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Abstract
We propose reinforcement learning (RL) architectures for producing performant Takagi-Sugeno-Kang (TSK) fuzzy
systems. The first employs an actor-critic algorithm to optimize existing TSK systems. An evaluation of this approach
with respect to the Explainable Fuzzy Challenge (XFC) 2022 is given. A second proposed system applies Deep Q-
Learning Network (DQN) principles to the Adaptive Network-based Fuzzy Inference System (ANFIS). This approach
is evaluated in the CartPole environment and demonstrates comparability to the performance of traditional DQN.
In both applications, TSK systems optimized via RL performed well in testing. Moreover, the given discussion and
experimental results highlight the value of exploring the intersection of RL and fuzzy logic in producing explainable
systems.

Keywords: Explainable AI, Fuzzy systems, Takagi-Sugeno-Kang fuzzy systems, Adaptive neuro-fuzzy inference sys-
tems, Reinforcement learning

1. INTRODUCTION
Fuzzy sets have been introduced in [1] as a mathematical framework for modeling under uncertainty. Fuzzy
systems employ a fuzzy inference engine to solve control problems in various frameworks and applications [2,3].
In a majority of fuzzy control applications, a dynamic model joins a fuzzy system to create a dynamic fuzzy
control system [4]. However, there are various applications where dynamic models are either not available or
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too complex for effective use in the fuzzy setting. Such applications tend to include video games and other
interactive environments [5].

Reinforcement learning (RL) comprises a collection of learning algorithms that allow optimization of various
control systems. RL trains agents to adapt to a given environment via a reward system [6]. The agent takes action
by assessing the state of the environment, and RL allows the agent to maximize the expected reward. Such
algorithms are well suited for complex environments; RL has shown great success in games [7] and industrial
applications [8].

Deep RL [9] has recently seen significant developments as agents have successfully outperformed humans in
games such as Go [7], Poker [10], and video games [11]. This approach also finds effective employment in appli-
cations such as autonomous vehicles [12], UAVs [13], and fine-tuning of large language models [14]. However,
RL models and related deep learning architectures, in particular, tend to have a significant drawback in their
relative lack of explainability.

Explainable machine learning is a subject of extensive research [15–17] concerned with rendering relevant al-
gorithms more understandable, transparent, and trustworthy. Explainable fuzzy AI has afforded significant
developments in this domain due to characteristics such as amenability to visualization and expression in nat-
ural language [18–20]. Notably, literature discussing directed RL in the setting of explainable fuzzy AI proves
scarce despite recent advancements in the former and a capacity for mutual benefit; exploration of genetic
algorithms proves more common historically [21–23].

To aid in developing RL algorithms capable of producing explainable models, fuzzy RL-based architectures [24]

show promise. Fuzzy Q-learning was proposed and studied in a series of research papers [25–27] primarily
concerned with performance in control applications rather than explainability in general. Additionally, these
explorations are disconnected from recent developments in deep RL. This presents a gap in the literature.
However, in [28], the author developed Takagi-Sugeno-Kang (TSK) fuzzy systems with successful applications
in various environments where Deep Q-Learning Network (DQN) [29] has illustrated effectiveness. Similar to
an Adaptive Network-Based Fuzzy Inference System (ANFIS) [30], this approach leverages RL to train an agent
in these environments and shows the promise of such experimentation.

This paper offers further practical study of RL-based TSK fuzzy systems and ANFIS architectures as solutions
for developing explainable AI. The latter is compared to traditional Deep Q-learning algorithms. After a pre-
liminary section where we provide an overview of the conceptual building blocks of our systems, we discuss
the successful and winning application of RL-based TSK systems to the Asteroid Smasher framework and cor-
responding 2023 Explainable AI competition [31]. Additionally, we offer a comparison of ANFIS and DQN
in the CartPole environment. The value of the relationship between RL and fuzzy systems to explainability is
highlighted and discussed in both cases.

2. PRELIMINARIES
2.1. Fuzzy systems
Fuzzy sets are defined as functions 𝐴 : 𝑋 → [0, 1] and are interpreted as sets with a continuum of membership
grades [1]. They are used in modeling under uncertainty, especially in a rule-based environment.

Fuzzy rules describe an imprecise cause-effect relationship between certain variables controlling a given system.
Fuzzy rules are of the form

If 𝑥 is 𝐴 then 𝑦 is 𝐵

where 𝐴 and 𝐵 are fuzzy sets on domains 𝑋 and 𝑌 , respectively. Fuzzy rules can be organized into fuzzy rule
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bases
If 𝑥 is 𝐴𝑖 then 𝑦 is 𝐵𝑖

with antecedents 𝐴𝑖 and consequences 𝐵𝑖 , 𝑖 = 1, ..., 𝑛 being fuzzy sets.

Mamdani fuzzy systems were introduced in [2], with the goal of developing fuzzy rule-based control systems.
Mamdani fuzzy systems defined by the above rule base evaluate a fuzzy output as

𝐵′(𝑦) = ∨𝑛𝑖=1𝐴𝑖 (𝑥) ∧ 𝐵𝑖 (𝑦).

The output of the system is then calculated using a defuzzification as an example

𝐶𝑂𝐺 (𝐵′) =
∫
𝑌
𝐵′(𝑦) · 𝑦𝑑𝑦∫
𝑌
𝐵′(𝑦)𝑑𝑦

To model more complex systems, one can define systems with multiple antecedents and connect them with an
aggregation operator.

TSK Fuzzy Systems have been introduced in [3,32] and are based on rules with a fuzzy antecedent and a singleton
consequence

If 𝑥 is 𝐴𝑖 then 𝑦 = 𝑦𝑖 .

In this paper, we are using a rule with a singleton consequence; however, TSK systems can also be defined with
linear or higher-order consequences. The output of a TSK fuzzy system can be calculated as

𝑇𝑆𝐾 (𝑥) =
∑𝑛
𝑖=1 𝐴𝑖 (𝑥) · 𝑦𝑖∑𝑛
𝑖=1 𝐴𝑖 (𝑥)

.

In the case of multiple antecedents, the rule base is modified as an example

If 𝑥 is 𝐴𝑖 and 𝑦 is 𝐵𝑖 then 𝑧 = 𝑧𝑖 .

with the evaluation of the output being

𝑇𝑆𝐾 (𝑥, 𝑦) =
∑𝑛
𝑖=1 𝐴𝑖 (𝑥) · 𝐵𝑖 (𝑦) · 𝑧𝑖∑𝑛
𝑖=1 𝐴𝑖 (𝑥) · 𝐵𝑖 (𝑦)

.

In the present paper, we use TSK fuzzy systems in the context of RL.

2.2. Reinforcement learning
2.2.1. Bellman’s Equation
Bellman equation, named after Richard E. Bellman for his work in [33], is an equation for controlling systems
based on states, rewards, and actions, which altogether allow us to compute the value for the state, i.e., the total
expected reward in a given state, given by

𝑉 (𝑠) = max
𝑎

(𝑅(𝑠, 𝑎) + 𝛾
∑

𝑃(𝑠, 𝑎, 𝑠′)𝑉 (𝑠′).

𝑉 (𝑠) is called the value of a state 𝑠. This function gets updated as the agent learns more information about the
state, especially which actions (𝑎) yield the highest cumulative reward. The reward 𝑟 is given for a state-action
pair and is not bound by any restrictions. 𝛾 is a discount factor, typically specified between 0 and 1, with a
common value of 0.99. 𝛾 is tuned to balance ”near” and ”far” rewards with lower values prioritizing immediate
rewards and higher values valuing future rewards more. 𝑃 is the probability of ending in state 𝑠′ (next state) by
taking action 𝑎 when starting from state 𝑠. 𝑉 (𝑠′) is the value of the next state. This recursive definition allows
policies to learn which actions to take on a given state to maximize the cumulative reward of future states.
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2.2.2. Q-learning
𝑄-learning [34] is a model-free RL algorithm, which will learn the 𝑄-values or the expected reward for a state.
Rather than attempt to model the environment, 𝑄-learning aims to predict preferable actions to take in a
specific state by extending the Bellman Equation as

𝑄𝑛𝑒𝑤 (𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼 · (𝑅(𝑠, 𝑎) + 𝛾max
𝑎
𝑄(𝑠′, 𝑎) −𝑄(𝑠, 𝑎)).

𝑄𝑛𝑒𝑤 are the new 𝑄-values of the state-action pair. These new values get updated from the previous 𝑄-values
and added to 𝛼, a learning rate, multiplied by the temporal difference (TD).The TD is the current reward of the
state-action pair added to the discount factor 𝛾 multiplied by the maximum reward that can be earned from
the next state before the current value of the state-action pair is subtracted. The𝑄-function aims to update the
action that should be taken for a given state to maximize the cumulative reward.

2.2.3. Deep Q-learning
Common techniques for 𝑄-learning include creating a Deep Neural Network (NN) for predicting the 𝑄-
function followed by optimization via backpropagation. This model is known as a Deep 𝑄-Learning Net-
work [29] and is a particular case of Q-learning that relies on a Deep NN architecture. This allows the agent to
learn continuous states, learn continuous values in discrete states, and generalize to states not yet seen. For
example, a simple 𝑄-learning algorithm could involve creating a lookup table where each element is a state
of an environment such as Grid World [6]. However, such an approach does not generalize to more complex
environments such as StarCraft II [35]; the practically countless number of possible states renders their storage
in an extremely inefficient table, and Deep Q-learning handles these tasks elegantly.

2.2.4. Improvements to Q-learning and Deep Q-learning
One very common problem with 𝑄-learning is sampling inefficiency and over-estimation of the 𝑄-values.
There are several methods to address these problems. Here, we will discuss experience replay, double 𝑄-
learning, and actor-critic architectures.

Experience replay [36] allows𝑄-learning agents to be more sample efficient by storing transitions or collections
of states, actions, rewards, and next states. Instead of exclusively learning from a current state, agents sample
prior experiences. This allows the agent to revisit states it has already visited and learn more to speed up
convergence of the agent’s current policy. Popular and powerful extensions to experience replay for improving
sample efficiency include prioritized experience replay (PER) [37] and hindsight experience replay (HER) [38].

Double Deep𝑄-Learning (DDQN) [39] is another technique to aid in the stability of training. A second model,
which is a copy of the original network, is offline (frozen) for a set number of training iterations. The target𝑄-
values are then sampled from the target network and used to compute the 𝑄-values for the online (unfrozen)
network. One issue with DDQN is the tendency of the online model to move too aggressively towards optimal
performance and negatively impact the stability of training. To address this, a soft update, known commonly
as Polyak Updating [40], is performed on the target network using the weights of the online model multiplied
by a small value. This form of weight regularization allows the target model to slowly improve over time and
prevents harsh updates to the learning.

An actor-critic RL architecture consists of an actor that acts out the current policy and estimates the current
value policy and a critic that evaluates the current policy and estimates the policy gradient using a TD evalua-
tion [41]. The system also encompasses a supervisor that controls the balance between exploration (performed
by the actor) and exploitation (performed by the critic).

http://dx.doi.org/10.20517/ces.2023.11


Zander et al. Complex Eng Syst 2023;3:9 I http://dx.doi.org/10.20517/ces.2023.11 Page 5 of 16

3. REINFORCEMENT LEARNING WITH FUZZY SYSTEMS
RL in the context of fuzzy logicwas introduced in [24] and based on theMamdani framework. It was successfully
used in the CartPole problem. RL TSK fuzzy systems have been developed for various applications [28,42].

3.1. Reinforcement learning TSK fuzzy system
As learned behaviors in complex systems are often the result of intricate optimization processes, explainable RL
constitutes a challenging problem. However, the interpretability of fuzzy systems indicates the potential value
of a method of TSK fuzzy system optimization inspired by traditional 𝑄-learning. In other words, a system
in which one approximates the 𝑄 function with a TSK fuzzy system [28] stands to offer some unique benefits.
This approach was successfully employed in applications such as a simulation in a simple discrete grid-world
environment or in continuous environments such as CartPole or Lunar Lander [28].

The idea in the setting of a TSK-based 𝑄-learning is to set the 𝑄 function to be approximated by a TSK fuzzy
system, i.e.,

𝑄(𝑠, 𝑎) = 𝑇𝑆𝐾 (𝑠, 𝑎).

TD 𝑄-learning equation is given by

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼(𝑅(𝑠′) + 𝛾𝑄(𝑠′, 𝑎) −𝑄(𝑠, 𝑎))

When updating the parameters of a system in RL we can use the general equation

𝑤𝑖 = 𝑤𝑖 + 𝛼(𝑅(𝑠′) + 𝛾𝑄(𝑠′, 𝑎) −𝑄(𝑠, 𝑎)) 𝜕𝑄
𝜕𝑤𝑖

with 𝑤𝑖 , 𝑖 = 1, ..., 𝑛 being parameters of the system. As a result, we can update the parameters of the fuzzy
system using this approach in the context of a TSK fuzzy system as

𝑤𝑖 = 𝑤𝑖 + 𝛼(𝑅(𝑠′) + 𝛾𝑇𝑆𝐾 (𝑠′, 𝑎) − 𝑇𝑆𝐾 (𝑠, 𝑎)) 𝜕𝑇𝑆𝐾 (𝑠, 𝑎)
𝜕𝑤𝑖

.

Here, 𝑤𝑖 are the parameters of the fuzzy system. Just as in the case of RL, one may wish to mitigate instability
via techniques such as experience replay and the usage of an actor-critic environment.

To give a theoretical foundation to our proposed algorithm, we include here an initial discussion on conver-
gence. First, we observe that theQ-learning algorithm is known to be convergent [43,44] under standard assump-
tions on the given Markov Decision Process (MDP). Additionally, NNs with various membership functions
are known to be universal approximators [45,46]. Combining the above results and the conclusions in [47,48], we
can approximate the Q function by the output of the NN, which leads to the convergence of Deep Q-learning
models. It is known that TSK fuzzy systems are universal approximators [49,50], i.e., they have similar approx-
imation properties to those of NNs. Together, the ideas above allow the conclusion that replacing the NN
in a DQN architecture with a TSK fuzzy system will retain the same properties as DQNs. In summary, the
TSK fuzzy system is an approximator of the Q function. Therefore, the Q-learning algorithm with TSK fuzzy
systems is convergent. The above theoretical motivation warrants a deeper investigation of the approximation
properties of RL TSK fuzzy systems as a topic for future research.

3.2. Case study: Reinforcement learning TSK system for Asteroid Smasher
3.2.1. Problem description
To test the algorithm, we created optimized TSK fuzzy systems through RL to play a variant of the game
Asteroids calledAsteroid Smasher (see Figure 1). Developed by theUniversity of Cincinnati for the Explainable
Fuzzy AI Challenge (XFC 2022), the game environment incorporates additional complexities to increase both
the difficulty and value of explainable automation. These include the addition of multiple agents, screen-wrap
for ships and hazards, and unique scenarios to test edge cases.
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Figure 1. Example of the Asteroid Smasher environment.

Figure 2. Simplified overview of the fuzzy inference system’s threat inputs and behavioral output.

While the primary metric for performance concerned the total number of asteroids destroyed, other metrics
included accuracy, number of lives lost, and execution speed. More importantly, the explainability of the
system proved crucial as the motivating factor for the test case. In pursuit of balancing AI explainability with
performance, TSK systems lending themselves to visualization and descriptions through natural language were
developed and optimized via the described learning algorithm.

3.2.2. System description
We created a base model comprised of fuzzy systems to serve as a foundation for optimization.

To balance score and execution time, each ship tracks distances and angles to immediate threats and potential
targets. These values take into account considerations such as screen wrap and object size. More importantly,
they serve as inputs to fuzzy systems that determine shooting, turning, and thrust behavior. A general overview
of this process is shown in Figure 2.

3.2.3. Learning algorithm
The employed algorithm for optimization approximates gradient descent by iteratively running scenarios and
altering TSK outputs to more closely resemble the best performer. This requires establishing a performant
objective function and additional hyperparameter tuning; the range of possible TSK output values, number
of iterations, and learning rate all vary based on configuration. However, the theoretical upside is a more
systematic approach to optimal performance when compared to approaches such as genetic algorithms. The
approach used for this project is described in Algorithm 1.

http://dx.doi.org/10.20517/ces.2023.11


Zander et al. Complex Eng Syst 2023;3:9 I http://dx.doi.org/10.20517/ces.2023.11 Page 7 of 16

Algorithm 1 Asteroid Smasher Iterative Learning

1: Initialize FIS
2: Set learning rate 𝛼
3: for each epoch do
4: Create/choose a scenario
5: Test scenario with the current FIS and save score in the interval [0, 1]
6: for i in range(k) do
7: Create a alteration vector h with adjustments to each TSK output parameter
8: Create a new fuzzy system by adding h to the baseline’s parameters
9: Test scenario with altered fuzzy system and save score in the interval [0, 1]
10: end for
11: Calculate maximum score difference 𝑠 = 𝑏𝑒𝑠𝑡 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
12: Create the new current FIS with 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝐼𝑆 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝐼𝑆 + (𝛼 ∗ 𝑠 ∗ ℎ)
13: end for

In other words, we created a number of slightly modified fuzzy systems per scenario and borrowed slightly
from the alterations made to the best performer. The degree to which the modification is added to the baseline
is a product of the alteration, the given learning rate, and the difference between the maximum score and
baseline. Some stability was gained by adding the last condition; scores that were only slightly better appeared
to warrant proportionally smaller adjustments.

Scenario creation constitutes an important component of this process. For some problems, this may be trivial,
but othersmay require consideration of the problem, goal, and available resources. To train for the competition,
highly difficult and random scenarios with a very large number of asteroids were generated in lieu of a battery
of scenarios for reasons primarily related to ease of implementation.

3.2.4. Experimental results
Applying the discussed iterative learning method resulted in a story of minor but noticeable performance
increase across key competition metrics such as score, win rate in difficult scenarios, and number of successful
hits on asteroids.

Performance comparisons of the base model, the product of optimization, and a model where TSK outputs
were randomly initialized are shown in Figure 3 and Figure 4. It is important to note that, in this application,
a manually tuned agent served as the starting point of optimization rather than the randomly initialized one.

Even a sizable rolling average across epochs still illustrates notable instability. Part of this is likely attributable to
the randomness innate to the extreme training scenarios. However, testing methods similar to those described
previously for increasing the stability of RL may constitute a key area of further research.

3.2.5. Explainability
An advantage of the FIS is its ability to encapsulate complex behavior in an interface that deals in partial
truths and natural language; functions and interactions that would prove difficult to interpret otherwise are
meaningfully organized in comprehensible fuzzy sets and rules. More fundamentally, dealing with partial
truths can prove more familiar and intuitive than crisp logic to a human expert.

In this case, the developed systems are comprised of a natural language rule set and associated fuzzy sets that
lend themselves to visualization. Figure 5 illustrates this with plots of antecedent fuzzy sets and 0𝑡ℎ order
outputs describing varying levels of ship thrust. Included is the associated rule set in which the relationships
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Figure 3. Comparisons of average game score and number of victories in challenging scenarios for the manually tuned model (base), the
product of reinforcement learning (RL), and randomly initialized models (random).

Figure 4. Rolling averages of several performance metrics throughout training.

between inputs and outputs are encoded in natural language. Similar systems were employed to determine the
relative value of asteroids as targets and dictating turning and shooting behaviors.

As previously discussed, the explainability of the FIS in applications such as control systems is already well
established. Rather than further clarifying this, the described algorithm andAsteroid Smasher example instead
serve to delineate and test an alternative tomore commonly employedmethods for the optimization of existing
FIS-based architectures. Successful application here offers experimental evidence to join the relatively scarce
literature on developing fuzzy systems with RL as opposed to historically prevalent approaches such as genetic
algorithms.

3.3. Case study: reinforcement learning ANFIS for classic control environments
3.3.1. Introduction to ANFIS
The intersection of fuzzy logic andRL stands to offermore than an alternativemethod of post-hoc optimization
for the former: notoriously opaque NN architectures also stand to benefit from integration with explainable
fuzzy systems. In other words, neuro-fuzzy systems offer a means for taking advantage of the strengths of arti-
ficial NNs while peering a little further into the black-box models that find widespread use in RL applications
and elsewhere.

To bolster experimental results in this domain, we tested an ANFIS [30] (Figure 6) onOpenAI’s classical control
environment CartPole [51]. An example of the environment is shown in Figure 7. The ANFIS extends the TSK
system by allowing the parameters of the fuzzy rules to be learned via gradient descent optimization rather

http://dx.doi.org/10.20517/ces.2023.11
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if thrust-dir is reverse and abs-vel-angle is forward and speed is fast then thrust is fast-reverse
if thrust-dir is reverse and abs-vel-angle is forward and speed is slow then thrust is reverse
if thrust-dir is reverse and abs-vel-angle is behind and speed is slow then thrust is slow-reverse
if thrust-dir is reverse and abs-vel-angle is behind and speed is fast then thrust is stop

if thrust-dir is forward and abs-vel-angle is forward and speed is fast then thrust is stop
if thrust-dir is forward and abs-vel-angle is forward and speed is slow then thrust is slow-forward
if thrust-dir is forward and abs-vel-angle is behind and speed is slow then thrust is forward
if thrust-dir is forward and abs-vel-angle is behind and speed is fast then thrust is fast-forward

Figure 5. Antecedent fuzzy sets, optimized TSK consequents, and associated rules for determining ship thrust.

Figure 6. Example ANFIS Structure [53] with 2 antecedents and 1 consequent.

than using fixed constants for the parameters of the antecedents and the consequences. Towards this end, the
ANFIS is combinedwith aNN to learn representations from the inputs, which are then fuzzified by the network.
Outputs of the ANFIS layers are calculated by multiplying the fuzzified output of the NN by antecedents of
rules. Then, the antecedents are multiplied by learnable parameters and summed to form the consequences.
In the case of multiple-consequent models where the output dimension is more than a single value, we used
a modified ANFIS structure: the Multioutput Adaptive Neuro-Fuzzy Inference System (MANFIS) [52]. This
method creates a separate rule base for each output dimension but follows the defuzzification process as a
typical ANFIS. This process is shown in Figure 8.

A NN of abstract shape is used and can be configured as desired. After passing the input through the NN, the

http://dx.doi.org/10.20517/ces.2023.11
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(a) Example of starting position.
(b) Example of state that would terminate the
episode.

Figure 7. Snapshots of states for the CartPole [51] environment.

Figure 8. Flowchart for ANFIS model. NN output undergoes fuzzy rule evaluation and normalization. Separately, network output is trans-
formed according to learned 1𝑠𝑡 order parameters and multiplied by the normalized rule outputs. These values are summed and given as
output.

output is expanded in dimensions to match the number of rules. This is then passed through the fuzzy rules to
calculate their firing levels prior to normalization along each output dimension. Then, in the case of a 1𝑠𝑡 order
ANFIS, the input is multiplied by a parameter, and a bias is added. If the 0𝑡ℎ order ANFIS is used, the input
is passed along to the next layer. Next, the normalized firing levels are multiplied by the inputs to form the
rule evaluation. Finally, the output is summed along each rule base to form the final output with the correct
dimension.

3.3.2. CartPole-v1
The CartPole-v1 environment has four variables for the input: the position of the cart, the velocity of the cart,
the angle of the pole, and the angular velocity of the pole. The expected output has two actions: move left and
move right. The job of the models is to learn and maximize the𝑄-values for each state to achieve a maximum
possible reward of 500, where, in each frame, the agent gets a reward of 1 if the cart and pole are within the
min and max values for each respective field. A reward of 500 means that during 500 frames, the agent is able
to balance the pole. To perform an action in the environment, we take the action with the maximum 𝑄-value.

http://dx.doi.org/10.20517/ces.2023.11
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Figure 9. Comparisons between ANFIS DQN and DQN.

3.3.3. ANFIS DQN vs DQN
We compare the ANFIS DQN architecture proposed above with a standard DQN architecture. Both models
are equipped with a Double DQN structure with soft updates and have a similar number of trainable param-
eters; 17,410 for the DQN and 17,407 for the ANFIS DQN. Both models are also equipped with the same
optimization method, learning rate, etc., and trained for 100,000 iterations. The appendix contains parameters
and hyperparameters.

3.3.4. Experimental results
For testing the results of the two models, we look at the mean reward of 10 testing environments every 10,000
iterations. The goal is to have the agent hit a mean reward of 500 for all 10 test environments.

From Figure 9, we can see that both models can learn the environment. In some cases, we can see that the
ANFIS DQN model learns the environment quicker, such as in seed 9 and seed 42. While in other cases, it
seems to perform about as well as the DQN, such as in seeds 109 and 131. The most interesting case is in
seed 42, where the ANFIS DQN and DQN solve the environment in the same number of steps, but the ANFIS
DQN learns it with more stability while not falling off after learning and continues to have a solution after
60,000 iterations. This trend also appears in seed 9, where after 70,000 iterations, the ANFIS DQN has a stable
solution. From these tests, we can see that the ANFIS DQN is able to match, if not slightly outperform, the
DQN agent.

3.3.5. Explainability
As suggested, a primary advantage of this approach over non-fuzzy DQN concerns the capacity for explain-
ability; one may visualize the fuzzy rule components before and after training to help in understanding the
changes made during optimization and the resulting behavior.

To illustrate this, an example concerning the approximation of a mathematical function is shown in Figure 10.
In this case, Gaussian functions corresponding to fuzzy rules expand and contract following gradient descent
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(a) Rule base before training (b) Rule base after training
(c)Results of function approxima-
tion

Figure 10. Comparison of rules for approximating a function before and after optimization. The straight line represents a rule that becomes
insignificant after training.

to afford a close estimate of the function. Notably, one Gaussian function depicted by the straight line in
Figure 10b becomes insignificant after training. Not only does this indicate potential robustness to network
overparameterization, but the ability to visualize the components of the system in this way also highlights a
propensity for troubleshooting architectural design and training.

The CartPole example represents a jump in complexity that corresponds with increased challenges to helpful
visualization; the 32 rules for movement in either direction stand to benefit from a more directed form of
presentation. However, the same principles of visual feedback for training and resulting behavior apply. Both
before and after training, onemay observe the rule base of the ANFIS DQN and extract important information
about the decisions of the agent.

We can see how some of the behaviors are shaped by analyzing the distribution and coverage of antecedents in
Figure 11. In the current visualization, it may be hard to explain all aspects of interaction, but we can investigate
some possible behaviors. The blue curves indicate the rules for moving the cart to the left, and the red curves
describe movement to the right. The domain is the domain for input space from CartPole. Each input that
is passed into the rules comes from the output of a NN. The blue curves are related to moving the cart to the
left, and the red curves for moving the cart to the right. While we cannot see exactly what inputs the rules are
related to, we can see some trends that indicate what each rule may be impacting. In the beginning, both sets
of colored curves are fairly uniform around the origin. After training, we can see that they have spread out
to cover more domains, and some curves are wider. Some interesting things to note are there are two inputs
in the observation space for cart velocity and pole angle. Negative values are associated with the pole and the
cart moving to the left. We can see how some of the blue curves moved further to the left, and the red curves
moved further to the right. This is because the intelligent action of moving the cart the opposite way the pole
is moving can help correct the position of the pole. These small insights can give us some explanation as to
what the network is doing when making decisions. With a better visualization, we could see what each rule is
specifically looking at in the input related to the output.

It should be noted that there is also much unique potential for experimentation with novel explainability mech-
anisms. Further research of ANFIS DQN in this vein could support efforts in quantifying changes to rules
after training, identifying rules that become insignificant, highlighting substantial activations for any one state,
and exploring aggregations that describe overall trends in behavior. While similar ideas have certainly been
explored to aid the interpretability of traditional NNs, the capacity for visualization offered by FIS-based ar-
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(a) Rule base before training (b) Rule base after training

Figure 11. Comparison of rule antecedent distributions for moving left (blue) and right (red) in the CartPole environment. Input consists of
encoded cart position, cart velocity, pole angle, and pole angular velocity.

chitectures represents a significant opportunity due to the reasons discussed and the relative lack of existing
literature in this domain specifically.

4. CONCLUSION
In the present paper, we study fuzzy systems controlled via RL andmultiple applications of this framework. The
first environment considered is the Asteroid Smasher game in which the associated agent made use of fuzzy
systems trained via an actor-critic RL algorithm. This agent won XFC 2022, an Explainable AI competition
emphasizing fuzzy logic. We also compared ANFIS DQN architectures with classic DQN architectures and
demonstrated that the fuzzy systems perform similarly or, in some cases, better than DQN systems. More
significantly, we highlighted the amenability of TSK-based architectures to explainability and visualization
when compared to more traditional NNs.

Grounds for further research include an exploration of possible improvements to the stability of the RL al-
gorithm used to tackle the Asteroid Smasher environment. With respect to ANFIS architectures, additional
exploration of applications, network architectures, membership functions, and unique explainability mecha-
nisms could also prove valuable for both performance and explainability. In both cases, there are extensions
such as improved experience replay, dueling DQN, and distributional learning that could afford improved
results.

The most significant takeaway concerns the relatively underinvestigated and mutually beneficial relationship
between RL and fuzzy logic. Despite trends in the former and the value that each stands to offer the other,
alternative methods are more commonly employed to optimize fuzzy systems. Moreover, promising neuro-
fuzzy frameworks face relative obscurity in light of the steadfast need for trust and interpretability in domains
where NNs are pervasive. Consequently, additional experimentation serves to afford value when building
performant and explainable applications.
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APPENDIX: ANFIS AND DQN HYPERPARAMETERS
Most hyperparameters were taken from previous work/recommended defaults of libraries

1. DQN Structure
• 2 linear layers with 128 nodes and ReLU activation functions

2. ANFIS Structure
• 2 linear layers with 128, 127 nodes, respectively, and ReLU activation functions
• 16 rules, with the mean of the Gaussian membership function sampled from the Normal distribution
and scaled by 2 to increase rule-base coverage, and the standard deviations sampled from the uniform
distribution

• Learnable parameters/biases for summation sampled from the Normal distribution and scaled by 2
3. Optimizer: ADAM
4. Learning rate: .001
5. Gamma discount factor: 0.99
6. Max replay memory size: 10,000
7. Batch Size: 128
8. Begin training after: 1,000 iterations
9. Epsilon start: 1.0
10. Epsilon end: .01
11. Epsilon decay: After 20,000 iterations in a linear fashion
12. Gradient clipping norm: 10
13. Target network update iterations: 100
14. Tau soft update parameter: .001
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