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Abstract
Machine learning (ML) is revolutionizing alloy design, yet traditional models face challenges with limited data and 
complex nonlinearities. Our study presents a self-decision design strategy that integrates target property 
determination, reverse and forward modeling, and feature importance analysis to optimize low-alloyed rare earth 
(RE)-free magnesium alloys for strength-ductility synergy. The strategy was validated with experimental data, 
leading to the development of a new Mg-2Al-1Zn-0.6Ca-0.4Mn (wt%) alloy processed at specific conditions, 
achieving a tensile strength of 344 MPa and an elongation-to-failure (EL) of 21.3% at room temperature. The 
discrepancies between experimental and predicted results were less than 5%, underscoring the accuracy of this 
approach. This streamlined design strategy not only promises to accelerate the development of low-cost, high-
performance alloys but also minimizes the need for human intervention, thereby enhancing the efficiency and 
precision of alloy design.
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ɞɣɩɧɤəɪɘɩɞɤɣ
Magnesium (Mg) alloys have been widely used in the automobile field and aerospace industry due to low 
density and high specific strength/stiffness[1,2]. However, high-performance Mg alloys often tend to be 
required to add high-content and expensive alloying elements [e.g., rare earth (RE)] for enhancing their 
mechanical properties[3-5], which significantly increases the production costs and negatively affects the 
recycling and environmental protection. Therefore, it is urgent to develop low-alloyed free-RE Mg alloys 
with high mechanical properties, which has gradually become a hot-point research direction in the field of 
metallic materials.

In recent years, low-alloyed high-performance Mg-Al-Ca-Mn-(Zn) alloys have gained increasing attention. 
Unlike high-alloyed RE-containing Mg alloys, improving the strength of these low-alloyed Mg alloys 
through aging precipitation is challenging. For instance, the precipitation strengthening increment in Mg-
Gd/Y alloys can reach 143 MPa[6,7], while in low-alloy Mg alloys, the effect is typically less than 50 MPa[8-10]. 
Li et al. reported that the peak-aged Mg-1.5Al-0.3Ca-0.4Mn-1.5Zn (wt%) alloy exhibited only an increase of 
38 MPa in tensile yield strength (TYS) compared to its solid-solution-treated counterpart, showing the 
limitations of precipitation strengthening in low-alloyed Mg alloys[10].

Nevertheless, significant grain refinement strengthening effect, mainly due to high k-value (Hall-Petch 
slope), provides an opportunity for the design of high-strength low-alloyed Mg alloys. Low-temperature 
deformation is a cost-effective and potential approach to introducing numerous (ultra-) fine grains[11-13]. As 
an example, Liu et al. produced a highly strong and ductile Mg-1.0Al-1.0Ca-0.4Mn (wt%) alloy with an 
ultimate tensile strength (UTS) of 419 MPa and an elongation-to-failure (EL) of 12% because of an ultra-
fined grain structure (average grain size of 0.43 Õm) after low-temperature extrusion at 200 °C[13].

Besides, hetero-structures (i.e., bi-modal, gradient, and layered structures[14-16]) show great potential for 
obtaining superior mechanical properties in Mg alloys, due to the formation of back stress. For instance, 
Zhang et al. found that an as-extruded Mg-1Mn-0.5Al-0.5Ca (wt%) alloy with a bimodal grain structure 
containing fine grains (1 Õm) and coarse grains (20-40 Õm) exhibited a TYS of 360 MPa and an EL of 11%, 
while the homogeneous structured alloy only attained a TYS of 151 MPa and an EL of 8% owing to a lack of 
hetero-deformation induced (HDI) effect[14].

As mentioned above, low-alloyed Mg-Al-Ca-Mn-(Zn) alloys hold great potential to achieve a good 
strength-ductility synergy. However, researchers also have found it challenging to quickly and accurately 
design Mg alloys that meet multiple performance requirements through traditional trial-and-error methods. 
With the rapid development of materials science and artificial intelligence technology, new research 
paradigms based on data-driven and computational materials science are gradually replacing the traditional 
trial-and-error approach. Machine learning (ML) methods can design high-performance materials in 
unknown spaces by extracting hidden relationships between compositions, processing parameters, and 
properties. In recent years, researchers have used ML-based models to design various high-performance 
alloys[17-20], such as high-strength steel, high-strength-conductivity copper alloys and high-strength-stress 
corrosion resistance aluminum alloys. For example, Lee et al. designed a medium-manganese steel with a 
UTS of 1,957 MPa and an EL of 10.7% using a boosted decision tree (DT) regression model[17]. Yuan et al. 
proposed a stacking multi-algorithm model to design four high strength-toughness as-extruded 7xxx alloys 
achieving UTS of 709 MPa and EL of 16%, compared to traditional processing methods[19]. However, these 
methods typically require an exhaustive multidimensional search, which is both complex and time-
consuming. More promising is the development of self-decision design models capable of rapidly 
identifying optimal combinations of compositions and processing parameters based on target properties 
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with minimal human intervention.

The purpose of this study is to propose a property-oriented self-decision design (POSDD) strategy for 
optimizing low-alloyed RE-free Mg alloys with good strength-ductility synergy. This strategy represents a 
significant advancement in the field of materials science. It amalgamates several critical components: the 
determination of target properties, the construction of reverse and forward models, and a feature 
importance analysis-assisted screening process. These elements are synergistically employed to identify 
novel compositions and processing parameters for low-alloyed RE-free Mg alloys, specifically those within 
the Mg-Al-Ca-Mn-(Zn) system, which exhibit an optimal balance between strength and ductility.

ɢɖɩɚɧɞɖɡɨ ɖɣə ɢɚɩɝɤəɨ
The methodology for the design of high-performance, low-alloyed RE-free Mg alloys, as delineated in this 
study, is systematically presented in Figure 1. The process was structured into three distinct yet interrelated 
stages: data preparation, application of the POSDD strategy, and experimental validation.

The initial stage involved the compilation and refinement of a standardized dataset encompassing Mg alloys 
with elements such as Al, Ca, Mn, and Zn. This dataset was meticulously processed through a data 
enhancement approach to ensure its quality and reliability for subsequent analysis.

Subsequently, the POSDD strategy was meticulously formulated and deployed to deduce the alloy 
compositions and processing parameters that were predicted to yield the desired mechanical properties. 
This strategy leveraged advanced computational techniques to optimize the alloy design, thereby 
streamlining the development process.

The final stage entailed experimental validation of the alloys shortlisted by the POSDD strategy. This 
involved a thorough comparison of the mechanical properties predicted by the model with those obtained 
from actual experiments. Additionally, the underlying strengthening and plasticity mechanisms were 
analyzed to provide a deeper understanding of high-performance Mg alloys.

Data preparation
Data sources
The dataset employed in this study was derived from published experimental data on Mg alloys that 
incorporate Al, Zn, Ca, and Mn. The dataset comprises 233 entries, with each variable visualized through 
violin plots as illustrated in Figure 2. The data were systematically organized into three main categories: 
alloying elements (Al, Zn, Ca, and Mn), processing parameters [solution treatment temperature (ST), 
solution treatment time (St), extrusion temperature (ET), extrusion speed (ES), and extrusion ratio (ER)], 
and mechanical properties (UTS and EL).

In terms of alloy composition, the weight percentages of Al, Zn, Ca, and Mn were distributed from 0% to 
9%, 0% to 9%, 0% to 5%, and 0% to 3%, respectively. ST and St were distributed from 200 to 550 °C and 0 to 
60 h, respectively. ET ranged from 50 to 500 °C, ES from 0.1 to 60 m/min, and ER from 10 to 80. UTS and 
EL were distributed over a range of 150 to 400 MPa and 1% to 50%, respectively. This comprehensive 
dataset serves as a solid foundation for analyzing the interplay between alloy composition, processing 
parameters, and mechanical properties, thereby enabling the development of a predictive model with 
enhanced accuracy and dependability.
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Figure 1. POSDD strategy for high-performance low-alloyed Mg alloys. POSDD: Property-oriented self-decision design.

Figure 2. Data distribution including alloy compositions (Al, Zn, Ca, and Mn), processing parameters (ST, St, ET, ES, and ER), and 
mechanical properties (UTS and EL). ST: Solution treatment temperature; St: solution treatment time; ET: extrusion temperature; ES: 
extrusion speed; ER: extrusion ratio; UTS: ultimate tensile strength; EL: elongation-to-failure.

Data augmentation
In an effort to bolster the quality of the dataset and, consequently, the robustness of the ML model, this 
study implemented a data augmentation technique predicated on K-nearest neighbor (KNN) interpolation. 
The KNN interpolation technique improves the dataset quality by filling gaps in the data distribution, 
thereby ensuring better coverage of the feature space. By generating new data points based on the proximity 
of existing ones, KNN creates a more comprehensive and balanced dataset. Recognized for its efficacy in 
sample data generation, the KNN method leveraged the relationships among similar samples within the 
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dataset, which not only enhances the datasetźs integrity but also fortifies the modelźs ability to generalize 
from the training data to unseen samples, ensuring a more reliable and accurate ML model predictive 
performance.

A key advantage of KNN interpolation lies in its flexibility. By adjusting the K-value (i.e., the number of 
nearest neighbors), the interpolation range and the diversity of new samples can be precisely controlled, 
making it adaptable to various datasets. This method not only significantly expands the training set but also 
effectively improves the modelźs generalization ability.

The original dataset was set as X = {x1, x2, ..., xn}, where each xi is a multidimensional feature vector. The 
query point was located among its k nearest neighbors, denoted as Nk(q)= {xi1, xi2, ..., xin}, based on the fact 
that the weighted average of the k neighbors is the result of interpolation, the KNNs are interpolated to 
generate enhanced data xź, as given in[21]:

where wj is the weight of the j-th nearest neighbor. xij is the value of the j-th nearest neighbor. Specifically, 
the augmented data xź is obtained by multiplying the value of each nearest neighbor point by its 
corresponding weight, then summing it up and finally dividing it by the sum of all weights. This method not 
only preserves the core features of the original data, but also introduces moderate variations, thus 
generating high-quality augmented data.

POSDD strategy
Target property determination
In the realm of target property determination, conventional methodologies often adhere to the 
establishment of a singular, fixed target property value. Deviating from this norm, the present study 
introduced a novel approach within the POSDD strategy, wherein a target region, denoted as A, was 
dynamically selected through a self-decision mechanism, as depicted in Figure 3. This methodological shift 
allows for a more flexible and nuanced definition of the target property, which is better aligned with the 
complex and multifaceted nature of alloy design. The process of plotting the Pareto frontier F for the 
current dataset[22], which represents the optimal set of solutions that are non-dominated with respect to the 
considered properties, was executed in a two-step procedure as follows:

For any point (EL, UTS) in the dataset, if there is no other point (ELź, UTSź) that satisfied

the point (EL, UTS) is considered non-dominated (not surpassed by any other point). Next, all these non-
dominated points form the Pareto frontier F, which can be defined as:

The points on the Pareto frontier form the optimal point set, as shown in Table 1. The region in the upper 
right of the Pareto frontier was considered as the target performance point. The points in this target area A 
were represented as:

(1)

ELź Ó EL and UTSź Ó UTS                                                                                          (2)

F = {(EL, UTS) /  (ELź, UTSź)}                                                           (3)
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Table 1. Optimal points of the Pareto frontier

EL (%) UTS (MPa) EL (%) UTS (MPa)

10 459 21 329

10.7 437 23 325

12 419 24 320

13.2 396 25 309

13.3 358.5 28.3 300

14.2 350 29.9 294

14.4 349 34 273

16 340 36.7 240.1

18.1 337.6 37 240

20 332 44 210

EL: Elongation-to-failure; UTS: ultimate tensile strength.

Figure 3. Determination of target property area.

where UTSPareto (EL) represents the set of optimal points. UTSmax is the maximum UTS corresponding to the 
Pareto frontier. ELmin and ELmax represent the minimum and maximum values of EL corresponding to the 
Pareto frontier, respectively. Once this range was established, randomly generated data points within the 
range were used as inputs to the inverse design model.

Model building
Eight ML models [including linear regression (LR), DT, random forest (RF), gradient boosting (GB), KNN, 
XGBoost (XGB), multi-layer perceptron (MLP), and light gradient boosting machine (LGBM)] were 

UTSPareto (EL) Ò UTS Ò UTSmax                                                                                           (4)

ELmin Ò EL Ò ELmax                                                                                                              (5)
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