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Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally. In recent years, the 
metabolic syndrome epidemic is changing the etiological landscape of HCC, with metabolic liver disease 
comprising an exponentially increasing proportion of HCC cases. In this review, we discuss HCC in the context of 
metabolic syndrome, including its epidemiology, its unique clinical and pathological characteristics, and its 
multifactorial pathogenesis. We also discuss HCC prevention and management as relates to these patients.
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INTRODUCTION
Globally, hepatocellular carcinoma (HCC) is the fifth most common cancer and the third most frequently 
reported cause of cancer-related death[1]. The leading etiologies of liver disease in patients with HCC have 
historically been chronic hepatitis B and C, and alcoholic liver disease (ALD); however, with the advent of 
curative treatments for HCV and large scale vaccination efforts for HBV, the proportional incidence of viral 
hepatitis is projected to decline[2]. Inversely, the metabolic syndrome is anticipated to become the most 
common cause of HCC in developed countries in the near future[3].
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Metabolic syndrome (MS) refers to the co-occurrence of several cardiometabolic risk factors including 
insulin resistance, obesity, atherogenic dyslipidemia, and hypertension[4]. This multiplex of risk factors tend 
to cluster and have a shared responsiveness to lifestyle modifications, suggesting that they are not 
independent of one another but rather that they share underlying mediators, mechanisms, and pathways[5].

Non-alcoholic fatty liver disease (NAFLD) is defined by the presence of steatosis in > 5% of hepatocytes 
alongside the exclusion of all other causes of secondary hepatic fat accumulation, particularly alcohol 
consumption and viral hepatitis, and is strongly associated with features of MS[6]. Although NAFLD was 
documented more than 30 years ago[7], its pathogenesis remains incompletely understood. Initially, Day and 
James (1998)[8] proposed a two-hit hypothesis to define NAFLD pathogenesis. The “first hit” corresponds to 
the appearance of hepatic steatosis; the “second hit” comprises an additional oxidative injury which in turn 
leads to necroinflammation and fibrosis[8]. The prolonged inflammation and fibrosis they theorized, in turn 
predisposes the liver to HCC development. Today, this hypothesis has been expanded in support of a 
multifactorial explanation which suggests that NAFLD is the result of several conditions acting in parallel, 
perhaps synergistically in genetically predisposed individuals, with insulin resistance as the key mechanism 
leading to hepatic steatosis, and other factors such as genetic factors, lifestyle factors, altered immune 
response, and intestinal dysbiosis among others acting as contributing factors to oxidative stress[9].

However, the current definition of NAFLD falls short in incorporating our current knowledge on the 
pathogenesis of this hepatic disease, which is strongly tied to metabolic dysfunction. Furthermore, the 
current definition of NAFLD may exclude certain cirrhotic patients missing histological evidence of 
steatosis despite being comorbid with several metabolic risk factors. Most likely, these patients’ histological 
evidence of steatosis, inflammation or hepatocellular injury becomes replaced with abundant fibrotic tissue 
during cirrhotic progression. In light of these nomenclatural shortcomings, a group of experts recently 
proposed a new term, “metabolic-associated fatty liver disease (MAFLD)”. This term is designed to more 
accurately reflect the pathogenesis and natural history of the disease, in hopes that this more appropriate 
overarching term may aid in patient stratification and management[10,11]. This definition allows for a positive 
diagnosis, based on histological, imaging or serum biomarker evidence of hepatic steatosis plus one of the 
following three criteria: overweight/obese, the presence of type 2 diabetes mellitus, or evidence of metabolic 
dysregulation. Metabolic dysregulation here is defined by the presence of two or more features of the MS 
and other metabolic risk abnormalities. Shifting from a negative diagnosis framework (based on the 
exclusion of all other liver pathologies) provides a major clinical advantage. Given the increasing incidence 
of metabolic liver disease, it is often found in adjunct to other liver conditions such as alcoholic liver disease 
or viral hepatitis. A positive diagnostic framework allows us to identify metabolic liver disease as a 
comorbid condition. Additionally, it allows cirrhotic patients with low or undetectable levels of steatosis 
who meet the diagnostic criteria proposed for MAFLD to be considered as MAFLD-associated cirrhosis, 
thus avoiding the use of the term “cryptogenic cirrhosis”, which is an ambiguous host definition to many 
more accurately defined MAFLD patients. For the purpose of this review, we will draw from studies 
utilizing both criteria of hepatic metabolic disease to describe MS’s complex relationship to HCC. This 
review will focus on the epidemiology, clinical features, and contributing factors in the pathogenesis of HCC 
related to the metabolic syndrome, in particular in patients with NAFLD.

EPIDEMIOLOGY OF HCC IN THE CONTEXT OF THE METABOLIC SYNDROME
With NAFLD affecting up to 25% of the general population globally[12-15], it is not surprising that NAFLD-
HCC is on the rise. A United States-based 2015 study[16] examining the annual incidence of NAFLD-related 
HCC based on a SEER-Medicare cohort, found that NAFLD-HCC increased at an annual rate of 9% during 
the six years between 2004 and 2009. This increasing trend is mirrored on a global scale. In South Korea, a 
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retrospective cohort study[17] involving 329 HCC subjects found an increase from 3.8% of HCC cases being 
attributed to NAFLD during the 2001-2005 period to 12.2% during the 2006-2010 period (P = 0.008). A 
recent Swiss population-based study[18], examining all HCC cases resident in the canton of Geneva between 
1990-2014, also found an increase in NAFLD and MAFLD-related HCCs, particularly in women. Between 
1990-1994 and 2010-2014, we observed a significant increase in HCC incidence in women [standardized 
incidence ratio (SIR) = 1.83, 95%CI: 1.08-3.13, P = 0.026], which was not observed in men (SIR = 1.10, 
95%CI: 0.85-1.43, P = 0.468). During the same timeframe, the proportion of NAFLD-HCC in respect to 
non-NAFLD causes of HCC increased more in women (0% to 29%, P = 0.037) than in men (2% to 12%, P = 
0.010), while the proportion of MAFLD increased from 21% to 68% in both sexes and 7% to 67% in women 
(P < 0.001). This particular increase in HCC of metabolic origin in women likely reflects the increase in 
prevalence of overweight or obese individuals in the canton of Geneva between the same time period. 
Between 1992 and 2012, Geneva men saw a 42% increase in overweight or obesity and a 123% increase in 
obesity prevalence. In the same time frame, women saw a 92% increase in overweight or obesity and a 126% 
in obesity prevalence[19].

This rise in the incidence of NAFLD-related HCC has impacted trends in liver transplantation as well. In a 
US-based 2018 study[20] analyzing 26,121 HCC patients between 2002 and 2016 in the Scientific Registry of 
Transplant Recipients database, the proportion of patients with NASH-HCC increased 7.7-fold during the 
14-year period from 2.1% to 16.2% (P < 0.0001). Furthermore since 2002, the prevalence of HCC in liver 
transplant candidates with NASH increased 11.8-fold, steeper than that of any other liver etiology (P < 
0.0001 in a trend regression model) with the second highest being chronic hepatitis B (6.0-fold increase), 
followed by alcoholic liver disease (3.4-fold increase) and chronic hepatitis C (2.3-fold increase) (all P < 
0.0001).

A large recent meta-analysis[13] estimated the annual incidence of HCC in NAFLD to be 0.44 per 1000 
person‐years (95%CI: 0.29‐0.66), however this value rises significantly when we consider HCC in NASH 
which the study estimates have an incidence rate of 5.29 per 1000 person‐years (95%CI: 0.75‐37.56). Indeed, 
liver inflammation and especially liver fibrosis has been shown to be the most important predictor of 
mortality in NAFLD patients[21]. The risk of HCC is highest when we consider cirrhotic NAFLD 
patients[13,22-25] and in particular Hispanic ones[22]. In a retrospective cohort study comparing 296,707 NAFLD 
patients with an equal number of controls, researchers found that among NAFLD patients with cirrhosis, 
the annual incidence of HCC was 10.6 per 1000 person-years. In Hispanics with NAFLD-cirrhosis, the 
annual incidence of HCC was 23.76 per 1000 person-years (95%CI: 12.27-41.50). Moreover, while this 
proportion of HCC progression still remains lower than that reported for other chronic liver disorders, the 
overall burden NAFLD-HCC remains an important public health concern given the sheer pervasiveness 
and projected increase of NAFLD. Several studies have aimed to forecast the NAFLD disease burden. A 
2018 study modeling NAFLD disease burden in eight countries (China, France, Germany, Italy, Japan, 
Spain, United Kingdom, and United States)[26] between 2016-2030 predicted that even if obesity and diabetes 
type 2 diabetes level out in the next several years, total NAFLD growth is estimated to reach up to 30%. The 
model also suggests that despite modest NAFLD growth, NASH prevalence will increase by up to 56%, with 
NAFLD-HCC estimated to increase 122% in the United States, from 5510 to 12,240 cases. In Europe, France 
was projected to have the largest increase (117%), while the UK had the smallest increase (88%). Similarly, in 
a Swiss modeling study[27], researchers used the close link between obesity and type 2 diabetes with NAFLD 
to quantify fibrotic progression among the NAFLD and NASH populations and predict disease burden up 
to 2030. Results suggest an increase in NASH prevalence of 40% between 2018 and 2030, with the number of 
deaths as a result of NAFLD surging by 41%.
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However, a number of studies have shown that unlike other etiologies of liver disease, 30%-50% of HCCs in 
the context of the MS and NAFLD occur in the absence of cirrhosis[18,22,28-34]. Paradis et al.[35] were among the 
first to show that HCCs in patients with features of MS often occurred in the absence of advanced fibrosis in 
a retrospective study of patients who had undergone hepatic resection for HCC. Some studies suggest this 
finding may be associated with gender[29,31,32,36]; for instance, a recent retrospective study in Japan[29] 
comprising 104 patients in a cohort spanning nearly 17 years, found that while 80.5% of women with 
NAFLD-HCC presented with advanced fibrosis (F3-F4), only 58.8% of males did (P = 0.03). In another 
Japanese study[31], the histological review of 209 NAFLD-HCC cases revealed an even larger gender disparity 
in the proportion of NAFLD-HCC patients with cirrhosis (72.7% female vs. 37.6% males). Whether the 
prognosis of NAFLD-HCC occurring in the absence of cirrhosis is significantly different to that occurring 
in cirrhosis remains unknown. In a Japanese prospective study evaluating the characteristics of HCC in 
NAFLD patients without cirrhosis[37] with a median follow-up period of 52.7 months, researchers found 
that, liver function was better preserved in the non-cirrhotic HCC group, with platelet count and 
prothrombin time being significantly higher than in the cirrhotic HCC group. Following curative treatment, 
the 5-year recurrence rate was significantly lower in the non-cirrhotic group (40.9%) than in the cirrhotic 
HCC group (85.7%) and the 5-year survival was improved. Alternatively, in a retrospective cohort of 225 
NAFLD-HCC patients treated in Sweden, 37% were non-cirrhotic and these patients were significantly 
older, had larger tumors, less frequently underwent liver transplantation but more frequently resection, and 
overall mortality was not significantly different between the 2 groups[36]. Therefore, it remains unclear if the 
benefit of a non-cirrhotic liver allowing, for example, more aggressive curative liver resection is offset by 
later diagnosis (presumably, in part, due to less common HCC screening) and older age.

American Association for the Study of Liver Diseases and European Association for the Study of the Liver 
guidelines recommend screening for HCC by performing liver ultrasonography every six months in at-risk 
populations, defined by the presence of advanced fibrosis or cirrhosis[1,28]. Although the evidence base for 
such recommendations is mostly based on observational studies, a meta-analysis comprising 47 
retrospective and prospective studies demonstrated that HCC surveillance is associated with improved early 
tumor detection, an increased likelihood to receive curative therapy and overall survival in cirrhotic 
patients, regardless of etiology[38]. However, while over 90% of the patients in this meta-analysis had 
underlying cirrhosis, only around half of NAFLD-HCC patients have cirrhosis at diagnosis[18,22,28-34], creating 
an inherent challenge to the existing surveillance framework based on fibrotic progression. We have shown 
in a modelling study that risk-score stratified HCC screening was cost-effective, at least in cirrhotic patients 
and outperformed currently recommended non-stratified biannual ultrasound screening in all patients with 
cirrhosis[39]. Other researchers have proposed using polygenic risk scores  based on current genetic 
knowledge in order to help stratify the risk of hepatocellular carcinoma independently of fibrosis 
staging[40,41]. For instance, in one study assessing polygenic risk scores in NAFLD subjects combining 
variants in PNPLA3, TM6SF2, GCKR, and MBOAT7 genes and adjusted for HSD17B13, Bianco et al.[42] 
found that their score improved accuracy in detecting HCC and may be a useful tool to aid HCC risk 
stratification in NAFLD. Potential future alternative strategies for stratifying HCC risk in NAFLD subjects 
include scores utilizing readily available clinical information and serum tests, gene signatures, liver 
elastometry, blood based biomarkers such as AFP, lens culinaris agglutinin-reactive AFP, and des-γ-carboxy 
prothrombin[43-46].

MECHANISMS OF HEPATOCARCINOGENESIS IN THE CONTEXT OF MS
The risk factors and pathogenetic mechanisms of HCC development in patients with metabolic liver disease 
are multifactorial and remain incompletely understood; however, a number of mechanisms have been 
implicated [Figure 1][47].
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Figure 1. Multifactorial processes involved in metabolic liver disease evolution, from steatosis to HCC development.

Insulin resistance, diet and physical activity
Since the 1990s, insulin resistance has been implicated as the key mechanism driving NAFLD progression 
and has been frequently reported as a risk factor for HCC in NAFLD patients[48,49]. In a population-based 
case-control study examining SEER-Medicare records[50], researchers found that 43% of the 2061 HCC 
patients identified had diabetes, a value significant greater than non-cancer controls (19%). Even after 
adjusting for other HCC risk factors (HCV, HBV, alcoholic liver disease, and hemochromatosis), diabetes 
was associated with a threefold increase in HCC risk. In fact, researchers found a significant positive 
interaction between HCV and diabetes (P < 0.0001). In a recent study from the Mayo Clinic[51] aiming to 
quantify the association between diabetes and the risk of HCC, researchers found that 71% of the 354 
patients admitted with NASH and cirrhosis between 2006 and 2015 had diabetes. Following a median 
follow-up 47 months, 30 patients developed HCC. Diabetes was independently associated with an increased 
risk of developing HCC (HR = 4.2, 95%CI: 1.2-14.2, P = 0.02), along with age (per decade, HR per decade 
1.8, 95%CI: 1.2-2.6, P < 0.01) and low serum albumin (HR = 2.1, 95%CI: 1.5-2.9, P < 0.01). Other metabolic 
risk factors, including body mass index (BMI), hyperlipidemia, and hypertension, were not associated with 
HCC risk. These results were externally validated in a liver transplant registration cohort (UNOS) including 
all registrants with NASH between 2004 and 2017, where diabetes was still found to be an independent 
predictor of HCC (HR = 1.3, 95%Cl: 1.0-1.7, P = 0.3).

A strong link between MS and cancer deaths, including HCC has been long well-established. A 2003 
landmark New England Journal of Medicine study[52] calculated that obesity confers a relative risk of liver 
cancer development of 1.90 (95%CI: 1.46-2.47) in individuals with BMIs of 30.0 to 34.9 and up to 4.52 
(95%CI: 2.94-6.94) in individuals with BMIs of 35.0 to 39.9. Given the strong link between obesity and liver 
cancer, many studies have seeked to examine the impact of lifestyle interventions on HCC risk in both 
mouse models and human studies. In a murine study seeking mechanistic insights into obesity’s HCC 
promoting activity[53], researchers fed mice either normal chow (LFD) or a high-fat diet (HFD) for nine 
months. As expected, the mice on the HFD gained more weight, saw an increase in relative liver weight, and 
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had increased liver triglycerides, serum transaminases, glucose intolerance, and hepatosteatosis. 
Importantly, when analyzed at 9 months of age, HFD mice exhibited many more HCCs per liver than their 
LFD-maintained mice counterparts. Dietary obesity also increased tumor size and incidence. Obesity-
promoted HCC development here was dependent on enhanced production of the tumor promoting 
cytokines IL-6 and TNF, which cause hepatic inflammation and activation of the oncogenic transcription 
factor STAT3. In another murine study investigating whether nutrients like sugar or fat drive HCC 
tumorigenesis independently of obesity[54], researchers found that mice fed high-sugar diets had the greatest 
liver tumor incidence while dietary fat intake was not associated with tumorigenesis, suggesting an 
independent role of sugar metabolism in the pathophysiology of diet-induced hepatic tumorigenesis. 
Reversely, increased physical activity appears to have a beneficial effect on HCC risk. In a 2015 study[55], 
mice fed standard chow (10% fat diet) were randomly divided into sedentary or exercise groups (the 
exercise group ran on a motorized treadmill for 1 h per day throughout the duration of the study). After 32 
weeks, the exercise-group demonstrated significantly fewer tumors per liver, as well as a smaller total 
tumoral volume per liver. Notably, exercise did not affect steatosis and had no effect on the non-alcoholic 
fatty liver disease activity score (NAS). Exercise effectively led to decreased tumor cell proliferation and 
stimulated the phosphorylation of AMPK and its substrate raptor, which decreased the kinase activity of 
mTOR. Human studies have confirmed these experimental observations. A recent study utilized one of the 
world’s largest international cohorts spanning 10 nations, the European Prospective Investigation into 
Cancer and Nutrition[56] to assess the impact of vigorous physical activity on different types of liver cancer in 
467,336 men and women with a median follow up of 14.9 years. Here, researchers found that the 
multivariable-adjusted HR of HCC was 0.55 (95%CI: 0.38-0.80) comparing active and inactive individuals, 
with waist circumference and BMI accounting for ~40% and 30%, respectively of the overall association of 
total physical activity and HCC. For individuals reporting vigorous physical activity (> 2 h/week) compared 
to those reporting no vigorous activity, the HR for HCC was 0.50 (95%CI: 0.33-0.76), after accounting for 
potential confounding factors. Overall, a 45% lower risk of HCC was observed when comparing high and 
low levels of physical activity. Regularly engaging in vigorous physical activity was associated with a 50% 
lower risk of HCC.

Genetic factors
In the last two decades, much research has been conducted on the hereditary and specific genetic 
contributors to HCC development in the context of NAFLD. Various family studies have shown that the 
risk of developing NAFLD increases with the number of ancestors affected by the disease, with hepatic 
fibrosis being more common in the same family group[57,58]. Next generation sequencing, genome wide 
association studies, and advanced computational data analyses have offered the first few candidates genes 
involved in HCC pathogenesis in NAFLD[40]. A range of single nucleotide polymorphisms and other genetic 
variants in genes involved in the regulation of hepatic lipid metabolism, such as the patatin-like 
phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 
(TM6SF2), membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) and glucokinase regulator 
(GCKR), which predispose the liver to steatosis, fibrosis, and HCC in the presence of environmental 
modifiers [Table 1]. In a unique beneficial effect, recent studies have uncovered a splice variant in the 17β-
hydroxysteroid dehydrogenase type 13 (HSD17B13) gene associated with a protective effect against severe 
fibrosis and HCC development.

The most significant variant uncovered in recent years is the rs738409C>G variant in the PNPLA3 gene, 
which is considered a major determinant of hepatic fat content[59]. The protein encoded by the PNPLA3 
gene is involved in the retinoic acid axis and it is responsible for the mobilization of triglycerides from 
hepatic lipid droplets, with a lipase-like activity[60]. This protein’s function is impaired in the rs738409C>G 
variant, leading to the accumulation of polyunsaturated fatty acids and retinoids in lipid droplets as well as 
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Table 1. Single nucleotide polymorphisms associated with NAFLD, advanced fibrosis, and HCC development

Gene SNP Postulated pathogenesis NAFLD Advanced fibrosis (F3-F4) HCC Ref.

PNPLA3 rs738409C>G Protein involved in the control of 
triglycerides, phospholipids and retinoic 
acid axis in lipid droplets 
Rs738409C>G leads to accumulation 
of polyunsaturated fatty acids and 
retinoids in lipid droplets, leading to 
steatosis and activation of hepatic 
stellate cells

CG × CC: OR = 1.757, (95%CI: 
1.037-2.977), P = 0.0044 
GG × CC: OR = 3.296, (95%CI: 
1.504-7.225), P = 0.0044[61]

OR = 2.33, (95%CI: 1.66-3.27, 
Chi squared 24.8, P < 0.0001) 
(Cochran-Armitage Chi 
squared for trend 22.68, P < 
0.0001)[62]

GC vs. CC: unadjusted OR = 2.52, (95%CI: 1.55-
4.10), P = 0.0002 
GG vs. CC: OR = 12.19, (95%CI: 6.89-21.58), P < 
0.0001)[62]

Mazo et al.[61] 
Liu et al.[62]

TM6SF2 rs58542926C>T 
(E167K variant)

Protein involved in the secretion of very 
low-density lipoprotein from the 
hepatocyte 
Rs58542926 C>T causes a reduced 
expression of protein, leading to 
accumulation of VLDL in hepatocytes

OR = 2.13, (95%CI: 1.36-3.30) 
P = 0.0009; n = 3273[79]

OR = 1.88, (95%CI: 1.41-2.5) 
P = 1.63 × 10-5, n = 1074[63]

OR = 1.922, (95%CI: 1.31-2.81), P = 6.81 × 10-4 
(Univariate analysis of homozygote, significance 
lost at multivariate analysis)[63]

Pirola et al.[79] 
Liu et al.[63]

MBOAT7 rs641738C>T Six-transmembrane protein involved in 
phospholipids and intracellular lipid 
remodeling in Lands cycle 
Rs641738C>T reduces MBOAT7 
activity

OR = 1.17, (95%CI: 1.05-1.3),  pz 
= 0.003 
(recessive model CC+CT vs. TT 
in overall population)[86]

OR = 1.22, (95%CI: 1.03- 1.45), 
pz = 0.021 
(recessive model CC+CT vs. 
TT in Caucasian Population)[86
]

OR = 1.64, (95%CI: 1.18-2.27), pz = 0.003 
[dominant model (CC vs. CT+TT) of inheritance 
in overall population][86]

Teo et al.[86]

GCKR rs1260326 (protein 
variant P446L)

Regulates the flux of glucose and de 
novo lipogenesis in hepatocytes

OR = 1.38, (95%CI: 1.25- 1.53), P 
= 9.6 × 10-10[91]

~ OR = 1.84, (95%CI: 1.23- 2.75), P = 0.0031, 
significance = (P = 5.3×10-7)[91]

Romeo et al.[40] 
Kawaguchi et al.[91]

HSD17B13 rs72613567T>TA Regulates retinoic acid enzymatic 
activity and availability 
The two variants determine lower 
activity of the protein function

NAFLD progression risk was 
reduced by 17% (95%CI: 8-25) 
in heterozygotes and by 30% 
(95%CI: 13-43) in 
homozygotes[95]

Reduced risk of developing 
significant fibrosis OR = 0.77, 
(95%CI: 0.58-1.03) or any 
fibrosis OR = 0.42, (95%CI: 
0.17-1.00)[95]

Reduced HCC risk demonstrated in total liver 
disease group (not NAFLD only) pooled OR = 
0.64 (95%CI: 0.53-0.77), P heterogeneity = 
0.236, I2 = 27.9% 
(P Egger = 0.741, P Begg = 0.806)[95]

Wang et al.[95]

SNP: Single nucleotide polymorphisms; NAFLD: non-alcoholic fatty liver disease; HCC: hepatocellular carcinoma.

steatosis[61]. This in turn activates hepatic stellate cells, inducing a more inflammatory and fibrogenic phenotype involving GM-CSF and CCL-5 signaling[61]. In 
a Brazilian multicenter cross-sectional study[61] evaluating 248 patients with biopsy-proven NAFLD and 134 healthy controls, researchers found that the 
presence of rs738409C>G in both heterozygous (CG) individuals and homozygous (GG) individuals was associated with an increased risk of developing 
NAFLD by a 1.8-fold and 3.3-fold increase respectively. Interestingly, this study suggests there is a dose effect in this variant. Further research has confirmed 
that this variant is also associated with clinically relevant hepatic fibrosis (advanced fibrosis and cirrhosis) in a genetic dose-dependent manner [OR = 2.33 
(95%CI: 1.66-3.27), P < 0.0001][62]. Notably it has also been associated with a 3-fold increased risk of developing HCC[63-66]. Although the association between 
the rs738409C>G variant and HCC is particularly clear in patients with alcoholic liver disease, the effect in subjects with NAFLD appears lower and whether 
this association is independent of fibrosis remains unclear[67,68]. Recent studies have also evaluated the role of the PNPLA3 variant in diminishing the response 
to certain treatments, such as with statins or omega 3[59,69-72]. Accordingly, screening patients for the presence of this variant in order to better tailor therapy is 
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becoming of particular interest[40].

The TM6SF2 gene rs58542926C>T variant, named the TM6SF2 E167K variant has been shown to be 
strongly linked to ALD and hepatocellular carcinoma[73]. Recently, its role in metabolic liver disease has also 
been uncovered, even in the absence of alcohol consumption (NAFLD)[74-77]. The loss of function of this 
Golgi membrane protein, expressed mainly in the liver and intestine is responsible for lipid retention in the 
hepatocyte via reduction in lipidation and number of lipoprotein particles[74-77]. The TM6SF2 E167K variant 
increases the risk of NAFLD by causing lipids to accumulate in intracellular droplets[78]. While this variant 
poses an increased risk for liver damage, it is protective against cardiovascular disease due to the reduction 
in circulating lipoproteins[78]. A meta-analysis reviewing 10 studies spanning pooled estimates of random 
effects in over 100,000 individuals confirmed the role of the E167K variant as an important modifier of 
blood lipid traits in different populations[79]. In the study, homozygous carriers of this minor T allele variant 
were found to have a moderately higher risk of NAFLD (OR = 2.13, 95%CI: 1.36-3.30, P = 0.0009, n = 
3273)[79]. This variant was also associated advanced fibrosis [(F0-F1 vs. F2-F4), OR = 1.88, 95%CI: 1.41-2.5, P 
= 1.63 × 10-5, n = 1074][63] and HCC (OR = 1.922, 95%CI: 1.31-2.81, P = 6.81 × 10−4)[63]. Overall the association 
of the rs58542926C>T SNP with HCC remains incompletely understood, in particular in NAFLD patients, 
although this polymorphism is part of the previously discussed polygenic risk score[42] and some data 
suggests an independent association between the polymorphism and NAFLD-HCC[80,81].

Another SNP known for its involvement in hepatic disease is rs641738C>T in MBOAT7, initially studied for 
its role in ALD and cirrhosis development[82]. Recent research has also assessed the SNP’s role also in 
promoting NAFLD, fibrosis, cirrhosis and HCC[80,83]. MBOAT7 encodes lysophosphatidylinositol 
acyltransferase 1, a six-transmembrane protein anchored to lipid droplets, the endoplasmic reticulum and 
mitochondrial membranes[84,85]. Emerging evidence suggests the enzymatic activity of this protein is likely 
related to the remodeling of phospholipids with polyunsaturated fatty acids in the Lands Cycle[40,83]. A 
landmark 2021 meta-analysis analyzing 1,066,175 individuals of European descent across 42 studies[86], 
found that the rs641738C>T variant was significantly associated with NAFLD in Caucasian adults as 
modelled by a recessive model of inheritance (CC + CT vs. TT) (OR = 1.17, 95%CI: 1.05-1.3, P = 0.003)[86]. 
Here researchers demonstrated that the presence of any fibrosis (F0 vs. F1-4) is positively associated with 
rs641738C>T in all populations (OR = 1.27, 95%CI: 1.04-1.54, pz = 0.018) and that advanced fibrosis (F0-F2 
vs. F3-F4) also exhibits a positive association with rs641738C>T in Caucasian populations (OR = 1.22, 
95%CI: 1.03-1.45, pz = 0.021). In this study[86] the rs641738C>T was also associated with HCC, significantly 
increasing the odds of malignant transformation in NAFLD when utilizing dominant model (CC vs. 
CT+TT) of inheritance (OR = 1.64, 95%CI: 1.18-2.27, pz = 0.003).

Candidate gene studies have led to the identification of the GCKR gene as a modulator of circulating 
triglycerides, glucose and have confirmed the gene’s role in NAFLD[40,41,87]. The intracellular glucokinase 
activity of this gene regulates the flux of glucose into hepatocytes by controlling the levels of glucose 
phosphate and fructose-6-phosphate which exert a negative feedback on GCKR. The reduction in activity of 
the glucokinase in turn reduces malonyl-CoA synthesis and consequent de novo lipogenesis via the 
induction of glycolysis and the stimulation of carbohydrate-responsive element-binding protein[88,89]. The 
GCKR rs1260326 variant encodes a loss of function variant (P446L) protein which increases the activity of 
intracellular glucokinase, thereby increasing intracellular glucose phosphate, and leading to de novo 
lipogenesis via the induction of glycolysis and the stimulation of carbohydrate-responsive element-binding 
protein[40,90]. This process results in higher liver fat content and higher levels of circulating triglycerides, but 
lower insulin resistance and a reduced predisposition to diabetes in carriers[40]. In a 2018 Japanese risk 
estimation model for NAFLD[91], researchers found a significant association [rs1260326 in GCKR (OR = 
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1.38, 95%CI: 1.25-1.53, P = 9.6 × 10-10], between GCKR rs1260326 and NAFLD in 936 histologically 
confirmed patients (ntotal = 8608). However, in this same study the authors found that the association 
between GCKR rs1260326 and HCC was non-significant, and it remains unclear whether there is an 
independent association with HCC development in NAFLD.

In juxtaposition to all these hepato-detrimental variants, a recent study utilizing data from the DiscovEHR 
cohort[92] revealed that the common loss‐of‐function rs72613567T>TA variant in the 17β‐hydroxysteroid 
dehydrogenase 13 (HSD17B13) gene has a protective effect on the liver for NAFLD and ALD, as well as on 
associated liver fibrosis/cirrhosis[93], and HCC[94,95]. The 17β‐hydroxysteroid dehydrogenases are a family of 
14 enzymes with retinol dehydrogenase activity that localize to lipid droplets in hepatocytes where they’re 
involved in the conversion of retinol to retinoic acids[96-98]. A recent large meta-analysis[95] investigating the 
role of the rs72613567 variant in NAFLD progression and any liver disease progression toward HCC found 
that the loss of function conferred by the variant was associated with a reduced risk of NASH development, 
but not steatosis [NAFLD progression risk was reduced by 17% (95%CI: 8-25) in heterozygotes and by 30% 
(95%CI: 13-43) in homozygotes], and it was associated with a reduced risk of developing significant fibrosis 
(OR = 0.77, 95%CI: 0.58-1.03) or any fibrosis (OR = 0.42, 95%CI: 0.17-1.00) even when adjusting for BMI, 
sex, age, and PNPLA3 variants. This study[95] also suggests a protective effect of the variant against HCC 
development. The NAFLD cohort in this study was too small to conclusively determine the HCC risk 
reduction in this subgroup, however the reduced HCC risk was demonstrated in the total liver disease group 
(pooled OR = 0.64, 95%CI: 0.53-0.77).

Immune response and dysbiosis
Obesity and MS can lead to chronic inflammation, which is independently associated with an increased 
cancer risk in general[99]; however, metabolic dysfunction also leads to a particular immune dysfunction 
underlying the pathogenesis of NAFLD and NASH, thereby directly promoting HCC development[99,100]. In 
addition to its metabolic and detoxifying functions, the liver is also a pivotal immunological organ, home to 
a coordinated network of innate immune cells, including Kupffer cells, dendritic cells, and lymphocytes[101]. 
Hepatocytes and liver sinusoidal endothelial cells are not formally innate immune cells, but in response to 
stress, they transition from immune-tolerant states (correlated with the production of IL-10, TGF-β, etc.) to 
immune-active phenotypes (characterized by the secretion of IL-1, TNF-α, etc.)[102]. This complex immune 
milieu employs pattern recognitions receptors ligation and activation of complement receptors or scavenger 
receptors to function as the liver’s first line of defense against gut-derived microbial compounds and 
circulating pathogens[101]. Recent research has emphasized the key role of innate immune mechanisms as 
pivotal drivers of inflammation in NASH[101]. In particular, natural killer (NK) cells seem to play a crucial 
role in metabolic liver disease and HCC development[103]. In response to the hepatic inflammation associated 
with NASH, NK cells increase in quantity and the number of ligands of various NK cells in the liver is 
increased[104,105]. NK cells work to prevent fibrotic development in the liver by killing hepatic stellate cells 
responsible for causing fibrosis[105]. In NASH, hepatic stellate cells are chronically activated due to 
dysregulated senescence and thus are able to resist NK cell-mediated cytolytic attacks[105]. In HCC, an 
increase in Treg cells and subsequent impaired production IFN-γ and cytotoxic function, reduces the 
number of NK which limits their tumoral surveillance function, a crucial component to in fact combat 
HCC[106]. In a German murine study, researchers found that myeloid-derived suppressor cells work to 
disarm the innate immune system, specifically they inhibit NK cell’s antitumoral function, further enabling 
the development of HCC[107].

Sterile inflammation, a form pathogen-free inflammation triggered by damage-associated molecular 
patterns (DAMPs) such as nuclear DNA or uric acid released by distressed cells, can activate hepatic 
inflammation and represents an important mechanism of injury in NASH[108,109]. DAMPs prompt the 
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assembly of a cytosolic protein complex termed the inflammasome, which is required for the conversion of 
DAMP signals into the activation secretion pro-inflammatory cytokines such as IL-1β, IL-18, and other 
cytokines[110].

Several features of MS, such as obesity and high-fat, high-fructose western diets are recognized as major risk 
factors for HCC; however, the precise molecular mechanisms linking these events remains poorly 
understood. The first part of this link, between dysbiosis and the development of obesity, MS, NAFLD, and 
NASH has been established across many studies[111-121]. Limited evidence also suggests that the gut 
microbiota is also involved in HCC development, particularly by increasing LPS levels and contributing to a 
pro-inflammatory microenvironment in the liver[122]. In a Japanese study examining hepatocarcinogenesis in 
obese mice[123], researchers found that the administration of antibiotics and gut sterilization led to a 
decreased risk of developing HCC in the mice; however, it had no regression effect on already established 
tumors. This implicates that gut sterilization and antibiotic treatment, which works to counter dysbiosis and 
thus diminishes the release of pro-inflammatory and pro-carcinogenic factors, may be used as a possible 
treatment to prevent the development of HCC.

Accumulating evidence has also implicated bile acid signaling in the pathogenesis and progression of 
HCC[124]. Bile acids are endogenous signaling molecules which can activate the nuclear farnesoid X receptor 
(FXR), a receptor responsible for regulating host metabolism, bile acid homeostasis, immune responses, 
lipid and glucose homeostasis, insulin signaling, and known for its role in activating hepatoprotective 
signaling pathways[125-127]. A 2017 study comparing germ-free and conventionally raised wild type vs. Fxr-/- 
mice fed high fat diets for 10 weeks, found that gut microbiota promoted weight gain and hepatic steatosis 
in an FXR-dependent manner. Furthermore, the researchers transferred the cecal microbiota from the high 
fat diet-fed mice to germ-free wild type mice and found that the obese phenotype was in fact a transferable 
phenomenon, and was associated with increased β-cell mass, increased adipose inflammation, increased 
steatosis, and expression of genes involved in lipid uptake in the colonized mice. In human studies, the FXR 
receptor has been implicated as one of the main factors mediating the beneficial effects on NAFLD 
following bariatric surgery[111,112,126,128]. This hepatoprotective effect also appears to have a role in the context 
of HCC, with studies evidencing a decrease in FXR expression in human HCC samples[129]. Several studies 
aiming to better characterize the role of FXR in hepatocarcinogenesis utilizing the same Fxr-/- mice models 
have found that both these male and female knockout mice spontaneously developed HCC in tandem with 
bile acid homeostasis disruption and activation of the Wnt/β-catenin signaling pathway[124,129-131].

PATHOLOGICAL ASPECTS OF NAFLD-HCC
HCCs arising in the context of MS or NASH can present with a wide array of morphological patterns, 
including well or moderately differentiated carcinomas with a trabecular pattern [Figure 2A], 
pseudoglandular pattern [Figure 2B], mild fatty changes [Figure 2C], or mixed patterns [Figure 2D]. These 
patterns frequently exhibit aspects of the steatohepatitic subtype of HCC (SH-HCC, Figure 2E). This SH-
HCC variant was not included in WHO classification 2010[132], but rather only a cytological variant 
nominated “fatty change” was described. However, in the most recent WHO 2019 classification, SH-HCC is 
now recognized at a formal HCC subtypes[133](WHO 2019). This subtype of HCC is characterized by 
steatosis, ballooning of the hepatocytes, pericellular fibrosis, Mallory-Bodies, and inflammation, 
recapitulating the characteristics of NASH, as described first by Salomao et al.[134]. In this study, the subjects 
were HCV positive, however, the authors observed that this subtype was mainly present in patients 
comorbid with NAFLD/NASH, suggesting an association between the underlying metabolic condition and 
the SH-HCC subtype. A series of subsequent studies further found that this HCC subtype was common not 
only in patients with non-alcoholic steatohepatitis or alcoholic steatohepatitis, but also in patients with 
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Figure 2. Histological patterns of HCC. (A) Trabecular pattern of HCC (Haematoxylin Eosin staining, 10×); (B) Pseudoglandular pattern 
of HCC (Haematoxylin Eosin staining, 10×); (C) Fatty change aspects of HCC (Haematoxylin Eosin staining, 20×); (D) Mixed pattern 
trabecular and fatty change (Haematoxylin Eosin staining, 10×); (E) Steatohepatitic HCC (Haematoxylin Eosin staining, 20×); and (F) 
Macrotrabecular HCC (Haematoxylin Eosin staining, 40×).

stigmata of MS without established NASH[135]. These data were also confirmed by Shibahara et al.[136] in a 
separate study that found a statistical correlation with diabetes mellitus and levels of cholesterol and 
triglycerides, as compared to other subtypes of HCC. Notably, a very recent study spanning 2 different 
cohorts demonstrated that the SH-HCC variant is associated with steatohepatitis in general, independently 
of the etiology[137]. This subtype has been shown to be associated with the activation of the IL-6/STAT3 
signaling pathway[138], whilst it rarely harbors the activated Wnt/β-catenin pathway[139].

Although the SH-HCC subtype does not seem to influence the prognosis of patients[136], one must consider 
that these patients often come to our attention with larger tumoral masses because of the lack of a definite 
screening program able to detect small HCC. Larger HCC tend to be more heterogeneous, exhibiting 
different morphologies, typically higher grade and with more frequent vascular invasion. The most relevant 
subtype of HCC prognostically speaking is the macrotrabecular subtype, characterized by macrotrabeculae 
of neoplastic hepatocytes (> 6 trabeculae)[139] [Figure 2F], with an increased frequency of vascular invasions, 
thus conditioning a poor prognosis. This subtype has been associated with the mutation of TP53 gene, the 
amplification of FGF19 gene, the activation of angiogenesis because of overexpression of angiopoietin 2, and 
with vascular endothelial growth factor A[140]. As previously discussed, another important histological aspect 
that must be highlighted is the peculiar absence of a direct correlation between fibrotic stage and the activity 
of steatohepatitis in patients with metabolic liver disease. While livers with more active steatohepatitis 
[Figure 3A] tend to display more advanced fibrosis [Figure 3B], large studies have demonstrated that 
between 30% to 58.3% of HCC arise in non-cirrhotic livers [Figure 3C and D][32,33,141,142] and patients without 
established NASH but with metabolic risk factors and PNPLA3 I148M will develop higher incidence of 
fibrosis[143].



Page 12 of Zampaglione et al. Hepatoma Res 2021;7:55 https://dx.doi.org/10.20517/2394-5079.2021.2222

Figure 3. Histological findings of non-tumoral tissue in patients with NAFLD-HCC. (A) Example of NASH with diffuse steatosis, mainly 
macrovesicular, with ballooning, apoptotic hepatocytes and foci of inflammation (Haematoxylin Eosin staining, 10×); (B) Advanced 
fibrosis demonstrated with Masson’s thricrome staining (4×); (C) Mild steatosis in the context of NAFLD (Haematoxylin Eosin staining, 
10×); and (D) Fibrosis limited to portal tract in a case of NASH (Masson’s thricrome, 10×).

PREVENTION AND MANAGEMENT OF HCC IN THE CONTEXT OF MS
Prevention of HCC
Given the pathogenesis of HCC in context of MS, current preventative measures focus on preventing 
NAFLD progression. To this effect, weight loss has been implicated as a key factor for improvement in both 
liver histology and liver biochemical tests on serology, as well as quality of life[144,145]. For example, in one of 
the largest prospective studies to date conducted in Cuba, 293 subjects with histologically documented 
NASH underwent a 52-week period of lifestyle changes including modified hypocaloric diet and increased 
exercise[146]; 25% of these patients achieved resolution of steatohepatitis, and 47% had reductions in 
nonalcoholic fatty liver disease activity score, while 19% had regression of fibrosis. The degree of weight loss 
here was independently associated with improvements in all NASH-related histological parameters while 
the extent of weight loss was proportional to the NASH resolution. In patients that lost ≥ 5% of their body 
weight, 58% had NASH resolution and 82% had a 2-point reduction in the NAFLD activity score (NAS). In 
comparison, of the patients who lost ≥ 10% of their body weight, 100% demonstrated reductions in NAS and 
90% has resolution of NASH with 45% displaying regression of fibrosis. Discouragingly, only a minority of 
patients in this study (30%) achieved meaningful weight loss through lifestyle intervention alone and even 
fewer sustained this weight loss long term, matching real-world clinical practice. In particular, the 
Mediterranean diet has been associated to have a particularly protective effect in the development HCC[147], 
and lines of evidence suggest this may be mediated by a reduced hepatic fat content[148]. As discussed earlier, 
regular physical activity, may reduce the risk of developing HCC by up to 50% compared to sedentary 
individuals[149]. Bariatric surgery is perhaps the most effective NASH intervention and method of HCC 
prevention, with significant histological and clinical improvement evidenced across studies[150,151]. In a study 
involving 109 morbidly obese subjects with biopsy-proven NASH, clinical, biological, and histological data 
were collected before surgery and 1 year after surgery. In the 1-year follow up 85% of subjects had a 
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complete resolution of NASH, especially subjects that had a milder form of NASH[152]. A prospective study 
recently published from the same research group in France conducted a long term follow up of patients 
with NASH who underwent bariatric surgery and found that the reduction in fibrosis following bariatric 
surgery is progressive, continuing for at least 5 years[153]. A 2020 US-based study[154] analyzing 4112 matches 
of bariatric patients with obese controls found that bariatric surgery was preventative for HCC, with the 
operated cohort reporting fewer new cases of HCC (0.05% vs. 0.34%, P = 0.03) than their non-operated 
counterparts over a median follow up of 7.1 years.

As regards pharmacological prevention measures, an Italian 2015 cross-sectional study[69] demonstrated a 
protective effect of statin use in individuals at high risk of HCC development. Notably, the protective effect 
of statins on steatohepatitis from steatosis was not significant in subjects carrying the I148M PNPLA3 risk 
variant, however in wild type individuals, statin use was found to be protective against steatosis, 
steatohepatitis, and fibrosis stage F2-F4 in a dose-dependent manner in in at-risk individuals (adjusted P < 
0.05 for all). This is in accordance with previous research[79] which also found statin use is associated with a 
significant reduction in the risk of HCC among patients with diabetes (OR = 0.74, 95%CI: 0.64-0.87), 
possibly related to the anti-inflammatory properties of statins mediated by JAK inhibition.

Given the well-established benefits of aspirin in the prevention of colorectal cancer, many recent studies 
have investigated the use of aspirin for the prevention other cancers, including HCC. Early evidence 
suggests that aspirin may work to prevent liver disease progression and hepatocarcinogenesis via a range of 
mechanisms including inhibition of the proinflammatory cyclooxygenase-2 enzyme, the modulation of 
bioactive lipids, and the inhibition of platelet degranulation[155-159]. A recent New England Journal of 
Medicine populational study[160] aimed to quantify the association of aspirin with HCC and liver-related 
mortality. Using a national registry, the researchers identified all Swedish adults diagnosed with chronic 
hepatitis B or hepatitis C between 2005 to 2015 and compared patients without a history of aspirin use in 
this group (50,275 patients) to ones starting to take low-dose aspirin (14,205 patients). With a median 
follow-up of 7.9 years, the estimated cumulative incidence of HCC was 4.0% among aspirin users vs. 8.3% 
among non-aspirin users (adjusted HR = 0.69, 95%CI: 0.62-0.76). This effect appeared to be dose-
dependent, with the adjusted hazard ratio being more significant with increased years of use; with short 
term use (3 months to 1 year) the adjusted HR was 0.90 (95%CI: 0.76-1.06), while with long term use (5 or 
more years) the adjusted HR was 0.57 (95%CI: 0.42-0.70) suggesting a causal link. Notably, the 10-year liver-
related mortality was 11.0% in the aspirin user group versus 17.9% in the nonuser group [adjusted HR = 0.73 
(95%CI: 0.67-0.81) without conferring an increased gastrointestinal bleeding risk aspirin users 7.8% risk vs. 
non-users 6.9%]. The strong correlation of aspirin use with a decreased HCC risk and overall liver mortality 
in patients with viral hepatitis warrants further work to assess aspirin’s role in HCCs of metabolic origin.

Several studies, particularly in Asia have investigated the effect of thiazolidinediones (TZDs) on the risk of 
HCC development among diabetes mellitus patients, and a growing body of evidence suggests that TZDs 
may in fact have an effective role. In a Taiwanese-based 2017 study[161], 76,349 newly diagnosed patients 
were identified between 2000 and 2010. Among diabetics who received TZDs, the incidence of HCC 
development was significantly lower (418.3 vs. 484.6 per 100,000 person-years) (aHR = 0.53, 95%CI: 0.38-
0.77).

The use of metformin in diabetic subjects has been widely associated with a reduced incidence of 
HCC[162-166]. The mechanism underlying this effect is related to the activation of AMPK, the same 
mechanism implicated in the beneficial effects of physical exercise in HCC[167]. In a 2019 systematic review 
evaluating the use of metformin as a protective factor for HCC in diabetic patients[168], researchers selected 8 
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studies; 4 case-control and 4 cohort studies. All of the studies observed that metformin therapy was 
associated with a lower risk of HCC compared with non-metformin therapy. A meta-analysis of the case-
control studies found odds ratio of 0.468 (95%CI: 0.275-0.799) for the association between the use of 
metformin and HCC development. Inversely, insulin was associated with an increased risk of HCC 
development.

Management of HCC
The therapeutic algorithm adopted for HCC patients in the context of MS does not differ from that used for 
other etiologies of HCC[1]. As with all HCC cases, the treatment allocation is based on the Barcelona Clinical 
Liver Cancer staging criteria[169].

Unfortunately, the majority of HCC patients do not qualify for curative treatment approaches, such as 
surgical resection, at the time of diagnosis given tumor extent or underlying liver dysfunction, although we 
have previously discussed that NAFLD-HCC patients often have better liver function due to the absence of 
underlying cirrhosis in a significant proportion of patients[170]. Of the patients that qualify, studies have 
reported significant perioperative morbidity (> 50%) and mortality (> 10%) in NAFLD-HCC patients 
undergoing curative resection[171]. For this reason, understanding the true survival benefit in these patients is 
crucial when recommending curative treatment. In a recent Singaporean study examining the outcomes of 
surgically resected NAFLD-HCC patients[34], researchers analyzed a 15-year prospective cohort of 996 HCC 
patients who underwent curative liver resection. Of these, 152 patients were identified as NAFLD-HCC 
based on a histological diagnosis. Compared to the 844 non-NAFLD HCC counterparts, a higher volume of 
complication rates was seen in the NAFLD-HCC group, which resulted in longer inpatient stay but lower 
90-day mortality rates (NAFLD HCC 1.99% vs. non-NAFLD HCC 2.46%, P = 0.0355). In particular, 
NAFLD-HCC patients exhibited almost twice the proportion of minor complications (41.2% vs. 24.2%, P < 
0.0001) and major complications (16.2% vs. 8.1%, P < 0.0001). However, after the perioperative period, long-
term outcomes were significantly better in the NAFLD group in terms of overall survival (OS), with 5-year 
OS rates of 70.1% vs. 60.9% (P = 0.0355), although this result was limited in that the groups were not equally 
distributed on propensity score (P = 0.0411).

For patients with advanced stages of HCC, the multikinase inhibitor sorafenib was the first systemic agent 
to demonstrate a significant improvement in OS[172]. Approved worldwide in 2007, sorafenib remained the 
only available agent for HCC until 2016 as all phase III trials failed during this period. A recent international 
cohort study[173] examined the effect of sorafenib on OS in patients with NAFLD as compared to other 
etiologies. NAFLD-HCC patients comprised 3.6% of the 5201 HCC patients receiving sorafenib in this 
cohort. Despite NAFLD-associated patients being having a more advanced stage of HCC and starting at a 
lower dose of sorafenib, after adjusting for known prognostic factors, there was no difference in sorafenib-
specific survival between NAFLD and other etiologies (HR = 0.99, 95%CI: 0.85-1.16, P = 0.92). There were 
also no observed differences in the OS of HCC patients with or without NAFLD (adjusted HR = 0.94, 
95%CI: 0.76-1.16, P = 0.57). Interesting, emerging preclinical data[174] suggests sorafenib administered at 
approximately one-tenth the clinical dose for HCC, effectively prevents the progression of NASH in both 
mice and monkeys without any observed significant adverse effects. The benefit here was linked not to the 
kinase targets of sorafenib as seen in HCC, but rather the induction of mild mitochondrial uncoupling and 
subsequent AMPK activation.

In 2017, the HCC drug development pipeline saw a decisive shift as the first drugs other than sorafenib 
began showing promise. Regorafenib was approved in 2017[175] as a second-line therapy, lenvatinib as a first-
line therapy in 2018[176], ramucirumab, and cabozantinib as second-line therapies in 2019[177,178], and the 
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combination of nivolumab plus ipilimumab in 2020[39]; these are all approved for use in sorafenib-pretreated 
patients only. In 2020, the landmark IMbrave150 trial[179] (atezolizumab plus bevacizumab combination 
therapy) demonstrated an improvement in both overall survival and progression-free survival over 
sorafenib. The OS at 12-month was 67.2% (95%CI: 61.3-73.1) with atezolizumab-bevacizumab and 54.6% 
(95%CI: 45.2-64.0) with sorafenib, while the median progression-free survival was 6.8 months (95%CI: 5.7-
8.3) and 4.3 months (95%CI: 4.0-5.6) in the respective groups (HR for disease progression or death 0.59, 
95%CI: 0.47-0.76, P < 0.001). In a separate analysis of patient-reported outcomes from this trial[180], patients 
who received atezolizumab plus bevacizumab reported significantly longer delays in median time to 
deterioration of quality of life (median TTD 11.2 months vs. 3.6 months, HR = 0.63, 95%CI: 0.46-0.85), 
physical functioning (median TTD 13.1 months vs. 4.9 months, HR = 0.53, 95%CI: 0.39-0.73) and role 
functioning (median TTD 9.1 months vs. 3.6 months, HR = 0.62, 95%CI: 0.46-0.84). The median time to 
deterioration (TDD) of several disease-related symptoms (such as anorexia, diarrhea, fatigue, and pain) was 
also significantly longer after combined therapy. Largely based on this data, the combination therapy 
atezolizumab (anti-PD-L1) plus bevacizumab (anti-VEGF) was approved by the FDA and the EU and now 
represents a first-line therapy alternative for healthy patients, with no worse than Child-Pugh class A 
cirrhosis, a high performance status and with special attention to esophageal varices, where present[181]. 
Accordingly, a significant proportion of patients with NAFLD-related HCC will have become candidates for 
systemic front-line therapy with atezolizumab plus bevacizumab. Notably however, HCCs of non-viral 
etiology were poorly characterized and comprised only 30% of the total participants in this study.

As discussed earlier, NAFLD modifies the local immune microenvironment, causing a decrease of anti-
tumoral CD4+ T cells while simultaneously promoting tumoral activity in CD8+ T cells, NK T cells, and 
Th17 cells[65,182,183], which has brought up questions about the potential implications for immunotherapy use 
in NAFLD-HCC patients[184]. Indeed, subgroup analyses of the recent CheckMate 459 phase III trial[185] 
revealed that nivolumab was less effective in terms of OS in HCC patients with non-viral etiologies (vs. 
sorafenib: HR = 0.95, 95%CI: 0.74-1.22). Subgroup analysis of the IMbrave150 trial[179] reported similar 
results in patients receiving atezolizumab plus bevacizumab with non-viral HCC (vs. sorafenib: HR = 0.91, 
95%CI: 0.52-1.60). Notably, the studies did not differentiate between NAFLD and alcoholic liver disease in 
the non-viral HCC subgroup. Despite these limitations, recent data based on murine models[186] suggests 
that immunotherapy may be less effective for NAFLD-related HCC patients as related to a loss of CD4+ T-
cells in the NASH liver and a more immunosuppressive immune cell phenotype in the tumor environment.

The presence of obesity, one of the principal features of the MS, may have implications on the efficacy of 
bevacizumab in HCC. Obesity has been shown to promote resistance to anti-VEGF therapy in breast cancer 
patients via the upregulation of IL-6, an inflammatory factor, and fibroblast growth factor 2, an angiogenic 
promoter. Similarly, in studies analyzing first-line bevacizumab use in metastatic colorectal cancer, visceral 
fat area, and obesity were associated with worse patient outcomes[187,188]. However, a pooled analysis of 
individual data from 2085 patients enrolled in eight first-line metastatic CRC trials between 1991 to 2013 
found no interaction between obesity and bevacizumab in terms of survival[189]. Further research and more 
extensive subgroup analyses are needed to obtain a better understanding of the efficacy of combined 
atezolizumab plus bevacizumab therapy in the MS-related HCC subgroup of patients, along with further 
analysis of the non-cirrhotic patients in this group.

CONCLUSION
The worldwide increase in the prevalence of the MS is leading to an increase in liver disease and HCC 
incidence. Despite recent significant advances in the management of other etiologies of liver disease such as 
hepatitis C, the growing burden of NAFLD-HCC will continue to be a major health issue and will continue 
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to increase the global burden of HCC. Additional research is clearly needed to improve risk stratification of 
HCC risk and to improve management strategies of patients with NAFLD-HCC. Although a lot has been 
learned about the molecular mechanisms underpinning hepatocarcinogenesis in these patients, much more 
has to be unraveled so that we can translate these findings into improved patient outcomes.
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