0) are set as zero. In Example 2, we set 𝑥0 = [0.5,−0.5]T and
𝑟0 = [−0.5, 0.3]T. After completing the initialization, the procedure of the experiment is the same as that in
Example 1. The simulation results are shown in Figures 7-11. It is worth noting the direction of convergence
of weights and the cost function in Figures 8 and 9. For Example 1, the direction of convergence is illustrated
in Figures 3 and 4 is from the top to the bottom. For Example 2, the direction of convergence in Figures 8 and
9 is from the bottom to the top.

Even if the condition (14) does not hold, 𝑉 (𝑖)
𝑘 and 𝜇(𝑖) (𝑒𝑘 ) can still converge to 𝑉∗

𝑘 and 𝜇∗(𝑒𝑘 ) through the
iteration. As 𝑛 increases, the algorithm converges faster. However, it is worth noting that if the condition (14)
is not satisfied, too large 𝑛 will make the cost function diverge during the iteration.

6. CONCLUSIONS AND OUTLOOK
In this paper, theMsACTC algorithm is developed by introducing themulti-step policy evaluationmechanism
into the adaptive critic tracking control algorithm. For nonlinear systems with unknown models, the MN is
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Figure 8. Convergence processes of network weights with different values of 𝑛 (Example 2). AN: Action network; CN: critic network.

Figure 9. Convergence processes of the cost function for 𝑛 = 3 (Example 2).

built based on data to estimate the state vector in the future time. By solving the steady control 𝑣(𝑟𝑘 ) through
the MN, the tracking problem is transformed into the regulation problem. We give the convergence proof of
the MsACTC algorithm. The weights of the CN and the AN are updated based on the least-square method.
Simulation results verify the effectiveness of the MsACTC algorithm and the correctness of the theoretical
results. It is worth exploring how to obtain the most suitable value of 𝑛 in the MsACTC algorithm. When
the condition (14) holds, the control policy is admissible after one policy improvement. Therefore, 𝑛 can be
assigned arbitrarily in the range of positive integers. However, when the value of 𝑛 is large enough, even if
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Figure 10. Trajectories of state vectors and tracking errors (Example 2).

Figure 11. Trajectories of control inputs (Example 2).
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𝑛 continues to increase, the convergence speed will not be significantly improved. In this case, increasing
the value of 𝑛 will lead to a waste of computing resources. If the condition (14) is not satisfied, then the
algorithm cannot guarantee that the control policy is admissible, which means that the value of 𝑛 is no longer
arbitrary. This is because an unstable control policy will cause the state vector to diverge during multi-step
policy evaluation. In general, a satisfactory method for selecting the value of 𝑛 has not yet been proposed. In
the future, we may continue to investigate this issue. In addition, this paper only uses two digital simulation
examples to test the MsACTC algorithm. This means that the potential application areas of the algorithm have
not been fully explored. Therefore, we will try to verify the performance of the algorithm in more application
scenarios in the future.
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