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Abstract
Hypoxia is a common phenomenon in solid tumors as the poorly organized tumor vasculature cannot fulfill the 
increasing oxygen demand of rapidly expanding tumors. Under hypoxia, tumor cells reshape their 
microenvironment to sustain survival, promote metastasis, and develop resistance to therapy. Exosomes are 
extracellular vesicles secreted by most eukaryotic cells, including tumor cells. They are enriched with a selective 
collection of nucleic acids and proteins from the originating cells to mediate cell-to-cell communication. 
Accumulating evidence suggests that exosomes derived from tumor cells play critical roles in modulating the 
tumor microenvironment (TME). Hypoxia is known to stimulate the secretion of exosomes from tumor cells, 
thereby promoting intercellular communication of hypoxic tumors with the surrounding stromal tissues. Exosome-
mediated signaling pathways under hypoxic conditions have been reported to cause angiogenesis, invasion, 
metastasis, drug resistance, and immune escape. Recently, the programmed cell death ligand-1 (PD-L1) has been 
reported to reside as a transmembrane protein in tumor exosomes. Exosomal PD-L1 was shown to suppress T cell 
effector function in the TME and cause drug resistance to immune checkpoint therapy. This review provides an 
update about the pivotal role of tumor-derived exosomes in drug resistance to chemotherapy and immunotherapy, 
particularly under hypoxic conditions. Emerging strategies that target the exosomes in the hypoxic TME to enhance 
the antitumor efficacy are discussed.
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INTRODUCTION
Hypoxia is a well-known hallmark of solid tumors when the tumor vasculature cannot provide adequate 
oxygen to support the aggressive growth of rapidly expanding tumors. Preclinical studies demonstrated that 
hypoxia mediates resistance to various modalities of cancer therapy, including chemotherapy, radiotherapy, 
and immunotherapy[1,2]. Tumor hypoxia may also promote invasion and metastasis. Extensive evidence is 
also available from clinical investigations to suggest that highly hypoxic tumors are associated with 
treatment failure, increased incidence of distant metastases, and dismal disease-free and overall survival[3].

Exosomes are a unique form of extracellular vesicles with endosomal origin and sizes ranging from 30 to 
100 nm. They are secreted from diverse cell types upon the fusion of multivesicular bodies with the plasma 
membranes[4]. Exosomes mediate intercellular crosstalk by transferring mRNAs, microRNAs (miRNAs), 
and proteins from donor to recipient cells[5,6]. Cargoes loaded in exosomes are biologically active when taken 
up by the recipient cell, and they lead to various downstream functions[7]. Tumor-derived exosomes have 
been shown to facilitate the intercellular transfer of pro-tumorigenic factors in the tumor 
microenvironment (TME)[8,9]. They promote angiogenesis, invasion, and proliferation in recipient cells to 
support tumor growth and a pro-metastatic phenotype. In a recent proteome profiling study of exosomes 
derived from human primary and metastatic colorectal cancer cells, selective enrichment of metastatic 
factors and signaling pathway components was observed[10]. In glioma, exosomes have been reported to 
convey signals between the tumor and TME to facilitate bidirectional communication[11]. Hypoxia is known 
to stimulate the secretion of exosomes from tumor cells, thereby promoting cell-to-cell communication 
between the hypoxic tumors and the surrounding stromal tissues. Exosomal cargoes are also altered under 
hypoxic conditions to stimulate angiogenesis, invasion, metastasis, therapeutic resistance, and immune 
escape[12].

In this article, we summarize the critical role played by hypoxic tumor-derived exosomes in tumor 
progression and resistance to cancer therapy. Novel approaches to target the exosomes in the hypoxic TME 
to potentiate the anticancer efficacy are discussed.

HYPOXIC TME
TME is a dynamic and complex system around a tumor, which is composed of blood vessels, fibroblasts, 
extracellular matrix fibers, immune cells, and signaling molecules, supporting proliferation, metastasis, and 
therapy resistance of tumor cells[13]. The rapid proliferation of cancer cells and aberrant blood vessel 
formation create hypoxic conditions in malignant tumors. Hypoxia is considered a hallmark of TME, which 
is generally defined by a low oxygen tension of below 10 mmHg[14]. It is also known to orchestrate the 
various malignant phenotypes of cancer cells by activating multiple oncogenic signaling pathways. At the 
molecular level, the hypoxic TME is largely regulated by the hypoxia-inducible factor (HIF) family of 
transcriptional factors[15]. Accumulating evidence suggests that tumor-derived exosomes play a critical role 
in invigorating the interaction between cancerous and non-cancerous cells in the hypoxic TME to propel 
cancer progression[16].

EFFECT OF HYPOXIA ON TUMOR-DERIVED EXOSOME
Induction of exosome release 
TME-associated cells have been shown to secrete more exosomes than normal cells to promote intercellular 
communication and nutrient exchange[17]. In the clinical setting, the number of circulating exosomes 
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collected from the blood of cancer patients was estimated to be more than two-fold higher than that of 
healthy subjects[18]. Granulocytic myeloid-derived suppressor cells (G-MDSCs) in tumors were reported to 
produce more exosomes than those found in the spleen[19]. Indeed, more secretion of exosomes from cancer 
cells has been reported in breast cancer[20], colorectal cancer[21], gastric cancer[22], glioma[23], hepatocellular 
carcinoma[24], and pancreatic cancer[25]. Interestingly and in contrast, hyperoxia (excessive oxygen tension) 
has been reported to reduce the number of exosomes released from colorectal cancer cells[19]. It is 
noteworthy that the induction of exosome secretion in hypoxia may be universal because more exosomes 
were also released from non-cancerous cells (including bone, cardiac, and kidney cells) under hypoxic 
conditions[26-28]. To date, the detailed mechanism leading to increased exosome release in hypoxia is still not 
clear. Nevertheless, two Rab GTPases (Rab27a and Rab27b) were shown to promote exosome secretion by 
facilitating the docking of the multivesicular bodies at the plasma membrane[29], whereas Rab7 was reported 
to direct exosomes to lysosomes for degradation[30]. In ovarian cancer cells, hypoxia was shown to 
upregulate Rab27a but downregulate Rab7 to promote exosome release[31].

Increase in exosomal heterogeneity
Exosomes secreted from different cells contain different cargoes and markers. On the other hand, exosomes 
released from the same cell line can carry different constituents[18]. While this heterogeneity is advantageous 
for exosome applications, it poses obstacles to a thorough understanding of exosome biology[32,33]. 
Depending on the cell state, exosomes of different sizes and carrying different cargoes are secreted[34]. To 
this end, exosomes secreted from glioma cells were shown to reflect the hypoxic status, and they mediate 
hypoxia-dependent activation of neovascularization during tumor development[34]. The heterogeneous 
exosome population could have a different functional effect on the recipient cells[35,36].

Production of smaller exosome 
The size of exosomes released from mammalian cells is known to vary considerably in individual cells 
because of their unique exosome biogenesis process[36]. Interestingly, it has been reported that exosome size 
is associated with different disease states. In non-small cell lung cancer (NSCLC) patients, a smaller 
exosome detected in the pulmonary vein is associated with a shorter time to relapse and shorter overall 
survival after curative surgery[37]. It is generally believed that hypoxia tends to release smaller exosomes. 
Relatively smaller exosomes have been reported in different cancer cell lines, including colon[21], 
pancreatic[25], and prostate[38] cancer cells. Under hypoxic conditions, it is believed that the supply of cellular 
materials for membrane synthesis may not meet the demand for exosome production, thus leading to the 
secretion of smaller exosomes[12]. It is also hypothesized that smaller exosomes could be transmitted more 
easily via the blood circulation to metastatic sites to form the pre-metastatic niches because hypoxia changes 
the hemodynamics in the tumor vasculature[12]. Moreover, smaller exosomes could be internalized faster and 
more efficiently than larger exosomes in the recipient cells[39]. An ongoing prospective clinical trial 
(NCT02310451) is underway, which examines exosome size and various other parameters as potential 
biomarkers in melanoma patients.

Influence on exosomal cargo sorting 
It is known that exosome content is not simply reflecting the cellular content of its origin. Some sorting 
mechanisms are in place to facilitate specific cargo sorting processes. Hypoxia has been shown to affect the 
sorting of the following three major cargoes (i.e., nucleic acids, proteins, and lipids) into exosomes.

Nucleic acids
The effect of hypoxia on the nucleic acid content in tumor-derived exosomes has recently been summarized 
in a few excellent reviews[40,41]. It is noteworthy that only limited studies have reported the effect of hypoxia 
on cancer-derived exosomal DNA. On the other hand, the alteration and biological effects of non-coding 
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RNAs (ncRNAs) in tumor-secreted exosomes under hypoxia have been extensively studied. Representative 
examples are summarized in Table 1. Various mechanisms have been proposed to regulate the expression of 
ncRNAs in hypoxia. For the HIF-dependent mechanism, the binding of HIF-1α and/or HIF-2α to the 
hypoxic response element (HRE) of the gene promoter of miR-155 has been reported[42,43]. Moreover, 
miRNAs are differentially sorted into exosomes according to their specific sequence or motif[44]. A few RNA 
binding proteins, such as SYNCRIP, were shown to direct specific miRNAs sharing a common extra-seed 
sequence hEXO motif for enrichment in the exosomes[45]. Moreover, hypoxia also affects RNA alternative 
splicing[46,47] and RNA editing[48], which could make specific miRNAs more suitable for loading into tumor-
derived exosomes. On the other hand, hypoxia was also reported to regulate a few facilitators which load 
nucleic acids into exosomes. The RNA binding proteins YBX1 and hnRNPA1 were reported to mediate the 
selective loading of miR-133 and miR-1246, respectively, into tumor-derived exosomes under hypoxia[49,50].

Hypoxia has been shown to regulate the expression of several ncRNAs, which affect the expression of HIF-1
α and subsequently form positive or negative feedback loops to modulate the hypoxic TME[51,52]. In hypoxic 
gastric cancer cells, such a positive feedback loop involving miR-301a-3p, PHD3, and HIF-1α has been 
reported[53]. miR-301a-3p was upregulated in hypoxic gastric cancer cells and the tumor-secreted 
exosomes[53]. miR-301a-3p was subsequently shown to suppress the hydroxylase PHD3 and thus promote 
the protein stability of HIF-1α to maintain the hypoxic response. In pancreatic cancer, the hypoxic 
induction of a HIF-1α-stabilizing circular RNA (cirZNF91) in cancer-secreted exosomes was reported to 
promote chemoresistance in normoxic cancer cells[54]. Upon transmission to normoxic cells, circZNF91 was 
found to bind competitively to miR-23b-3p, subsequently abolishing the inhibition of miR-23b-3p on its 
target Sirtuin1 (SIRT1). The upregulated SIRT1 was shown to increase the deacetylation-dependent stability 
of HIF-1α protein, thus promoting glycolysis and chemoresistance in the recipient normoxic cancer cells[54].

Proteins
Similar to nucleic acids, proteins loaded into tumor-derived exosomes are not necessarily proportional to 
the cellular protein composition[55]. However, the precise mechanism contributing to specific exosomal 
protein sorting remains obscure. It has been postulated that hypoxia could influence the protein loading 
process of tumor-derived exosomes by regulating ubiquitination. Ubiquitinated proteins are recognized by 
ubiquitin-binding domains within multivesicular endosomes for degradation, thus limiting the amount of 
membrane available for exosome formation[56]. To this end, hypoxia is commonly known to control protein 
ubiquitination and ubiquitination-associated enzymes[57].

Cell membrane glycoproteins are also known to participate in cell-to-cell and cell-environment 
communication[58]. Interestingly, the expression profile of glycoproteins in tumor-derived exosomes is 
different from that of healthy cells[59]. Moreover, glycoprotein expression could be affected by hypoxia[60]. As 
glycans are known to regulate protein sorting and uptake into exosomes, hypoxic cells have been shown to 
take up more exosomes in a proteoglycan-dependent manner[61].

Proteins secreted in tumor exosomes are also known to participate in hypoxia-associated responses. In 
breast cancer, metastasis-associated protein 1-loaded exosomes were reported to transfer in between cancer 
cells to regulate the response to hypoxia and estrogen signaling[62]. Taken together, hypoxia promotes 
numerous malignant phenotypes of cancer cells by altering the exosome protein heterogeneity, whereas 
proteins in tumor-derived exosomes could contribute to the hypoxic response. Table 2 summarizes the 
representative exosomal protein cargoes and other constituents that are preferentially secreted from hypoxic 
tumors to module the TME.
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Table 1. Representative non-coding RNA cargoes secreted in hypoxic cancer cell-derived exosomes to modulate the tumor 
microenvironment

Non-
coding 
RNA

Donor cell Recipient cell Biological function (mechanism) Reference

let7a Melanoma Macrophage Induce M2 polarization of TAM and promote oxidative phosphorylation to 
support cancer growth (downregulation of insulin-AKT-mTOR signaling)

[121]

linc-RoR Hepatocellular 
carcinoma

Hepatocellular 
carcinoma

Promote cancer cell proliferation; mediate chemoresistance (induction of 
PDK1 and HIF-1α protein expression by suppressing miR-145)

[78]

lncRNA 
UCA1

Bladder cancer Bladder cancer Promote cancer growth; stimulate migration and invasion (induction of 
EMT)

[95]

miR-10a Glioma MDSC Activate MDSC (regulation of RORA/IκBα/NF-κB signaling) [113]

miR-21 Glioma MDSC Activate MDSC (regulation of PTEN/PI3K/AKT signaling) [113]

miR-23a Lung cancer Endothelial cells Promote angiogenesis; increase vascular permeability (inhibition of the 
propyl hydroxylases PHD1 and PHD2, thereby stabilizing HIF-1α protein; 
inhibition of the tight junction protein ZO-1)

[92]

miR-24-3p Nasopharyngeal 
carcinoma

T cell Inhibit T cell proliferation and differentiation (inhibition of FGF11; 
upregulation of p-ERK, p-STAT1, and p-STAT3)

[103]

miR-25-3p Breast cancer Breast cancer and 
macrophage 

Promote cell proliferation and migration (stimulation of IL-6 secretion from 
macrophage via NF-κB signaling)

[94]

miR-125b-
5p

Ovarian cancer Macrophage Induce M2 polarization (regulation of SOCS4/5-STAT3 pathway) [120]

miR-210 BMSC Lung cancer Promote metastasis (induction of STAT3 to mediate EMT) [73]

miR-301a-
3p

Pancreatic cancer Macrophage Induce M2 polarization (downregulation of PTEN and activation of 
PI3K/Akt signaling)

[118]

miR-5100 BMSC Lung cancer Promote metastasis (induction of STAT3 to mediate EMT) [97]

BMSC: Bone marrow-derived stem cell; EMT: epithelial-mesenchymal transition; linc-RoR: long intergenic non-protein coding; RNA: regulation of 
reprogramming; lncRNA: long non-coding RNA; MDSC: myeloid-derived suppressor cells; TAM: tumor-associated macrophage.

Table 2. Exosomal protein cargoes and other constituents are preferentially secreted from hypoxic tumors to modulate the tumor 
microenvironment

Cancer type Type of cargo Biological function and mechanism Reference

Colorectal cancer Wnt4 protein • Intercellular communication with normoxic cancer cells 
• Exosomal Wnt4 promoted the translocation of β-catenin to the 
nucleus in normoxic cells 
• Activation of β-catenin signaling enhanced cancer cell motility 
and invasion

[137]

Glioblastoma TSP1, VEGF, LOX protein • Promote cancer growth, angiogenesis, and metastasis [138]

Glioblastoma MMPs, IL-8, caveolin 1, PDGFs, and lysyl 
oxidase

• Induce angiogenesis in vitro and ex vivo through phenotypic 
modulation of endothelial cells 
• Stimulate endothelial cells to secrete potent growth factors and 
cytokines and to activate pericyte PI3K/Akt signaling to promote 
migration 

[34]

Lung cancer TGF-β1 • TGF-β1 downregulates NKG2D on the cell surface of NK cells to 
suppress NK cell cytotoxicity

[116]

Nasopharyngeal 
carcinoma

MMP13 • Promote migration and invasion [139]

Nasopharyngeal 
carcinoma

HIF-1α • Promote EMT to induce migration and invasion [140]

Prostate cancer Tetraspanins (CD63 and CD81), heat 
shock proteins (HSP90 and HSP70), and 
Annexin II

• Remodel the epithelial adherens junction pathway to enhance 
invasiveness and stemness of naïve prostate cancer cells

[38]

Prostate cancer Lactic acid • Under chronic hypoxia, prostate cancer cells secrete more 
exosomes as a survival mechanism to remove metabolic waste

[141]

IL-8; Interleukin-8; LOX: protein lysine 6-oxidase; MMP: matrix metalloproteinase; PDGF: platelet-derived growth factor; TSP1: thrombospondin-1; 
VEGF: vascular epithelial growth factor.
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Various lipid components are important building blocks for exosome membranes. They include 
phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidic 
acid, cholesterol, ceramide, sphingomyelin, and glycosphingolipids[59]. They play critical roles in the 
biogenesis of exosomes. Sphingomyelin is hydrolyzed to ceramide, which promotes the budding of 
multivesicular bodies from the endosomes[63]. On the other hand, ceramide is metabolized to sphingosine 1-
phosphate, which interacts with the inhibitory G protein-coupled receptors to induce exosome 
biogenesis[64]. Interestingly, knockdown of a key cholesterol lipid efflux transporter ABCG1 was found to 
inhibit cancer growth, concomitantly with the intracellular accumulation of exosomes and the exosomal 
cargo[65]. Phosphatidylserine has been reported to play a critical role in facilitating the uptake of exosomes 
secreted from hypoxia-induced stem cells by human umbilical cord endothelial cells[66]. Under hypoxic 
conditions, triglyceride was found to accumulate in prostate cancer cells and the secreted exosomes. 
Importantly, these exosomes were shown to promote cancer proliferation and invasion following 
reoxygenation[67]. Hypoxia is known to upregulate ceramide expression, which is proposed to promote the 
exosome release[68].

Effect on exosome uptake by recipient cells
Little is known about the effect of hypoxia on the intercellular transfer and uptake of tumor-derived 
exosomes from other components within the TME. A hypoxic environment is known to promote glycolysis 
and lactic acid production. Excess production of lactic acid results in acidic pH in the hypoxic TME. Given 
that an acidic environment is more suitable for the stability and isolation of exosomes[69], the intracellular 
transport of exosomes may benefit from a hypoxic and acidic TME. It has also been proposed that the 
uptake of cancer-secreted exosomes by the recipient cells was found to be more efficient under hypoxia[70]. 
The smaller exosomes secreted from hypoxic tumors, as described above, may facilitate the more efficient 
intercellular transfer. However, this hypothesis has not been verified by a detailed experimental 
investigation. On the other hand, hypoxic tumor cells are also known to take up more exosomes from the 
surroundings[61]. Upon the recognition and binding of exosomes to recipient cells, the former is internalized 
by various processes, including endocytosis via clathrin, caveolae, or lipid raft-dependent manner. Under 
hypoxic conditions and the closely associated acidic cellular environment, exosome uptake could be 
promoted by lipid raft-dependent endocytosis[61], caveolin-dependent endocytosis[71], and phagocytosis[72].

REGULATION OF TME BY HYPOXIC TUMOR-DERIVED EXOSOMES
As described in the previous section, hypoxia significantly alters the properties of exosomes secreted from 
cancer cells. Accumulating evidence indicates that the altered tumor exosomes are responsible for the 
reshaping of TME, thereby promoting cancer cell proliferation, chemoresistance, metastasis, and 
angiogenesis [Figure 1].

Promotion of cancer proliferation and chemoresistance by hypoxic tumor-derived exosomes
Within the hypoxic TME, cancer cells are known to secrete pro-tumorigenic molecules in the exosomes to 
promote cancer survival and proliferation. miR-210 is one of the most extensively studied hypoxia-induced 
miRNAs driving cancer progression[73]. In breast cancer, the abundance of miR-210 was reported to be 
remarkably higher in the exosomes derived from hypoxic cancer cells than those from normoxic ones, 
which allows the cells to sustain survival under hypoxia[74]. A set of differentially expressed exosomal 
miRNAs has been identified in the exosomes secreted from patient-derived melanoma cells under hypoxic 
culture conditions[75]. Hypoxia was found to upregulate miR-494-5p, miR-4497, miR-513a-5p, and miR-
6087 but downregulate miR-125b-5p, miR-21-5p, and miR-3934-5p in the exosome[75]. Interestingly, the 
alteration of miRNAs was closely associated with cancer survival according to bioinformatics pathway 
analysis[75]. Exosomes secreted by human glioma were also shown to promote the differentiation of neural 
stem cells into astrocytes[76]. Transcripts related to cell proliferation and astrocyte differentiation were found 

Lipids
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Figure 1. Representative examples of exosome-mediated intercellular communication within the hypoxic TME driving cancer 
progression, chemoresistance, and immune suppression. (1) Cancer proliferation: Hypoxic cancer-secreted exosomes were enriched 
with miRNAs supporting cell survival (e.g., miR-210) in the neighboring cancer cells. (2) Drug resistance: Numerous ncRNAs (e.g., linc-
RoR and miR-21) were transferred via exosomes from hypoxic and resistant cancer cells to sensitive cells and induced drug resistance. 
(3) Migration and invasion: exosomes containing various ncRNAs (including lncRNA UCA1 and miR-193-3p) facilitate cancer–cancer or 
cancer–stromal intercellular communication to stimulate migration and invasion by modulating EMT. (4) Angiogenesis: ncRNAs 
(including miR-23a and lncRNA UCA1) were enriched in the exosomes secreted from hypoxic tumor cells to promote tumor vascular 
endothelial cell proliferation and angiogenesis in HIF-1α-dependent or -independent pathway. (5) Immune suppression: Exosomes 
enriched with miRNAs (e.g., miR-23a and let-7a) and other immunosuppressive molecules (e.g., PD-L1 and TGF-β1) were secreted from 
hypoxic tumors to promote an immunosuppressive TME. TME: Tumor microenvironment.

to be remarkably upregulated in human mesenchymal stem cells when co-cultured with glioma-secreted 
exosomes[76]. Hypoxic tumor-secreted exosomes may represent an important therapeutic target that 
mediates the aggressiveness of glioma.

Hypoxia is known to mediate chemoresistance by regulating the cell cycle, autophagy, cell senescence, and 
drug efflux transporters. In recent years, the emerging role of hypoxic cancer cell-derived exosomes in 
reshaping the TME and causing chemoresistance is also revealed. In NSCLC, hypoxic cancer-derived 
exosomes have been shown to induce cisplatin resistance in normoxic cancer cells through the transmission 
of miR-21[77]. The transfer of miR-21 from hypoxic cell-derived exosome to normoxic cancer cells was 
demonstrated to downregulate PTEN and the PI3K/Akt pathway, which subsequently induced cisplatin 
resistance[77]. In hepatocellular carcinoma, the abundance of a stress-responsive lncRNA (linc-RoR) was 
significantly increased in hypoxic cancer-derived exosomes than in their normoxic counterpart[78], which is 
associated with resistance to sorafenib and doxorubicin. Linc-RoR was shown to induce TGF-β, thereby 
suppressing chemotherapy-induced cell death but promoting tumor-initiating cell proliferation[78]. Stromal 
cells, such as cancer-associated fibroblasts (CAFs) in the TME, could also mediate chemoresistance in 
cancer cells. miR-223 was upregulated in TAMs and TAM-derived exosomes under hypoxia[79]. miR-223 
loaded in hypoxic exosomes was shown to reduce apoptosis and induce drug resistance in ovarian cancer by 
downregulating PTEN and thus activating PI3K/Akt signaling[79].
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Moreover, exosomes have also been shown to mediate the transfer of the drug-resistant phenotype. Drug-
sensitive cancer cells have been shown to become drug-resistant following the incorporation of exosomes 
shed from drug-resistant cancer cells[80-84]. Moreover, exosomes were shown to be involved in the 
intercellular transfer of functional ABCB1 (P-gp) from multidrug-resistant donor cells to drug-sensitive 
recipient cells[81,85-87]. Furthermore, exosomes have also been reported to mediate drug resistance by 
exporting specific drugs via the exosome pathway[88] and neutralizing antibody-based chemotherapy[89].

Induction of cancer angiogenesis by hypoxic tumor-derived exosomes 
The induction of angiogenesis by hypoxia has been extensively studied[90]. More recently, accumulating 
evidence demonstrates that hypoxic tumor-derived exosomes played a significant role in angiogenesis. In 
malignant glioblastoma multiforme, exosomes derived from cancer cells under hypoxia were shown to 
induce angiogenesis by stimulating cytokine and growth factor secretion from endothelial cells, 
subsequently promoting pericyte migration[34]. In pancreatic cancer, the exosomal lncRNA UCA1 secreted 
from cancer cells under hypoxic conditions was shown to promote angiogenesis via a miR-96-
5p/AMOTL2/ERK1/2 pathway[91]. In lung cancer, miR-23a secreted in tumor-derived exosomes in hypoxia 
was reported to target the key HIF-1α regulators (propyl hydroxylases PHD1 and PHD2), thereby sustaining 
the overexpression of HIF-1α and promoting angiogenesis[92]. Moreover, hypoxia-induced exosomal miR-
23a was also shown to inhibit the tight junction protein ZO-1 and increase vascular permeability[92]. It is 
noteworthy that most studies in this research area were conducted under acute hypoxic conditions. Umezu 
et al. were the first to report intercellular communication via exosome under chronic hypoxia[93]. A few 
hypoxia-resistant multiple myeloma (MM) cell lines were developed after incubation in hypoxic conditions 
for more than six months to mimic the hypoxic bone marrow environment in vivo[93]. Increased exosomal 
level of miR-135b was detected in these hypoxia-resistant MM cells, and it was shown to promote 
endothelial tube formation under hypoxia via the HIF-FIH signaling pathway[93].

Promotion of cancer cell invasion and metastasis by hypoxic tumor-derived exosomes
Exosomal ncRNAs within the hypoxic TME are known to regulate tumor invasion and metastasis by 
modulating EMT. In breast cancer, higher expression of miR-25-3p in hypoxic cancer-derived exosomes 
was found to stimulate cancer proliferation and migration by inducing IL-6 secretion and activating NF-κB 
signaling in macrophages[94]. In bladder cancer, the lncRNA (UCA1) preferentially secreted by hypoxic 
cancer cells was shown to promote cancer growth by stimulating EMT both in vitro and in vivo[95]. In oral 
squamous cell carcinoma, a higher level of miR-21 was detected in the exosomes from hypoxic cancer than 
those from normoxic cancer to promote migration and invasion by inducing EMT[96]. The interaction 
between stromal and cancer cells via exosome within the TME plays a critical role in the initiation of 
metastasis. Lung cancer cells have been shown to take up exosomes secreted from hypoxic bone marrow-
derived mesenchymal stem cells (BMSCs) and acquire a greater tendency for invasion[97]. Three miRNAs 
(miR-193-3p, miR-210-3p, and miR-5100) showing a high abundance in hypoxic BMSC-derived exosomes 
were transferred to cancer cells and subsequently activated STAT3 signaling to induce EMT in the lung 
cancer cells[97]. Interestingly, these three miRNAs were also found to be upregulated in plasma-derived 
exosomes from lung cancer patients with metastatic disease than in non-metastatic patients[97].

Modulation of cancer immune system by hypoxic tumor-derived exosomes 
Reduced immune surveillance is the major reason allowing primary tumors to develop metastasis in distant 
secondary organs[98,99]. Tumor-secreted exosomes have been reported to induce T-cell apoptosis, inhibit 
interferon gamma-dependent expression of macrophages, suppress natural killer (NK) cell activity, and 
increase myeloid-derived suppressor cell (MSDCs) population, which collectively suppress immune 
surveillance and allow tumor growth[100,101]. Figure 2 illustrates the major mechanisms by which hypoxic 
tumor-derived exosomes promote an immunosuppressive TME.
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Figure 2. Hypoxic tumor-secreted exosomes promote an immunosuppressive TME. Hypoxic tumor-secreted exosomes promote an 
immunosuppressive TME by interfering with several intracellular pathways and modulating immune accessory cells, including cytotoxic 
T cells, T-regulatory cells (Tregs), myeloid-derived suppressor cells (MDSCs), natural killer cells (NK), and tumor-associated 
macrophages (TAMs). (1) Inhibition of T cell proliferation; (2) stimulation of Treg differentiation; (3) induction of MDSCs; (4) 
impairment of NK cells; and (5) stimulation of M2 polarization of TAMs.

Inhibition of T cell proliferation
Tumoral exosomes loaded with biologically active cargoes have been proposed to mediate the intercellular 
transmission of signals within the TME to promote immune escape and tumor progression. Ye et al. were 
the first to report a differential miRNA signature from nasopharyngeal carcinoma-derived exosomes to 
mediate T cell dysfunction[102]. The induction of exosomal miR-24-3p in nasopharyngeal carcinoma-derived 
exosomes under hypoxia was found to inhibit T cell proliferation but promote differentiation of T-
regulatory cells (Tregs) by targeting FGF11 via the upregulation of p-ERK, p-STAT1, and p-STAT3 and 
downregulation of p-STAT5[103].

Immune checkpoint inhibitors including anti-programmed cell death receptor (PD-1) (nivolumab and 
pembrolizumab) or anti-PD-ligand (PD-L1) (duralumab, atezolizumab, and avelumab) monoclonal 
antibodies are revolutionizing cancer therapy. They lead to durable anticancer responses and overall 
survival benefits in a wide range of cancer types[104]. PD-1 is an inhibitory receptor expressed on activated T 
cells, B cells, and natural killer cells, which blunt the immune response under physiological conditions. The 
T cell-mediated cancer-killing effect will be suppressed when PD-1 is occupied by its major ligand PD-L1 
(expressed in tumor cells and infiltrating immune cells). Anti-PD-1/PD-L1 antibodies work by binding to 
the inhibitory PD-1 receptors on tumor-reactive T cells and PD-L1 on tumor cells, respectively, to disrupt 
the PD-1/PD-L1 interaction and reactivate the cytotoxic T cell activity.

Despite the breakthrough of anti-PD-1/PD-L1 immunotherapy, the response rate is low. Moreover, most 
patients who initially respond to immunotherapy will eventually relapse because of adaptive resistance. To 
maximize the full potential of anti-PD-1/PD-L1 immunotherapy, the mechanisms underlying these de novo 
and adaptive resistance mechanisms is a research area of intensive investigation. When T cells recognize the 
tumor antigen on the cancer surface, they release interferons to induce PD-L1 expression in cancer cells[105]. 
The increased PD-L1 expression in cancer cells will then lead to specific inhibition of T cell recognition of 
cancer, subsequently resulting in a phenomenon known as adaptive immune resistance and inhibiting the 
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antitumor immune response. To this end, PD-L1 loaded in exosomes was shown to interact directly with T 
cells to suppress anticancer efficacy of chemotherapy in various cancer types, including breast[106], gastric[107] 
head and neck[108], melanoma[109], pancreatic[110], and prostate[111] cancer. It will be useful to elucidate whether 
hypoxia regulates the loading of PD-L1 into tumor-derived exosomes.

Induction of MDSCs
MDSCs are a heterogeneous population of immune cells from the myeloid lineage which migrate to tumor 
sites to create an immunosuppressive TME[112]. MDSCs suppress adaptive and innate immunity by 
inhibiting T cell activation, promoting macrophage M2 polarization, inducing CAF differentiation, and 
inhibiting NK cell cytotoxicity. The abundance of MDSCs at tumor sites is known to correlate closely with 
poor clinical prognosis and reduce the efficacy of immunotherapy in cancer patients. In glioma, miR-21 and 
miR-10a secreted in tumor-derived exosomes under hypoxia have been reported to promote the expansion 
and activity of MDSCs in vitro and in vivo via the miR-21/PTEN/PI3K/AKT and miR-10a/RORA/IkBα/NF-
κB pathways, respectively[113]. Therefore, novel strategies to modulate hypoxic tumor-secreted exosomes may 
be developed to regulate MDSCs and potentiate immunotherapy[114]. To this end, miR-21 loaded in γδ T cell-
secreted exosomes has been shown to abate the function of MDSCs by targeting PTEN in a PD-L1-
dependent manner[115].

Impairment of natural killer cells
Hypoxia is also known to promote an immunosuppressive TME by attenuating cytotoxic T cell and 
Impairment of natural killer (NK) cell-mediated tumor cell lysis. Berchem et al. were the first to report the 
secretion of non-coding RNAs in exosomes from hypoxic lung cancer cells to impair NK cell 
cytotoxicity[116]. Under hypoxic conditions, higher miR-23a expression was observed in lung cancer cell-
derived exosomes, which impaired NK cell cytotoxicity by targeting CD107a[116]. Moreover, the hypoxic 
tumor-derived exosomes were also shown to transfer TGF-β1 to NK cells, thereby reducing the cell surface 
expression of the activating receptor NKG2D and inhibiting NK cell cytotoxicity[116].

Stimulation of M2 polarization of tumor-associated macrophages
TAMs refer to the major tumor-infiltrating immune cells, which interact with the tumors and tumor-
associated macrophages (TME) to regulate tumor immunity[117]. Macrophage polarization is the process by 
which macrophages adopt distinct functional phenotypes in response to environmental stimuli and signals. 
M1 macrophages are functionally pro-inflammatory and antimicrobial, whereas M2 macrophages are anti-
inflammatory. M1 and M2 macrophages exhibit a high degree of plasticity and are converted into each 
other upon changes within the TME or anticancer therapies. Under hypoxic pressure, tumor-derived 
exosomes have been shown to induce M2 polarization in various cancer types. In pancreatic cancer, miR-
301a-3p was highly expressed in hypoxic cancer cell-derived exosomes, and it was shown to promote 
macrophage M2 polarization by activating PTEN/PI3Kγ signaling pathway[118]. Coculture of pancreatic 
cancer cells with the hypoxic cancer-derived exosomes or miR-301a-3p-upregulated macrophages was 
shown to facilitate the epithelial-mesenchymal transition and lung metastasis[118]. In epithelial ovarian 
cancer (EOC), hypoxic tumor-derived exosomes were shown to express a high level of miR-940, and they 
stimulated M2 polarization of macrophages and promoted cancer proliferation and migration[119]. A 
differential miRNA expression signature was also identified in the EOC-derived exosome under hypoxia to 
promote M2 polarization. miR-21-3p, miR-125b-5p, and miR-181d-5p were induced by HIF-1α and HIF-2α 
in the exosomes under hypoxic conditions, which regulate SOCS4/5-STAT3 signaling to stimulate M2 
polarization and a malignant TME[120]. In melanoma, let-7a was shown to be downregulated in hypoxic 
cancer cells but remarkably increased in the hypoxic cancer-derived exosomes[121]. The exosomes carrying 
let-7a were found to promote a metabolic shift towards enhanced mitochondrial oxidative phosphorylation 
in macrophages by suppressing insulin-Akt-mTOR signaling to enhance cancer progression[121].
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SUMMARY
Rapidly expanding and hypoxic tumors exploit exosomes to communicate with both cancerous and non-
cancerous cells in the TME to promote cancer survival and resist immune surveillance. Hypoxia has been 
shown to directly induce the production of exosomes, modulate the exosome cargo sorting process, and 
promote exosome uptake by recipient cells. Under low oxygen tension, cancer cells are primed to glycolytic 
metabolism, thus inducing an acidic TME to indirectly promote intracellular transport of the exosome. 
Numerous regulatory molecules are involved in the regulation of exosome biology under hypoxia. More 
studies are warranted to fully unravel the effect of hypoxia on exosome-mediated intercellular 
communication within the TME.

FUTURE PERSPECTIVES
Advances in precision oncology have led to the increasing application of tissue and liquid biopsy methods 
in clinical practice to facilitate treatment selection and monitoring of cancer progression. For the traditional 
method using tissue biopsy, limited tissue specimens are taken from the patients. They are not able to reflect 
the spatial and temporal heterogeneity of a primary tumor or between multiple potentially discordant 
metastatic lesions. In comparison with tumor tissue analysis, liquid biopsy is less invasive, and the samples 
can be obtained throughout disease progression. The liquid biopsy analytes include circulating tumor cells, 
circulating nucleic acids[122], extracellular vesicles[123], and other tumor-derived materials present in blood 
and other body fluids. Among various liquid biopsy analytes, exosomes are unique in the way that they 
contain not only DNA but also RNAs, ncRNAs, proteins, glycoconjugates, and lipids, thus making them 
more versatile biomarkers.

Currently, the exogenous hypoxic marker drug pimonidazole has been used to visualize hypoxic regions in 
histological sections of tumors in pathological research in vivo[124]. However, the method is invasive and 
involves the surgical removal of tumors for imaging. Therefore, the application of tumor-derived exosomes 
from biological fluid to reveal the presence of hypoxic tumors will be beneficial. A few exosome biomarkers 
have been shown to reflect the hypoxic status of tumors as well as the stage of tumor progression. Exosomes 
derived from hypoxic glioma cells were enriched with hypoxia-related mRNA and proteins (including 
caveolin 1, IL-8, MMPs, and PDGF)[34]. Importantly, patients presenting with high levels of these 
biomarkers were associated with worse survival[34]. In rectal cancer patients, low levels of miR-486-5p and 
miR-181a-5p but high levels of miR-30d-5p in the exosomes harvested from plasma samples are associated 
with hypoxic tumors and poor prognosis[125]. Indeed, exosomes have been used as diagnostic or prognostic 
tools for assessing hypoxic tumors in recent clinical trials [Table 3].

As hypoxic tumors produce exosomes to promote tumorigenesis, the inhibition of exosome formation and 
secretion may be exploited as a novel strategy to suppress tumor development. In an excellent recent review, 
He et al. summarized the strategies for exosomal targeting and discussed the potential clinical 
applications[126]. Experimental reagents such as manumycin A and GW4869 were shown to inhibit exosome 
biogenesis and secretion from mammalian cells[127]. On the other hand, the Rab family of GTPases involved 
in exosome secretion can also be targeted to hinder exosome-mediated intercellular communication. For 
example, Rab5a is involved in the early step of exosome biogenesis, whereas Rab11, Rab27a, and Rab35 
regulate the fusion of multivesicular bodies with the plasma membrane and exosome secretion[128]. 
Downregulation of Rab27a has been shown to inhibit exosome-dependent and -independent tumor cell 
growth[128]. Specific inhibition of sphingomyelinase (an enzyme catalyzing the formation of ceramide from 
sphingomyelin) has also been shown to suppress exosome biogenesis and cargo loading, thereby retarding 
tumor growth[63].
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Table 3. Representative clinical trials exploiting exosome biomarkers to assess hypoxic tumors

Cancer type ClinicalTrials.gov 
Identifier Aim(s) relevant to exosome biology Current status

Lung cancer NCT04629079 
(LungExoDETECT)

• To validate exosomal assays that are based on hypoxia detection as potential 
biomarkers for early detection  
• Compare exosomal analysis with the standard of care imaging

Recruiting; Started in 
October 2020

Lung cancer NCT04529915 • Multicenter clinical research for early diagnosis of lung cancer using 
exosomes derived from blood plasma

Active; Not 
recruiting; Started in 
April 2020

Colorectal 
cancer 

NCT04394572 
(EXOSCOL01)

• To identify new diagnostic protein markers (e.g., integrins and 
metalloproteases) for colorectal cancer in circulating tumor exosomes

Recruiting; Started in 
January 2021

Clear cell renal 
carcinoma

NCT04053855 • To analyze urinary exosomes as a liquid biopsy tool for early diagnosis of 
clear cell renal cell carcinoma 

Recruiting; Started in 
August 2019

Ovarian cancer NCT03738319 
(EOC-EXOSOME)

• To analyze the expression of miRNA and lncRNA from exosomes in blood 
samples by next-generation sequencing in patients with high grade serous 
ovarian cancer or benign gynecologic diseases

Recruiting; Started in 
November 2018

Melanoma NCT02310451 • Pilot study to examine exosomes collected from the blood before and after 
BRAF inhibitor therapy in patients with advanced unresectable or metastatic 
BRAF mutation-positive melanoma  
• To develop an exosome-based theranostic tool for personalized care in 
melanoma patients 

Recruiting; Started in 
2016

miRNA: MicroRNA; lncRNA: long non-coding RNA.

The removal of oncogenic exosomes has been investigated as a novel therapeutic strategy for cancer 
therapy[129]. Mesoporous silica nanoparticles loaded with EGFR-targeting aptamers have been used to mop 
up circulating cancer-secreted EGFR+ exosomes, thus preventing their entry into the small intestine to 
suppress metastasis of lung cancer cells[129]. On the other hand, exosomes from immune cells were shown to 
exhibit anticancer activity[17]. Recently, Jiang et al. reported the induction of exosome production from NK 
cells under hypoxia[130]. More importantly, compared to normoxic conditions, NK cell-derived exosomes 
were found to express remarkably higher levels of FasL, perforin, and granzyme B in hypoxia to produce a 
higher NK cell cytotoxic effect[130]. Therefore, hypoxia-treated NK cells may be used to potentiate cancer 
immunotherapy.

Exosomes may also be employed as a drug delivery system for cancer therapy. Drugs or therapeutic siRNAs 
could be loaded into exosomes by various methods such as direct incubation, electroporation, and 
sonication[131]. Zhuang et al. reported the encapsulation of curcumin or an investigational STAT3 inhibitor 
(JSI124) in cancer cell-derived exosomes by incubating the exosomes with the drugs[132]. The drug-loaded 
exosomes were delivered to the brain for the treatment of inflammation via an intranasal route[132]. Besides, 
therapeutic siRNAs could also be loaded into the hydrophilic core of exosomes in the pharmaceutically 
active form[133,134]. Recently, Alvarez-Erviti et al. reported the successful delivery of siRNAs to the mouse 
brain using dendritic cell-derived exosomes[135]. Alternatively, the anticancer drug paclitaxel has been loaded 
indirectly into exosomes secreted from gingival mesenchymal stromal cells (MSCs) after co-culturing them 
with the drug[136]. Importantly, the exosomes derived from MSCs after priming with paclitaxel were shown 
to exhibit significant anticancer activity against human pancreatic cancer cells in vitro[136]. Interestingly, in a 
recent study examining anticancer drug delivery by exosomes, exosomes from hypoxic human breast cancer 
cells loaded with olaparib (a PARP inhibitor) were found to exhibit a superior uptake rate when they were 
co-cultured with hypoxic cancer cells[20]. A more detailed investigation of exosome loading and production 
under hypoxic conditions is advocated to further optimize exosome-mediated drug delivery.
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