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Abstract
With the rapid development of artificial intelligence and robotics, service robots are increasingly becoming a part of 
our daily lives to provide domestic services. For robots to complete such services intelligently and with high quality, 
the prerequisite is that they can recognize and plan tasks to discover task requirements and generate executable 
action sequences. In this context, this paper systematically reviews the latest research progress in task cognition 
and planning for domestic service robots, covering key technologies such as command text parsing, active task 
cognition (ATC), multimodal perception, and action sequence generation. Initially, the challenges traditional rule-
based command parsing methods face are analyzed, and the enhancement of robots’ understanding of complex 
instructions through deep learning methods is explored. Subsequently, the research trends in ATC are introduced, 
discussing the ability of robots to autonomously discover tasks by perceiving the surrounding environment through 
visual and semantic features. The discussion then moves to the current typical methods in task planning, 
comparing and analyzing four common approaches to highlight their advantages and disadvantages in this field. 
Finally, the paper summarizes the challenges of existing research and the future directions for development, 
providing references for further enhancing the task execution capabilities of domestic service robots in complex 
home environments.
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1. INTRODUCTION
The primary intention and aspiration of robotics research is to enable robots to replace or even surpass 
human performance in work-related tasks. Nowadays, domestic service robots are expected to do more than 
just simple tasks such as chatting, tutoring, or sweeping; they are also anticipated to perform complex tasks 
such as warming meals and tidying desks, effectively taking over various household chores. Achieving this 
goal requires robots to have robust task cognition and effective task planning, as depicted in Figure 1. To be 
specific, task cognition helps robots understand the specific requirements of their tasks, which involves 
generating structured task descriptions based on user commands or real-time perception, including task 
types and key details. Task planning involves creating an effective sequence of actions to complete these 
tasks based on set goals and environmental conditions. Only with accurate task understanding and 
sufficient access to task-related information can robots effectively plan and execute these tasks.

The ultimate goal of research related to task cognition and planning is to better assist service robots in 
completing tasks with high quality. These are two continuous processes that service robots must undergo, as 
shown in Figure 1. To achieve task cognition comparable to human butlers, current methods require robots 
not only to understand task requirements based on user requests but also to autonomously infer household 
tasks through perception of the home environment, reaching a level of diversified discovery and reasoning 
of service tasks. In response to user-specified tasks, i.e., reactive task cognition (RTC), robots need 
intelligent parsing capabilities to interpret user instructions. Specifically, since user commands are based on 
linguistic habits, accurately extracting necessary task information (such as task type, items, and context) 
from varied expressions of instructions presents a challenge to the robot’s intelligent passive command 
parsing capabilities. Additionally, the rich task demands in intelligent home life require robots to 
autonomously recognize task requirements by understanding the home environment, known as active task 
cognition (ATC). This capability allows robots to go beyond merely receiving tasks passively via user 
commands, enabling them to engage in diversified task cognition. However, the home environment 
presents challenges with its complex variety of items and unstructured information, leading to redundant 
information during ATC. Simplifying this information to extract valuable task-related details and 
uncovering the constraints among items, tasks, and the environment poses significant challenges to robots’ 
capability to represent the service environment and reason about tasks.

In the aspect of task planning, once robots have completed task cognition and identified task requirements, 
simply relying on a few predefined simple actions is insufficient for the complex execution steps required in 
household service tasks. Therefore, it is necessary to develop specialized complex task planning methods 
tailored for domestic robots that can formulate task sequences adaptable to the complex and dynamic 
nature of home environments. In terms of logicality in task planning, robotic tasks in home environments 
involve more than just simple actions such as “picking up” and “putting down”; they require combinations 
of multiple sub-tasks, each composed of multi-step action logic that must be executed in a specific logical 
order. Any logical flaws in task planning can lead directly to the failure of task execution by robots. Human 
domestic life experience, which serves as valuable a priori common knowledge in domestic services, aids in 
guiding robots to plan logically coherent action sequences. Moreover, in terms of environmental 
adaptability in task planning, the constantly changing positions and states of items in the home, along with 
various unexpected situations, pose challenges to the smooth execution of tasks. This demands that robots 
conduct specific analyses for specific problems, understand and adapt flexibly to the current state of the 
environment, and plan reasonable actions based on real-time changes. For domestic robots, adapting to 
various home environments and being able to adjust plans in real-time based on actual situations is key to 
successful task execution.
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Existing reviews on robot cognition or planning often focus on industrial robots[1] and not specifically on 
service robots. Moreover, reviews related to intelligent robots typically concentrate on areas such as path 
planning[2,3] and scene understanding[4]. While Zhou et al. reviewed action planning algorithms for 
intelligent robots, they overlooked the latest trends in large model planning methods that have emerged 
prominently in the past two years[5]. Therefore, unlike traditional reviews on intelligent robots, this review 
specifically addresses task cognition and task planning methods for service robots, including current 
research progress, major challenges, and future development trends.

This paper focuses on task cognition and planning for home service robots, areas that are gaining increasing 
attention. While research has made progress, it often centers on individual technologies, resulting in a 
fragmented body of work. This review evaluates the feasibility and limitations of these approaches in real-
world applications. As interest in this field grows, more research is expected to emerge, advancing its 
development.

The main contributions of this article are summarized as follows: 
(1) A comprehensive analysis and review of the progress in robot task cognition. 
(2) A survey of task planning methods in the robotics field. 
(3) A discussion of the current issues in this area and possible future research directions.

2. METHODS OF TASK COGNITION IN ROBOTS
In current research, robot task cognition is categorized into two types: RTC and active. RTC, based on 
parsing user command texts, has already been extensively studied. However, research on ATC is not yet 

Figure 1. The relationship diagram between task cognition and task planning for service robots. Task cognition can be divided into two 
forms: RTC (�), where user text commands are parsed to extract task-related information, and ATC (�), where the environment is 
analyzed to infer potential tasks. Once the cognitive information is obtained, the task planner (�) then processes it to generate an 
executable action sequence. RTC: Reactive task cognition; ATC: active task cognition.
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systematic. ATC relies on visual imagery to perceive and understand environmental information, granting 
robots a certain level of cognitive ability regarding the home environment, which is essential for 
implementing ATC. This section provides an overview of robot task cognition research, discussing both 
text-based and image-based cognition approaches.

2.1. Task cognition based on command texts
Currently, service robots must first understand user instructions to complete RTC[6]. The key process 
involves parsing command texts to identify the task type and extract key information. This is divided into 
two sub-tasks: recognizing task types and extracting essential details, with a focus on predicting user intent 
and extracting semantic concepts.

In task type recognition, the process essentially involves a text classification task aimed at assigning 
appropriate task labels to textual instructions. Due to the unstructured nature of text, extracting meaning 
presents certain challenges. Task labels can be assigned manually or automatically. As the scale of text data 
in applications grows, automatic text classification becomes increasingly important. Many researchers, both 
domestically and internationally, have made significant contributions to intent recognition, particularly in 
the field of natural language text classification.

In recent years, to overcome the time-consuming nature and limited applicability of manually designed 
features, neural network technology has been widely adopted. The core component of these methods is the 
use of machine learning-based embedding models, which map text into low-dimensional continuous 
feature vectors, eliminating the need for handcrafted features.

Specifically, word embedding models such as Word2Vec[7] and Glove[8] learn vector representations for 
words. These vectors are passed through feedforward layers, and classifiers such as logistic regression, Naive 
Bayes, or support vector machine (SVM)[9] classify task intent. The deep average network (DAN)[10] 
represents input text as the average of word vectors, offering simplicity, efficiency, and stability for short 
text classification, though it may lose word order information[11]. Recurrent neural networks (RNNs) 
capture word dependencies and text structure by treating text as a sequence. Kleenankandy et al. proposed 
an enhanced long short-term memory (LSTM) architecture, relational gated LSTM, which models 
relationships between sequence inputs[12]. They introduced the typed dependency tree-LSTM, utilizing 
sentence dependency structure to embed meaning, better capturing natural language syntax than traditional 
LSTMs. RNNs are trained to recognize temporal patterns, while convolutional neural networks (CNNs) 
focus on spatial patterns[13]. Ayetiran et al. proposed an attention-based CNN-embedded bidirectional 
LSTM model that captures bidirectional features and high-level semantics in opinion texts[14]. By combining 
CNN, which captures local patterns, with LSTM, which handles sequences, the model extracts richer 
features. Natural language instructions also include internal graph structures such as syntactic and semantic 
trees that define relationships between words.

With the rise of GPUs and greater computational power, transformer-based pre-trained language models 
(PLMs)[15] have gained popularity. These models are pre-trained on large unsupervised corpora and fine-
tuned for downstream tasks. Compared to earlier CNN[16] and LSTM[17] models, Transformer-based PLMs 
have deeper structures and learn contextual representations by predicting words from large text corpora. 
Bidirectional encoder representations from transformers (BERT)[18] is one of the most widely used auto-
encoding methods and is a PLM based on the transformer architecture. It captures contextual information 
through a bidirectional encoder, generating rich semantic vector representations, which are then classified 
for task intent. BERT’s strength lies in its pre-training on massive text data, allowing it to learn robust 
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language representations. This pre-training enables effective knowledge transfer for various natural
language processing (NLP) tasks, significantly reducing the need for training from scratch on specific tasks.
Text classification methods based on pre-trained models have greatly improved accuracy. Since the
emergence of large language models (LLMs), represented by generative pre-trained transformer 4 (GPT-
4)[19], there has been a surge in research and applications in the field of NLP due to their impressive artificial
general intelligence-like (AGI-like) capabilities. LLMs can be divided into two categories based on their
architecture: encoder-decoder (or encoder-only) and decoder-only structures. Encoder-decoder models
(including BERT-style) generally offer stronger sequence learning and generation abilities compared to
decoder-only models (including GPT-style), making them particularly suited for tasks such as machine
translation, summarization, and chatbot systems[20]. However, encoder-only models have simpler structures,
faster training and inference speeds, and are advantageous in tasks such as text classification or annotation.

In key information extraction, command parsing typically requires consideration of contextual and
semantic information to extract the critical details embedded in the instructions, which differentiates it from
general text classification tasks. Keyword extraction is essentially a slot-filling task, where the input word
sequence is mapped to corresponding slot labels. Traditionally, intent recognition and slot filling have been
handled separately, but this separation often leads to error propagation, causing cumulative mistakes.
Therefore, the focus is on developing methods that jointly compute intent recognition and slot filling to
improve overall parsing accuracy and robustness.

Previous work did not explicitly model the relationship between intent and slots, despite their strong
interdependence. Liu et al. introduced a joint model combining an encoder-decoder with attention for
intent prediction and slot filling[21]. Goo et al. proposed a method using LSTM and attention, with a gating
mechanism to link intent and slot attention vectors, enhancing global optimization[22]. These models,
however, rely heavily on large supervised datasets. Abro et al. addressed this by introducing the WFST-
BERT model, which reduces the need for large data using a weighted finite-state transducer and BERT[23].
Qin et al. proposed a collaborative transformer model with co-interaction attention to model the interaction
between intent detection and slot filling[24]. Some researchers introduced SlotRefine, a non-autoregressive
model with a two-pass iterative mechanism to resolve slot inconsistencies[25]. To leverage the relationship
between objects and commands in home service environments and address semantic gaps, He et al.
proposed a multi-task learning intent detection system that combines a knowledge base with slot filling,
enhancing performance through a weighted loss function[26]. Rajapaksha et al. developed a semantic parser
integrated with a semantic-based ontology to handle unknown terms in high-level user commands[27]. This
approach uses semantic web technology, enabling the robot to understand unknown terms by
communicating with the parser, which represents additional concepts related to the target object.

Instruction parsing models, which are always based on slot filling, use attention mechanisms to assign
weights to words, capturing their importance and generating sentence representations to improve
classification performance. The input is the model’s output hidden states (word vectors), with the attention
layer output cI as given in

where N is the number of instruction words, Hi is the output hidden state of each BiGRU, and αi
I is the

attention weight for each word, as given in

(1)
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where σ is the activation function, and W is the weight matrix. The attention layer enhances classification
accuracy by focusing on key sentence parts, minimizing the impact of irrelevant or misleading information.
The hidden states are combined with the attention output, and task classification is performed via a softmax
layer to determine the instruction task type, as given in

where yI is the task classification result, why
I is the weight matrix, and HN is the model’s final hidden state.

In summary, service task command parsing can be framed as a combination of text classification and
sequence labeling, as shown in Figure 2. Rule-based approaches are suitable only for small data sets and
fixed environments; as command complexity increases, the demand for manually defined rules grows
significantly. In contrast, deep learning methods can effectively handle semantic information in context,
making them more suitable for the dynamic nature of home environments. A major challenge is enhancing
the generalizability of text parsing models due to diverse user expressions. Additionally, various object
features can lead to matching issues between attributes and object names, making semantic relationships
among extracted keywords and intent recognition important areas for research. Therefore, when robots
receive user commands, employing word embedding mechanisms to capture command features and
designing a specialized task classification and keyword extraction model for intelligent parsing are essential
for accurately inferring user task requirements, which is crucial for successful task execution.

2.2. Task cognition based on visual images
Currently, cognition based on visual images is regarded as a highly challenging research area within pattern
recognition and computer vision (CV). While most visual cognition focuses on understanding the
environment and scenes, differing from the goal of ATC, its robust semantic understanding of the
environment is crucial for implementing ATC. Both research areas require recognizing and processing
information from images to infer deeper semantic content, achieving a level of understanding that surpasses
the surface information presented in the images. Essentially, task cognition is a form of visual reasoning,
where reasoning itself forms the foundation of the cognitive process, as illustrated in Figure 3.

Visual reasoning requires recognizing elements in images and understanding their interactions, meanings,
and functions in the real world. Advancements in deep learning-driven object detection[28-33] have allowed
researchers to achieve precise object categories and locations. Notably, faster region-based CNN (R-
CNN)[28] and YOLO v9[30] exemplify the leading methods for efficient and accurate object detection,
representing the 2-stage region-based and 1-stage grid-based approaches, respectively.

Recent research has integrated scene graphs into intelligent systems, enhancing visual cognition by
emphasizing relationships and attributes of individual objects[34] and promoting scene understanding[35,36].
Similar to the task cognition work in this paper, scene understanding focuses on extracting target objects
and their relational information within background images[37-42]. Liu et al. proposed a region-aware attention
learning method that prioritizes fine-grained visual regions to improve scene graph generation[37]. Zellers
et al. introduced a new baseline method for scene graph generation with an architecture to capture
substructures[38]. Zhang et al. integrated cooking logic into ingredient recognition in food images, generating

(2)

(3)
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Figure 2. Technical roadmap for RTC based on command parsing. For task command parsing, both task type recognition and keyword 
extraction are required to effectively obtain task information. RTC: Reactive task cognition.

Figure 3. The process of ATC. (A) Using its visual system, the service robot can detect objects (e.g., a coffee maker, a cup, etc.) in the 
image; (B) By extracting relationships among objects and the environment, the robot can reason about executable and suitable task 
information (including service scene, objects support, and task category) from the current perspective. The information is used for task 
planning and execution. ATC: Active task cognition.

recipes from extracted semantic information[39]. Zhou et al. developed an object search framework 
combining navigation maps, semantic maps, and scene graphs, enabling robots to track object locations and 
enhancing autonomous searching and environmental understanding[40]. Riaz et al. enhanced scene 
understanding with scene graphs, equipping robots with semantic knowledge for safer human-machine 
collaboration (HRC)[41]. Jiao et al. introduced a contact graph based on scene graph representation for 
streamlined robotic operation planning[42]. Both models effectively capture spatial and semantic 
relationships among objects, highlighting their utility in feature extraction.
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Additionally, visual question answering (VQA)[43] is a cross-modal cognitive task that combines CV and 
NLP to enable machines to answer questions about image content. Recent notable VQA methods[44-47] focus 
on object relationship reasoning based on images and videos, similar to ATC in robots. Using VQA 
techniques enhances semantic information extraction[48-50]. Kenfack et al. proposed a visual architecture for 
robotics that processes RGB/RGBD images in real-time to detect objects and calculate their spatial 
relationships, generating scene or semantic graphs[48]. Das et al. introduced a modular strategy learning 
method for long-range navigation based on language inputs[49]. Luo et al. developed a depth and 
segmentation-based visual attention mechanism to extract local semantic features for VQA using high-
speed video segmentation[50]. Several methods have been identified for capturing high-level semantic 
information, such as attributes and relationships, including the use of external knowledge[51] and graph-
based networks[52,53].

With the development of LLMs, notable VQA models such as BLIP-2[54] and Florence[55] have begun 
incorporating them to enhance multimodal semantic perception. While these methods excel in visual 
cognition, their focus differs from task cognition, which similarly extracts deep image information - spatial, 
semantic, and task-related aspects - to identify executable service tasks.

Extracting relational and semantic information from images is essential for visual cognition. Many methods 
utilize graph neural networks (GNNs), with common structures being graph convolutional networks 
(GCNs)[56] and graph attention networks (GATs)[57]. Recently, GNN- and GAT-based reasoning has become 
popular in scene understanding, VQA, and other tasks that analyze relationships between visual 
elements[58-60].

Meanwhile, various tailored GNN architectures for specific tasks have been proposed[54-60]. Li et al. 
introduced a simple and interpretable reasoning model that generates visual representations of key scene 
objects and semantic concepts[60]. This model connects image regions and uses a GCN for reasoning, 
producing features with semantic relationships and applying a gating and memory mechanism for global 
reasoning. Yang et al. constructed an emotional graph based on semantic concepts and visual features, using 
GCN to enhance object features with emotional attributes[61]. Liang et al. introduced a dual-GAT that 
integrates semantic, visual, and spatial data, enabling robots to recognize object interactions[62]. Xie et al. 
developed a knowledge-based VQA model that combines visual and non-visual knowledge for question 
generation[63]. Lyu et al. presented a knowledge-enhanced GNN for interpretable recommendations, using 
an external knowledge base to learn user, object, and interaction representations[64]. Zhang et al. and Huang 
et al. employed multi-level reasoning networks to effectively address semantic information loss[65,66]. Many 
studies utilized GNN structures to capture image features and relationships, enhancing scene understanding 

In graph-structure cognition research, spatial graphs GSpa model the visual features and spatial relationships 
between detected objects. Each node represents an object Ii , with node features fi

Vis = vi derived from the 
visual features. The edges of the spatial graph are described by spatial features fij

Spa derived from bounding 
box. Given objects Ii and Ij, detected with bounding box features (xi1, yi1, xi2, yi2) and (xj1, yj1, xj2, yj2), their 
midpoints are (xc

(i), yc
(i)) and (xc

(j), yc
(j)), and areas are A(i) and A(j). The image area is A, and size is (W, H). The 

spatial feature fij
Spa = fi

Spa-rs ∩ fj
Spa-rs ∩ fij

Spa-rp consists of fi
Spa-rs = [xi1, yi1, xi2, yi2, A(i)], fi

Spa-rs = [xi1, yi1, xi2, yi2, A(i)] 

relative scale features, and relative position feature fij
Spa-rp:

(4)
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Figure 4. Overall architecture of the ATC-N model[67]. (A) and its components (B). The model features a fused graph made up of three
GAT structures: task graph, spatial graph, and semantic graph. This design maximizes the extraction of service scene features and
includes a multi-class decoder for predicting task types, corresponding items, and the scene, enabling ATC. ATC-N: Active task
cognition network; GAT: graph attention network.

and achieving relevant results. GNNs have proven effective for object relationship handling, particularly in 
robotic reasoning. Cui et al. proposed an active task cognition network (ATC-N) that uses a GNN model 
for relationship extraction and reasoning, allowing robots to autonomously identify service tasks[67]. The 
proposed GNN framework for ATC is illustrated in Figure 4.

Below, we provide a comprehensive summary [Table 1] that organizes and compares the task cognition-
related literature, highlighting the strengths, weaknesses, and key contributions of various studies in the 
field. By categorizing and analyzing these studies, we aim to better understand the diverse methodologies, 
approaches, and technologies proposed and explored. This summary will not only assist researchers in 
grasping the current state of task cognition but also guide them in identifying gaps, opportunities, and 
potential areas for future exploration.

In summary, ATC based on visual images is a visual reasoning process that infers task types, related items, 
and scenes from extracted features and their relationships. Studies show that vision-based relational 
detection models effectively capture scene features and use attention mechanisms to focus on task 
objectives. In complex home environments, robots need mechanisms to autonomously discover and 
understand tasks, establishing dynamic relationships between tasks, items, and scenes. While graph-based 
reasoning could enhance the analysis of complex relationships, current VQA and visual relation detection 
models often overlook robotic task cognition, leading to a lack of relevant models and datasets for task 
information collection. This limits the ability of robots to adapt to environmental changes or predict 
unknown tasks beyond their predefined scope. Thus, developing an effective reasoning model for robot 
visual input to facilitate ATC based on visual perception is an urgent challenge.
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Table 1. Summary of the advantages and disadvantages of typical task cognition methods applicable to service robots, and key highlights by different categories

Abro et al.[23] 2022 Significantly reduces the reliance on large 
annotated datasets and improves the robot’s 
cognitive performance in low-resource 
environments

The model’s complexity and reliance on domain 
rules limit its scalability and adaptability in service 
tasks

By incorporating regular expression rules to encode domain 
knowledge, the model effectively reduces reliance on large 
supervised datasets and excels in intent detection and slot 
filling tasks

Qin et al.[24] 2021 The model enhances task interaction through 
bidirectional information flow, improving the 
accuracy of the service robot’s cognition

The model’s high computational complexity and 
data requirements may limit its use in resource-
constrained scenarios

The model captures bidirectional interactions between 
intent detection and slot filling, significantly improving the 
performance of the speech language understanding system

Cheng et al.[25] 2021 The method boosts slot label generation 
performance and inference speed, making it ideal 
for real-time dialogue systems

Despite faster inference, the model requires 
extensive training data and resources for complex 
tasks

The method addresses the slot inconsistency issue caused 
by the lack of sequential dependencies, improving accuracy 
and efficiency while maintaining fast inference speed

He et al.[26] 2021 By integrating a knowledge base and shared 
features, the model excels in intent detection and 
slot filling accuracy, enhancing the semantic 
understanding of service robots

The model’s complexity increases training and 
inference costs, particularly in scenarios requiring 
extensive external knowledge, which may demand 
higher computational resources

A multi-task intent detection system based on a knowledge 
base and slot filling model is designed, enhancing semantic 
understanding and achieving state-of-the-art performance 
on multiple datasets

Rajapaksha et 
al.[27]

2020 By applying ontology, the robot can accurately 
understand and execute unknown terms in high-
level commands, enhancing its adaptability and 
intelligence in complex environments

As the number of unknown terms in commands 
increases, processing time also rises, which may 
impact the system’s real-time responsiveness, 
especially under high-load conditions

By leveraging semantic networks and ontology techniques, 
the system helps robots understand unknown terms in 
high-level commands, enhancing task execution accuracy at 
the cognitive level

Chen et al.[51] 2022 Introducing a knowledge graph enhances the 
robot’s ability to understand complex problems, 
thereby improving task cognition accuracy

The construction and injection of the knowledge 
graph are complex, potentially requiring significant 
computational resources and time

A VQA method based on external knowledge graphs is 
proposed, which converts knowledge into text and 
effectively integrates it through a delayed injection 
mechanism, treating the VQA task as a text generation task

Li et al.[54] 2023 By combining frozen models and lightweight 
modules, the efficiency of visual-language tasks is 
improved, making it suitable for resource-
constrained service robots

Despite saving training parameters, the cost of the 
pre-training phase remains high, which may pose a 
challenge for resource-constrained devices

BLIP-2 introduces an efficient pre-training strategy, freezing 
the image encoder and language model, and using a 
lightweight query transformer, achieving top performance 
with fewer parameters

Xiao et al.[55] 2024 Unified text prompts and multi-task learning 
enhance the robot’s adaptability and efficiency in 
complex tasks

The need for large-scale annotated data and the 
complexity of model training may increase 
computational and data resource consumption

A multi-task vision foundation model is designed to perform 
various visual tasks using text prompts, showcasing strong 
zero-shot and fine-tuning capabilities, supported by the 
large-scale annotated dataset FLD-5B

Mo et al.[59] 2021 Graph learning methods effectively integrate 
multimodal information, helping service robots 
improve their ability to analyze complex medical 
images

The network structure is complex, and the graph-
based attention module has high computational 
time complexity

This paper presents a graph learning-based multimodal MRI 
segmentation method, improving information fusion 
through graph convolution and attention modules, with 
excellent results on multiple datasets

Lyu et al.[64] 2022 Enhanced semantic understanding and user 
behavior inference improve the robot’s 
interpretability and accuracy in recommendation 
systems

The introduction of external knowledge components 
may increase the system’s resource consumption 
and computation time

The model integrates external knowledge into the user 
behavior graph, improving recommendation accuracy, 
interpretability, and generating human-like 
recommendation explanations

Huang et al.[66] 2023 It effectively handles occluded images, improving 
the service robot’s cognitive accuracy in complex 
environments

Although it greatly aids task cognition, the model’s 
high complexity makes it difficult to adapt well to 
robotic systems

By jointly reasoning image features and compensating for 
occlusion, the model effectively matches features while 
suppressing noise and transferring missing semantic 
information

Methods applicable 
to RTC (based on 
instruction text)

Paper            Year Advantages of service task cognition Disadvantages of service task cognition Highlights
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Cui et al.[67] 2024 A dataset and network structure are specifically 
designed for robotic task cognition, enabling multi-
output classification of task types, scenes, and 
objects

Although the parameter size is small, the GAT-
based network has a long computation time

By using a multi-graph fusion encoder and a multi-task 
scene understanding decoder, the model effectively 
captures semantic features of tasks, objects, and scenes, 
enhancing the robot’s intelligence in service tasks

RTC: Reactive task cognition; VQA: visual question answering; BLIP: bootstrapping language-image pre-training; FLD: florence large dataset; MRI: magnetic resonance imaging; GAT: graph attention network.

3. METHODS OF TASK PLANNING IN ROBOTS
In the field of robotics, task planning involves generating an effective sequence of actions for a robot to complete tasks based on specific objectives and 
environmental conditions. This section provides an overview of the current state of research on various main task planning methods, including classical task 
planning in robotics, task planning based on LLMs, task planning using scene graphs, and task planning based on reinforcement learning (RL).

3.1. Classic task planning
Classical task planning involves designing planners that generate robotic action strategies, using specialized languages such as planning domain definition 
language (PDDL)[68] and action language BC[69] to meet diverse planning needs. Robots may need to plan with incomplete information; for instance, 
Khandelwal et al. used BC language to consider action costs in their planning process[70].

Semantic planning for service robots generates sequences of actions based on semantic knowledge suitable for specific scenarios. Savage et al. used expert 
systems to handle incomplete information in planning, while Wang et al. enhanced task planning by integrating probabilistic reasoning models, providing 
item location information[71,72]. Another approach by Wang et al. involved pre-training object-level representations to improve planning accuracy and 
efficiency by understanding environmental dynamics[73].

In handling uncertain task planning, a novel approach[74] combined classical and belief space planning strengths to better manage uncertainty and enhance 
planning efficiency. To improve interaction during tasks, Bustamante et al. introduced constraint action template (CAT) for flexible action adjustments by 
users, enhancing system usability and user experience[75]. Lastly, Moshayedi et al. optimized the FOODIEBOT food delivery robot with classical path planning, 
achieving the best accuracy with beetle antennae search (BAS) and the highest speed with particle swarm optimization (PSO), while simulation and real-world 
results closely matched[3].

In industrial robotics, Adu-Bredu et al. utilized mixed integer programming (MIP) to optimize specific target functions while meeting all constraints, 
generating the best task sequences for robots to efficiently manage task allocation and routing in complex environments[76]. Wang et al. introduced a new 
planning method for assembly tasks, allowing robots to autonomously navigate complex industrial settings by leveraging environmental constraints and causal 
reasoning, resulting in more precise and efficient task execution[77]. Bernardo et al. integrated domain ontologies with task planning frameworks to transform 
agent goals into actionable steps in real-time[78].
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In multi-agent systems, goal-directed planning based on module interrelations[79] was proposed, which 
defines module states and autonomously determines dependencies, enhancing task planning flexibility 
without manual adjustments. The researcher focused on near-optimal solutions using neighborhood search 
techniques, accelerating the identification of efficient solutions and reducing computational demands[80]. 
Task planning for autonomous systems[81] merges offline and online operations, using precomputed data to 
dynamically generate decisions, thus adapting to changing conditions more robustly. An adaptive robotic 
task planning framework[82] incorporates user preferences to better coordinate tasks and increase efficiency 
in human-robot collaborations. Berger et al. applied “active queries” to generate 3D models for operational 
environments, facilitating detailed multi-agent planning based on these models[83].

Overall, classical task planning in industrial settings relies on detailed models and environmental data, 
optimizing for efficiency but often lacking flexibility. These strategies are widely utilized across various 
domains[84], enhancing success rates and operational efficiency. However, adapting classical methods to 
accommodate dynamic and complex home environments remains a challenge that requires further 
innovation[85].

3.2. LLMs-based task planning
Researchers are enhancing robotic task planning with LLMs to improve adaptability and accuracy. Singh 
et al. used LLMs for more precise robotic arm task execution in desktop environments, enhancing decision-
making through real-time environmental feedback [Figure 5][86]. This method improves task success and 
efficiency.

Additionally, integrating LLMs with advanced visual technologies helps robots adapt to complex 
environments by providing detailed environmental insights, significantly boosting task outcomes and user 
experience[87]. Ding et al. explored using LLMs with action knowledge bases for dynamic adaptation in 
uncertain environments, greatly enhancing robotic robustness[88]. Another approach[89] translates natural 
language into formal task specifications, allowing robots to execute complex tasks accurately and adjust 
actions in real-time, increasing efficiency and success rates.

Sarch et al. introduced HELPER, an intelligent agent that uses memory-enhanced LLMs to parse and 
dynamically adjust task plans from human instructions, ideal for home assistant robots interpreting 
complex tasks from dialogue[90]. This method has proven effective in the TEACh benchmark, enhancing task 
flexibility and user satisfaction by leveraging dialogue history. Lin et al. demonstrated the effectiveness of 
LLMs in simulation environments, where the models generate actionable plans from high-level descriptions 
and environmental data, significantly boosting the efficiency of routine tasks[91].

A new benchmarking method[92] involving multimodal LLMs was introduced, combining task progress, 
visual observations, and language instructions to test the models’ ability to handle complex tasks from real-
world videos, providing valuable data for optimizing task planning models.

LLM-based task planning methods significantly enhance the environmental understanding and adaptability 
of robots without needing detailed prior knowledge, making them suitable for dynamic tasks in home and 
medical settings. These methods leverage strong NLP and environmental perception capabilities of LLMs, 
allowing robots to execute tasks more flexibly and accurately in complex environments.

3.3. Scene graph-based task planning
Recent years have seen the widespread application of scene graphs in robotic task planning, significantly 
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enhancing planning accuracy and adaptability. Chalvatzaki et al. fine-tuned language models with scene 
graphs to convert complex environmental and task information into structured contexts for detailed robot 
task planning[93]. Rana et al. developed SayPlan, using 3D scene graphs and LLMs to generate high-level task 
plans and adjust plans iteratively with feedback, creating executable strategies[94]. Agia et al. introduced 
TASKOGRAPHY, evaluating the use of 3D scene graphs in robotic planning by assessing efficiency and 
exploring real-time planning possibilities[95]. Immorlica et al. used a graph-theoretical framework to 
optimize task planning by modeling tasks as graph nodes and applying graph algorithms[96]. Chen et al. 
utilized a knowledge and-or graph (AOG) with an LSTM network to produce effective atomic action 
sequences, streamlining robotic operations and enhancing decision-making[97]. These approaches show how 
integrating advanced modeling techniques such as scene graphs can revolutionize robotic task planning.

Task planning in deterministic and concurrent domains is increasingly focused on efficiency. Kortik et al. 
developed LinGraph, a graph-based planner that streamlines proofs by minimizing irrelevant permutations, 
optimizing performance in settings with numerous similar objects, such as factories[98]. Sellers et al. 
proposed a safety-aware multi-waypoint navigation and mapping method using the generalized Voronoi 
diagram and adjacent node selection algorithm, enhancing robot navigation with a local navigator and B-
spline smoothing[99]. Meanwhile, Odense et al. leveraged GNNs to model planning problems, predicting the 
runtime of motion planning algorithms to speed up task execution in navigational and manipulative 
tasks[100]. These methods highlight the role of advanced modeling in improving planning strategies in 
complex environments.

Facing indeterminate task environments, Kan et al. developed a task planning method using stochastic aisle 
graphs (SAG) that represents task priorities and cost uncertainties[101]. This graph-based approach optimizes 
task selection and timing within resource constraints, boosting efficiency and effectiveness. Mirakhor et al. 
utilized a directed space graph to enhance item rearrangement processes, leveraging graph embeddings and 
convolutional networks to enable deep RL planners to efficiently optimize object movement and paths[102]. 

Figure 5. Progprompt[86] utilized GPT-3 to guide a robotic arm in performing grasping tasks, with the process validated in VirtualHome 
simulation environment. The process of using large models is innovatively divided into three modules: � prompt for planning, � 
generated plan, � prompt for state feedback.



Page 132 Cui et al. Intell. Robot. 2025, 5, 119-42 https://dx.doi.org/10.20517/ir.2025.08

Saucedo et al. introduced belief scene graphs to enhance task planning, particularly for high-level reasoning 
in scenarios with incomplete information, by integrating expected values into traditional 3D scene 
graphs[103]. This allows for better prediction and planning in limited information settings, enhancing both 
scene understanding and the planning of complex tasks such as search and navigation.

Task planning methods using scene graphs offer a structured approach for decomposing and executing 
complex tasks by utilizing detailed environmental modeling. These methods excel in flexibility and 
accuracy, particularly in complex scenarios requiring structured task analysis. By leveraging the hierarchical 
and structured nature of scene graphs, robots can better understand and adapt to complex environments, 
enhancing task execution success and efficiency. Overall, these approaches showcase significant potential 
for advancing robotic task planning and adaptability, opening new avenues for intelligent robotics 
development.

3.4. RL-based task planning
Recent advances in integrating RL with task planning have shown promise. Souza et al. applied deep RL 
using neural networks to enable agents to efficiently navigate complex simulated environments[104]. This 
method improves adaptability and task performance through continuous learning and interaction with the 
environment. Liu et al. combined PDDL with RL to innovate task and motion planning in complex 
settings[105]. They developed a vision-based RL actuator that resolves inter-object conflicts with non-grasping 
actions, enhancing task feasibility. They also introduced a novel reward system that guides the actuator to 
avoid irreversible failures, significantly improving planning success. The same team explored optimistic RL 
[Figure 6] to better integrate RL into task planning[106], strengthening the ability to manage uncertainties. 
These developments highlight the role of RL in enhancing task planning by adapting to complex, uncertain 
scenarios.

In multi-robot task planning, Li et al. applied multi-agent RL (MARL) to streamline task execution for 
multi-arm robots in orchards, using centralized strategies to reduce conflicts[107]. Wete et al. employed 
safety-focused RL to enhance motion and task planning in automotive manufacturing, integrating safety 
and compliance checks directly into the planning process[108]. Liu et al. developed a hierarchical RL strategy 
for dynamic mobile robot task planning, improving efficiency by adapting to human movement data[109]. Li 
et al. introduced a multi-vehicle pursuit strategy using adversarial RL, tailored for urban traffic 
management[110].

For multi-objective planning, Li et al. enhanced the efficiency of networked radar systems with RL, 
optimizing task distribution and resource allocation[111]. Zhang et al. created a method for task planning with 
multiple unmanned surface vessels using advanced deep RL[112]. They segmented the problem into task 
assignment and collision avoidance, utilizing tailored state and action spaces with matching reward 
functions, processed via deep neural networks. This approach improved the algorithm’s speed and 
efficiency using enhanced temporal difference methods and a hierarchical system.

The above methods demonstrate the feasibility of using RL for robotic task-level reasoning and planning. 
The potential of RL to enhance robotic task planning flexibility and performance is significant, guiding 
robots through complex environments with unique reward mechanisms to handle diverse tasks and adjust 
strategies dynamically, a crucial trait for domestic service robots.

3.5. Comparison and summary of four types of task planning methods
To summarize the features of each task planning method, Table 2 summarizes the features of four types of 
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Table 2. Comparison table of features for four types of task planning methods

Planning 
method Efficiency Prior knowledge required Advantages and disadvantages Application scenarios

Classical task 
planning

High Detailed task models and 
environmental information

Low versatility, poor adaptability, strong 
logical sequence

Industrial settings, home services, 
multi-agent systems

LLM-based task 
planning

Moderate No detailed prior knowledge, 
relies on large datasets

High versatility, stable action sequence 
generation, suitable for specialized 
environments

Home environments, medical 
services, dynamic tasks

Scene graph-
based planning

Moderate Detailed environmental 
modeling and scene graph data

Strong environmental understanding, 
adapts to complex tasks through structured 
decomposition

Environments requiring structured 
modeling, complex task 
decomposition

RL-based 
planning

Low Minimal or no prior knowledge, 
relies on real-time feedback 
learning

High adaptability, suitable for long-term 
planning, autonomously adapts to changes

Complex dynamic environments, 
advanced interaction, adaptive 
control

LLM: Large language model; RL: reinforcement learning.

Figure 6. Schematic of optimistic RL-based skill insertions for task and motion planning[106]. With steps a through f illustrating the 
execution process. It details the identification of initial states and goal states, ultimately demonstrating the correct application of an 
agent’s uncertainty handling skills in grasping tasks. RL: Reinforcement learning.

methods, highlighting their computational efficiency, prior knowledge needs, flexibility, adaptability, and 
applicable scenarios. It outlines how each method has evolved from classical to modern machine learning-
based approaches and their effectiveness in different environments. Each method suits specific applications, 
and choice depends on the particular needs of the application. In home environments, where efficiency and 
logical consistency are crucial, classical planning offers high computational efficiency but limited versatility. 
LLM-based planning compensates for this by providing greater flexibility. A hybrid approach could 
efficiently generate versatile, executable action sequences, enhancing planning by incorporating external 
knowledge to improve logical coherence.

To better reflect the characteristics of research related to robot task planning, we have also categorized and 
summarized the advantages, disadvantages, and highlights of typical studies on service robots [Table 3].

The diversity and complexity of home service tasks necessitate a robot action planning method adaptable to 
varying environments. Integrating scene graph planning, which requires structured environmental 
modeling, could address dynamic interactions between items in a home setting. Yet, existing scene models 
often fall short in representing complex relationships within these environments. To align robot actions 
with task goals effectively, combining RL-based planning with environmental modeling could optimize 
adaptability and execution. A hybrid approach could merge the logic of large model-driven planning with 
the adaptability of RL, maximizing the intelligence and effectiveness of robot task planning in home 
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Table 3. Summary of the advantages and disadvantages of typical task planning methods applicable to service robots, and key highlights by different categories

Wang et al.[72] 2020 Semantic knowledge and probabilistic reasoning 
enhance the robot’s task planning and 
adaptability in complex home environments

The hierarchical task network and re-planning 
mechanism may increase system complexity and task 
execution delay

A hierarchical task network method based on semantic knowledge 
and probabilistic reasoning improves task planning and 
adaptability in uncertain environments for home service robots

Wang et al.[73] 2022 By using synthesized object representations, the 
robot’s task planning and execution capabilities 
in new environments are improved

Synthetic datasets may differ from real-world 
environments, limiting the model’s generalization 
ability

A planning method using a synthetic scene dataset is proposed, 
improving task success rates in multi-step operations by 
generalizing new object instances with object-level 
representations

Classic task 
planning

Adu-Bredu et 
al.[76]

2022 The method generates optimal task plans that 
meet constraints, improving the robot’s task 
execution efficiency

The method relies on a mixed-integer programming 
solver, which may encounter computational 
bottlenecks when handling complex tasks

A robot task planning method encodes the problem as a mixed-
integer convex program, using a solver to generate an optimal 
humanoid robot action sequence that meets all numerical 
constraints

Singh et al.[86] 2023 The use of a programmatic prompt structure 
enhances the robot’s task planning ability in 
complex environments

The generated plan may be limited by the robot’s 
current capabilities and may include actions that are 
not applicable

A programmatic LLM prompt structure generates executable plans 
across environments, robot capabilities, and tasks, producing 
action sequences that meet task requirements

Sarch et al.[90] 2023 The method customizes task execution based on 
user language and habits, enhancing robot 
adaptability

It relies on an external memory store and continuous 
updates, with memory management potentially 
posing challenges

Converting human-robot dialogue into action programs, HELPER, 
an embodied agent, uses external memory and retrieval-
augmented LLM prompts, improving task execution and dialogue 
performance

LLMs-based 
task planning

Lin et al.[91] 2023 Generating executable plans from high-level 
goals and environmental data enhances the 
robot’s task planning ability

It relies on environmental data tables, which may 
pose flexibility and adaptability issues in dynamic 
environments

Combining high-level goals and environmental data tables, the 
model generates executable robot plans, enhancing performance 
through data table encoding, iterative decoding, and evaluation 
metrics

2022 Leveraging GNN to capture problem structure, 
the efficiency of motion planning and task 
execution ability is enhanced

The model relies on structured data, which may pose 
challenges in complex, high-degree-of-freedom tasks

By using GNNs, the model connects motion planning geometry 
with algorithm runtime, accelerating online planning and 
identifying subproblems suited for specific algorithms

2021 The method efficiently optimizes task planning 
in uncertain environments, enhancing resource 
utilization

The method may face challenges in real-time 
decision-making and execution when dealing with 
complex or highly dynamic environments

Addressing cost uncertainty in precision agriculture task planning, 
the NBA-P algorithm based on SAG outperforms other allocation 
methods

Scene graph-
based task 
planning

2024 It improves the efficiency of object 
rearrangement in multi-room environments and 
can handle unseen objects and obstacles

The method’s complexity may lead to computational 
challenges in certain complex environments

A novel task planning method is proposed for discovering unseen 
objects and rearranging in multi-room environments, effectively 
reducing travel paths using deep RL and spatial graph techniques

Liu et al.[106] 2024 By integrating RL skills, the robot’s task planning 
capability and efficiency in uncertain 
environments are improved

Dependence on uncertainty handling may lead to 
adaptability issues in highly dynamic scenarios

The method integrating RL skills into the TAMP pipeline, using 
data-driven logic for symbolic planning and optimization to 
address uncertainty

Li et al.[107] 2023 Task planning efficiency is improved and 
operational collaboration is optimized for multi-
arm picking robots

Training the model may require substantial 
computational resources and time, and could face 
challenges in dynamic environments

A task planning strategy for a four-arm picking robot is proposed, 
using a Markov game framework to avoid the computational 
complexity of NP-hard scheduling problems, and trained through 
MARL structure

The robot’s task planning efficiency and 
environmental adaptability in dynamic 
environments are effectively enhanced by its 

A novel HA-GHDQ algorithm combines symbolic planning and 
HRL, using human motion patterns (MoDs) in dynamic 
environments to generate long-term task planning strategies for 

RL-based task 
planning

Liu et al.[109] 2023 The combination of symbolic planning and HRL may 
increase system complexity and pose significant real-
time challenges in highly dynamic environments

Odense et al.
[100]

Kan et al.[101]

Mirakhor et al.
[102]

Paper            Year Advantages of task planning Disadvantages of task planning Highlights

HRL approach robots
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LLMs: Large language models; GNN: graph neural network; NBA-P: next-best-action planning; SAG: stochastic aisle graph; RL: reinforcement learning; TAMP: task and motion planning; NP: non-deterministic 
polynomial time; MARL: multi-agent reinforcement learning; HRL: hierarchical reinforcement learning; MoDs: motion dynamics.

services. This would ensure that robots can perform diverse tasks intelligently and efficiently.

4. CURRENT ISSUES
From the review and analysis, it is evident that significant efforts have been made globally to enhance the intelligence of domestic robots, achieving some 
stage-wise results. However, due to the complexity and diversity of the home service environment, effective cognition and task planning by home robots, 
followed by smooth execution of service tasks, still require extensive exploration. Currently, the primary issues in the cognition and planning field for service 
robots include the following areas:

(1) Challenges in language interpretation and task constraint analysis: Robots struggle with interpreting natural language instructions due to varied user habits 
and traditional methods reliant on syntactic analysis, which often result in errors and lack depth for complex commands. Additionally, research lacks in 
analyzing task constraints, affecting the accuracy of understanding and planning tasks.

(2) Lack of active cognition and adaptive capabilities in robots: Robots lack active cognition abilities, primarily responding reactively to commands which 
limits their operational potential in complex environments. The absence of effective autonomous discovery and cognition mechanisms hinders establishing 
dynamic relationships necessary for adapting to environmental changes or anticipating unknown tasks.

(3) Limitations of rigid action planning and inadequate task flexibility: Current action sequence planning often depends on rigid templates, limiting its ability 
to adapt to new tasks and understand specific service requirements, which results in action sequences that fail to meet practical demands. These methods also 
lack the use of detailed prior knowledge, leading to sequences that are impractical for real-world domestic tasks. This results in inefficient and illogical task 
execution.

(4) Limitations of task planning in dynamic environments: Traditional task planning struggles in dynamic, uncertain environments due to reliance on 
deterministic models that cannot account for real-time changes. This results in static action sequences unfit for the current conditions. Additionally, the 
models fail to account for interactions between dynamic and static items in home settings, lacking comprehensive scene modeling.
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(5) Hybrid approaches are needed to integrate planning algorithms’ strengths: Classical and LLM-based 
planning methods provide stability but lack adaptability; scene graph and RL methods are responsive but 
resource-intensive and prone to delays. A hybrid approach could improve adaptability, necessitating a 
platform that integrates both cognition and planning to manage challenges such as resource distribution 
and system complexity.

5. FUTURE DIRECTIONS
To address existing issues, the proposed research directions for enhancing task cognition and planning in 
home service robots include:

● Enhancing language models: Related research studies have fully confirmed that enhancing language 
intelligence parsing models[22,24,26] can improve the ability of robots to interpret user intentions. However, the 
instruction parsing models specifically for service robots are not yet particularly robust. Developing 
instruction parsing models using word embeddings can efficiently extract and relate task classifications and 
keywords. Refining large models will enhance the precision of command interpretation, providing reliable 
data for robot task planning.

● Inferring environmental information: For image-based cognitive methods, the researchers have provided 
sufficient feasibility validation[50,59,62,67]. However, current models specifically focused on task cognition have 
not received much attention. By utilizing visual cognition and graph-based modeling, robots can simulate 
proactive observation capabilities, thereby improving the accuracy and interpretability of environmental 
understanding.

● Multimodal task cognition: Many studies have already combined large models with cognition and 
demonstrated their feasibility[48,51,54,55]. By integrating instructions with visual data, robots can enhance their 
comprehension of real-time tasks, leveraging the synergy between textual commands and environmental 
context.

For task planning, future research directions could include:

● Knowledge-guided action sequences: The introduction of knowledge modules to improve task planning 
accuracy has been demonstrated to enhance the precision of robot planning[72,77,88]. Combine the logical 
consistency of classical planning methods with the adaptability of LLMs, utilizing prior knowledge to 
enhance planning reliability and enable autonomous action sequence generation.

● Environment-based action planning: The researchers have demonstrated that environment modeling[98,101] 
and RL methods[104,106] enable planning results to adapt to dynamic environments, significantly advancing 
service robot planning research. By leveraging these techniques, robots can anticipate and execute 
appropriate task actions in dynamic home environments, thereby enhancing their adaptability.

● Integrated task planning: The task cognition and planning of service robots is an integrated process. 
Design a data processing system that combines cognition and planning through modular design and multi-
channel information input, focusing on resource allocation and scheduling to meet the demands of home 
service robots efficiently.
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6. CONCLUSIONS
This review examines current approaches to task cognition and planning for domestic service robots, 
highlighting key challenges and advances. Due to the dynamic nature of home environments and complex 
user instructions, traditional rule-based methods struggle to scale, while deep learning shows promise in 
understanding instructions but faces generalization challenges.

We emphasize the shift from RTC to ATC, where robots not only respond to explicit commands but also 
actively identify tasks through environmental observation. Multimodal data, such as visual and contextual 
information, improves task recognition, while combining LLMs with logical planning frameworks (e.g., 
PDDL) offers new ways to generate reliable action sequences.

Future developments in RL, attention mechanisms, and real-time environment modeling will further 
enhance planning and execution efficiency. Integrating expert knowledge into task planning will improve 
robot intelligence and execution. The goal is to create flexible, human-like cognition and planning methods 
that enhance interaction, reliability, and adaptability in diverse home environments.
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