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Abstract
Aim: Genetic polymorphisms of human leukocyte antigen (HLA) class II molecules are associated with chronic 
hepatitis B virus (HBV) infection. We aimed to investigate the impacts of HLA-II haplotypes on viral evolution and 
the risks of HBV-caused liver diseases.

Methods: HLA-DR-DQ-DP haplotypes were estimated in 1210 healthy controls, 296 HBV clearance subjects, 301 
asymptomatic hepatitis B surface antigen carriers, 770 chronic hepatitis B patients, 443 HBV-related liver cirrhosis 
(LC) patients, and 1037 HBV-related hepatocellular carcinoma (HCC) patients. HBV mutations were determined 
by sequencing. The associations of HLA-DR-DQ-DP haplotypes with viral mutations and the risks of liver diseases 
were assessed by multivariate logistic regression.
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Results: Compared to HBV-free subjects, the haplotypes CCAACG, CCGACG, TCAATA, and TCGATA were 
associated with decreased HCC risk, with an odds ratio (OR) [95% confidence interval (CI)] of 0.62 (0.40-0.95), 
0.60 (0.39-0.92), 0.73 (0.54-0.98), and 0.58 (0.42-0.78), respectively. CCAACG, CCGACG, and TCAATA were 
significantly associated with decreased frequencies of the HCC-risk HBV mutations: preS1 deletion, APOBEC-
signature HBV mutations in the core promoter and preS regions, A51C/T, G104C/T, and G146C/T. TCGATA and 
TTAACG were associated with increased LC risk, with an OR (95%CI) of 1.54 (1.03-2.30) and 2.23 (1.50-3.33), 
respectively. However, TCGATA and TTAACG were not consistently associated with the cirrhosis-risk HBV 
mutations.

Conclusion: CCAACG, CCGACG, and TCAATA are inversely associated with HCC risk, possibly because they are 
involved in creating an immune microenvironment attenuating the generation of HCC-risk HBV mutations. 
TCGATA and TTAACG might predispose the polarity of immunity towards Th17 isotype related to LC.

Keywords: Chronic hepatitis B, HBV mutation, hepatocellular carcinoma, human leukocyte antigen class II, 
haplotype

INTRODUCTION
Globally, primary liver cancer (PLC) is the sixth most common cancer and the third leading cause of 
cancer-related deaths, with an incidence-to-mortality ratio of nearly 1:1 (905,677 vs. 830,180 in 2020)[1]. 
China contributes to more than half of global PLC cases. The age-standardized mortality rate of PLC is 
higher in the middle-aged (40-64 years) population than in the elderly (≥ 65 years) population, in contrast to 
the other major cancers in China[2]. Hepatocellular carcinoma (HCC) accounts for 94.6% of PLC in eastern 
China. Although immunization of infants against hepatitis B virus (HBV) has reduced their risk of 
developing HCC, 87.5% of HCC is attributed to chronic HBV infection in eastern China[3,4]. There are 
approximately 94 million subjects chronically infected with HBV in mainland China[5]. We speculated that 
32% male and 9% female subjects with chronic HBV infection might die of HCC before the average life (75 
years old) in mainland China, based on the epidemiological data in Taiwan[6]. The key issue to decrease 
HCC-caused premature death is to identify the HBV-infected subjects who are more likely to develop HCC 
or postoperative relapse, which is essential for specific prophylaxis of this deadly malignancy.

HBV-induced hepatocarcinogenesis approximately takes 40-50 years. During this process, HBV experiences 
evolution via accumulating mutations in its genome, especially in the core promoter and the preS 
regions[7,8]. HBV is more apt to mutating than other DNA viruses due to the lack of proofreading function of 
the HBV genome during the reverse transcription process of pregenomic RNA, leading to a mutation rate of 
2.2 × 10-5 substitutions/site/month in viral replication[9]. On the other hand, inflammatory molecules such as 
interleukin (IL)-6 trans-activate the expression of apoprotein B mRNA-editing enzyme catalytic 
polypeptides (APOBEC) 3B and inhibit the expression of uracil DNA glycosylasev, resulting in an increase 
in HCC-related viral mutations[10,11]. These HBV mutations may change viral replication, pathogenicity, and 
viral epitope that affect immune response, thus promoting the development of HCC[12-15]. Human leukocyte 
antigen (HLA) is mainly composed of HLA class I and class II molecules. HLA class I molecules may play a 
role in eliminating HBV-infected hepatocytes by presenting HBV peptides to CD8+ cytotoxic T 
lymphocytes. HLA class II molecules, which consist of three isotypes termed HLA-DR, HLA-DQ, and 
HLA-DP, can bind and present exogenous antigens to CD4+ T cells, thus initiating immune response. 
Several genome-wide association studies have shown that single nucleotide polymorphisms (SNPs) affecting 
the expression of HLA-II are associated with chronic HBV infection and HBV-related acute-on-chronic 
liver failure[16-18]. Our previous studies demonstrated that the genetic polymorphisms of HLA-DP, HLA-DQ, 
and HLA-DR are closely associated with chronic HBV infection, and the progression of liver diseases 
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especially HBV-related HCC[19-21]. Several haplotypes of HLA class II genes were significantly associated with 
the response to an HBV vaccine[22]. However, few studies mentioned the association of HLA haplotypes with 
the risks of HBV-induced liver diseases. Here, we carried out an epidemiological study to investigate the 
association of haplotypes composed of several important HLA class II functional SNPs with the outcome of 
chronic HBV infection.

METHODS
Study subjects
This case-control study enrolled healthy controls, HBV natural clearance subjects, asymptomatic hepatitis B 
surface antigen (HBsAg) carriers (ASCs), chronic hepatitis B (CHB) patients, liver cirrhosis (LC) patients, 
and HBV-infected subjects with HCC. Healthy controls were recruited in subjects who received routine 
physical examination at the first affiliated hospital (Shanghai, China) of this university between September 
2009 and August 2017. All healthy controls had no history of HBV and/or HCV infection and other liver 
diseases. HBV natural clearance subjects were defined as those who were seronegative for HBsAg and HBV 
DNA but seropositive for antibodies to both HBsAg and hepatitis B virus core antigen without HBV 
vaccination history. HBV natural clearance subjects and ASCs were recruited from our community-based 
epidemiological survey for HBV-infected individuals in Shanghai between September 2009 and August 
2017. The patients with CHB, LC, and HCC were recruited from the first affiliated hospital between 
September 2009 and September 2017. The diagnostic criteria of ASCs, CHB, LC, and HCC were described 
in our previous studies[7,8]. At enrollment, we excluded CHB patients whose medical records showed a 
history of having received antivirals such as interferon, lamivudine, or adefovir or immunosuppressive 
treatments.

HLA class II genes genetic polymorphisms selection, genotyping, and haplotypes estimation
The haplotypes of HLA were estimated using tag SNPs. Six tag SNPs were involved in this study. rs3135338 
(6400 bp upstream of HLA-DRA) and rs477515 (12 kb upstream of HLA-DRB1) were selected because they 
have been associated with chronic HBV infection and the risk of HBV-HCC[19]; rs2856718 and rs9275319 
(located at the intergenic region between HLA-DQA2 and HLA-DQB1 region) were selected because they 
have been associated with the risk of chronic HBV infection and HCC in Chinese, Korean, and Japanese 
populations[20,23-26]; and rs3077 [located in the 3’ untranslated region (UTR) of HLA-DPA1] and rs9277535 
(in the 3’ UTR of HLA-DPB1) were selected because they have been associated with the risk of chronic HBV 
infection and HCC[16,21,23]. Genomic DNA samples were extracted from peripheral lymphocytes using the 
blood genomic DNA extraction system (Tiangen, Beijing, China). HLA SNPs were genotyped using 
fluorescent-probe real-time quantitative PCR as previously described[19-21]. The sequences of primers and 
probes and PCR programs are shown in Supplementary Table 1. Hardy-Weinberg equilibrium for these six 
SNPs above was examined online (http://ihg.gsf.de/ihg/snps.html). The rates of successful genotyping calls 
were 98.2%-98.8% for these six SNPs.

HBV genotyping and viral mutation analysis
Extraction and quantification of HBV DNA and HBV genotyping was performed via multiplex and nested 
multiplex PCR according to our previously established methods[5]. The HBV core promoter region (nt1613-
nt1849) and preS region (nt2848-nt155) were amplified and HBV mutations were determined by nested 
PCR as previously described[7,8]. The total numbers of APOBEC-signature viral mutations (C>T + C>G in 
TCW motif and G>A + G>C in WGA motif) in the HBV genome were calculated as previously 
described[10,11]. The APOBEC-signature mutation detected at ≥ 1 was defined as positive.

2021133-SupplementaryMaterials.pdf
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Statistical analysis
The “haplo.stats” package in R software (version 4.0.4) was used for assessing the association of HLA-DR-
DQ-DP haplotype and viral mutations and disease status. The “haplo.score” function was used to estimate 
the frequency of each haplotype between different groups. The “haplo.glm” function was used for 
constructing the regression model of a trait on haplotype effects[27]. Haplotypes with frequencies higher than 
2.5% in each group were selected, and the most frequent haplotype was chosen as the reference. Here, we 
chose TCAACG as the wild-type haplotype.

Differences in continuous variables such as age and serum HBV DNA load between two or more groups 
were evaluated by Student’s t-test and analysis of variance (ANOVA). Difference in categorical variables 
such as gander were evaluated by χ2 test. For the associations of haplotypes with the occurrence of HCC, 
clearance, persistence, and mutations of HBV, a logistic regression model was employed to calculate the 
odds ratio (OR) and 95% confidence interval (CI) in comparison to a common reference haplotype, 
adjusting for age and gender. All statistical tests were two-sided and performed using R statistical software 
(The R Foundation for Statistical Computing, Wien, Austria) and SPSS21.0 software (Statistical Product and 
Service Solutions, Chicago, USA). A P value of < 0.05 was considered statistically significant.

RESULTS
Characteristics of study subjects enrolled in the genotyping for HLA class II genes and haplotypes 
estimation
In total, 1210 healthy controls, 296 HBV natural clearance subjects, 301 ASCs, 770 CHB patients, 443 LC 
patients, and 1037 HCC patients were enrolled in this study. Sex proportion was not matched among 
healthy controls, HCC-free HBV-infected subjects, and HCC patients. Healthy controls were older than 
HCC-free HBV-infected subjects and HCC patients [Table 1]. Therefore, the OR values were all adjusted 
for gender and age. Haplotype was identified by the order of rs3135338, rs477515, rs2856718, rs9275319, 
rs3077, and rs9277535. The haplotypes with the frequencies > 2.5% (TCAACG, CCAACG, CCGACG, 
TCAACA, TCAATA, TCGACG, TCGATA, and TTAACG) were selected in the analyses.

Associations of HLA class II haplotypes with the risk of HCC
Compared to HBV-free subjects (healthy controls and HBV natural clearance subjects), the haplotypes 
CCAACG, CCGACG, TCAATA, and TCGATA were significantly associated with a decreased risk of HCC. 
In the genotype B HBV-infected subjects, TCAATA and TCGATA were associated with a decreased risk of 
HCC. In the genotype C HBV-infected subjects, TCGATA was associated with a decreased risk of HCC 
[Table 2]. Compared to healthy controls, CCAACG, TCAATA, and TCGATA were significantly associated 
with a decreased risk of HCC. The same was true for the genotype C HBV-infected subjects. Compared to 
the HBV natural clearance subjects, CCGACG was also associated with a decreased risk of HCC. This result 
was repeated in the genotype C HBV-infected subjects [Supplementary Table 2]. Compared to the HBV-
infected subjects without HCC, CCAACG was associated with a decreased risk of HCC, while TCAACA 
was associated with a decreased risk of HCC in the genotype B HBV-infected subjects [Table 3].

Associations of HLA class II haplotypes with the risks of chronic HBV infection, CHB, and LC
CCGACG was identified to be associated with a decreased risk of chronic HBV infection, compared to the 
HBV natural clearance subjects [Supplementary Table 3]. The Associations of HLA class II genes haplotypes 
with the risks of CHB and LC are shown in Table 4. Compared to ASCs, TCAACA and TTAACG were 
associated with an increased risk of CHB and LC. These effects were solely evident in the genotype C HBV-
infected subjects. In addition, TCGACG was also associated with an increased risk of CHB and LC in the 
genotype C HBV-infected subjects. TCGATA and TTAACG were significantly associated with an increased 
risk of LC, compared to ASCs and CHB patients. Furthermore, TTAACG was significantly associated with 

2021133-SupplementaryMaterials.pdf
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Table 1. The characteristics of study subjects enrolled in HLA class II genes haplotypes analysis

HCC-free HBV-infected subjects (n = 1514)
Characteristic Healthy controls 

(n = 1210)
HBV natural clearance 
subjects (n = 296) ASCs (n = 301) CHB (n = 770) LC (n = 443)

HBV-infected subjects 
with HCC (n = 1037) P value

Male (%) 870 (71.90) 166 (56.08) 177 (58.80) 468 (60.78) 325 (73.36) 869 (83.80) < 0.01a,b,c

Age, years, mean ± SD 53.06 ± 17.49 58.54 ± 11.76 45.31 ± 10.73 53.63 ± 12.68 52.08 ± 11.02 52.30 ± 11.27 < 0.01a, 0.11b, < 0.01c

HBV genotype (%)

B - - 89 (33.21) 90 (23.38) 53 (21.20) 102 (15.38)

C - - 179 (66.79) 295 (76.62) 197 (78.80) 561 (84.62)

< 0.01b

HBV DNA load, log10 copies/mL, mean ± SD - - 3.45 ± 1.38 3.79 ± 1.70 3.05 ± 2.09 3.11 ± 1.86 0.01b

ALT mean ± SD 21.94 ± 14.72 25.45 ± 25.2 26.29 ± 17.53 92.73 ± 310.79 89.52 ± 151.31 72.08 ± 168.33 < 0.01a,c, 0.16b

aBetween HBV-infected subjects with HCC and healthy controls. bBetween HBV-infected subjects with HCC and HCC-free HBV-infected subjects. cBetween HCC-free HBV-infected subjects and healthy controls. 
ASCs: Asymptomatic hepatitis B surface antigen carriers; CHB: chronic hepatitis B; HBV: hepatitis B virus; HCC: hepatocellular carcinoma; LC: liver cirrhosis; SD: standard deviation; ALT: alanine aminotransferase.

an increased risk of LC in genotype C or B HBV-infected subjects [Table 5].

Associations of HLA class II genes haplotypes with LC-related and HCC-related HBV mutations
We successfully amplified and sequenced the core promoter and preS regions from 1311 (83.72%) and 1161 (74.14%) of all HBV-infected subjects, respectively 
(GenBank accession Nos. JX556943-JX559050, KC934199-KC934744, and KJ019219-KJ019299). Supplementary Table 4 and 5 show the associations of HBV 
mutations with the risk of HCC and LC after the adjustment for age, gender, and HBV DNA load. A1762T, G1764A, A1762T/G1764A, C9A, A30T, T48A, 
T53C, C75A, G104C, C108T, A134C, G146C, and A3215C were significantly associated with an increased risk of HCC in both genotype B and C HBV-infected 
subjects. Interestingly, APOBEC-signature mutations in the core promoter and the PreS regions, C1653T, T1674C, T1753C, A1846T, C6A, A51T, PreS1 
deletion, PreS2 deletion, and PreS deletion were significantly associated with an increased risk of HCC solely in genotype C HBV-infected subjects. APOBEC-
signature mutations in the core promoter and the PreS regions, T1753C, A1762T, G1764A, C1766T, A1762T/G1764A, T1768A, C6A, A3215C, and PreS1 
deletion were significantly associated with an increased risk of LC in both genotype B and C HBV-infected subjects. C1653T, A1726C, G1809A, C9A, T48A, 
A51C/T, T2857C, and PreS2 deletion were significantly associated with an increased risk, whereas T1674C/G and C75A were associated with a decreased risk, 
of LC solely in genotype C HBV-infected subjects.

The associations of HLA class II haplotypes with the frequencies of these LC-related HBV mutations are shown in Supplementary Table 6. CCGACG was 
associated with an increased frequency of T1674C/G. TCGACG was associated with increased frequencies of C6A, C1653T, and C1766T and a decreased 
frequency of C75A. TCGATA was associated with an increased frequency of T1674C/G. TTAACG was associated with increased frequencies of T1674C/G and 
T48A.

2021133-SupplementaryMaterials.pdf
2021133-SupplementaryMaterials.pdf
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Table 2. Associations of HLA class II genes haplotypes with the risk of HCC

HBV-HCC patients vs. HBV-
free subjectsHBV 

genotype Haplotype HBV-free subjects (healthy controls + HBV 
natural clearance subjects) (%)

HBV-HCC 
patients (%)

AOR (95%CI) P value

Subtotal TCAACG 19.02 27.60 1

CCAACG 3.80 3.02 0.62 (0.40-0.95) 0.03

CCGACG 3.55 3.44 0.60 (0.39-0.92) 0.02

TCAACA 5.65 5.98 0.79 (0.57-1.09) 0.15

TCAATA 7.51 6.93 0.73 (0.54-0.98) 0.04

TCGACG 7.58 10.13 1.05 (0.77-1.41) 0.77

TCGATA 7.12 6.21 0.58 (0.42-0.78) < 0.01

TTAACG 5.03 4.03 0.85 (0.58-1.24) 0.40

Genotype B TCAACG 19.02 33.14 1

CCAACG 3.80 5.45 1.28 (0.80-2.07) 0.73

CCGACG 3.55 5.62 0.63 (0.34-1.18) 0.51

TCAACA 5.65 1.85 0.80 (0.51-1.24) 0.06

TCAATA 7.51 4.90 0.48 (0.29-0.80) 0.02

TCGACG 7.58 9.94 1.01 (0.67-1.52) 0.75

TCGATA 7.12 3.38 0.62 (0.40-0.96) 0.01

TTAACG 5.03 0.86 0.76 (0.45-1.28) 0.06

Genotype C TCAACG 19.02 27.86 1

CCAACG 3.80 3.45 0.82 (0.54-1.23) 0.10

CCGACG 3.55 3.01 0.75 (0.51-1.10) 0.06

TCAACA 5.65 5.20 0.74 (0.52-1.04) 0.13

TCAATA 7.51 7.18 0.80 (0.60-1.07) 0.08

TCGACG 7.58 10.02 1.06 (0.80-1.41) 0.88

TCGATA 7.12 5.88 0.61 (0.45-0.82) < 0.01

TTAACG 5.03 4.44 0.96 (0.69-1.34) 0.83

AOR: Odds ratio adjusted for age and gender; CI: confidence interval; HBV: hepatitis B virus; HCC: hepatocellular carcinoma; HLA: human 
leukocyte antigen.

The associations of HLA class II haplotypes with the frequencies of the HCC-related HBV mutations are 
shown in Table 6. CCAACG was associated with a decreased frequency of the preS1 deletion. CCGACG 
was associated with decreased frequencies of APOBEC-signature mutations in both regions, A51C/T, 
G104C/T, and G146C/T. TCAATA was associated with a decreased frequency of APOBEC-signature 
mutations in the core promoter region.

DISCUSSION
The outcomes of chronic HBV infection depend on two aspects: viral genotype and host immunity. 
Compared with genotype B HBV-infected subjects, genotype C was more apt to cause chronic infection[28]. 
HLA-II whose genes encode both the alpha and beta chains has been proven to be the major immune 
factors affecting the outcomes of HBV infection[16-26]. HLA-II molecules are normally expressed on antigen 
presenting cells including Kupffer cells, the resident macrophages in liver, and play key roles in the 
presentation of viral antigens to CD4+ T helper (Th) lymphocytes. Th1-mediated immune response 
facilitates HBV clearance and inhibits the development of HCC, while Th2-, Th22-, Th17-, and Treg-related 
inflammation may predispose HBV persistence, poor prognosis of HBV-related acute-on-chronic liver 
failure, and cirrhosis[29-31]. Genetic predisposition of the three genes HLA-DR, HLA-DQ, and HLA-DP affects 
the host immunity and inflammation, mostly via affecting their expression. The genotypes that tend to 
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Table 3. Associations of HLA class II genes haplotypes with HBV-infected subjects with HCC and HBV-infected subjects without HCC

HBV-infected subjects with HCC vs. HBV-
infected subjects without HCCGenotype Haplotype HBV-infected subjects 

without HCC (%)
HBV-infected subjects 
with HCC (%)

AOR (95%CI) P value

Subtotal TCAACG 25.61 27.60 1

CCAACG 3.91 3.02 0.65 (0.44-0.97) 0.04

CCGACG 3.36 3.44 0.95 (0.64-1.40) 0.79

TCAACA 5.62 5.98 0.93 (0.67-1.28) 0.63

TCAATA 6.78 6.93 1.01 (0.75-1.35) 0.96

TCGACG 9.67 10.13 0.88 (0.67-1.15) 0.36

TCGATA 6.05 6.21 0.93 (0.69-1.24) 0.62

TTAACG 4.77 4.03 0.77 (0.56-1.06) 0.10

Genotype B TCAACG 27.47 33.14 1

CCAACG 7.22 5.45 0.61 (0.25-1.50) 0.28

CCGACG 3.21 5.62 1.51 (0.49-4.64) 0.47

TCAACA 6.30 1.85 0.29 (0.10-0.87) 0.03

TCAATA 4.71 4.90 0.62 (0.23-1.68) 0.35

TCGACG 10.05 9.94 1.07 (0.50-2.29) 0.86

TCGATA 6.79 3.38 0.44 (0.18-1.06) 0.07

TTAACG 4.21 0.86 0.29 (0.08-1.01) 0.05

Genotype C TCAACG 24.78 27.86 1

CCAACG 7.22 3.45 0.76 (0.43-1.34) 0.34

CCGACG 3.33 3.01 0.67 (0.39-1.13) 0.13

TCAACA 4.51 5.20 1.01 (0.59-1.73) 0.75

TCAATA 7.28 7.18 0.84 (0.55-1.26) 0.38

TCGACG 9.79 10.02 0.78 (0.53-1.14) 0.30

TCGATA 5.75 5.88 0.85 (0.55-1.32) 0.55

TTAACG 5.16 4.44 0.77 (0.50-1.20) 0.24

AOR: Odds ratio adjusted for age and gender; CI: confidence interval; HBV: hepatitis B virus; HCC: hepatocellular carcinoma; HLA: human 
leukocyte antigen.

upregulate their expression upregulate their immune responses[19,32]. However, it remains a great challenge to 
know what kinds of expression patterns of HLA-DR, HLA-DQ, and HLA-DP contribute to the polarity 
towards Th1 or other Th isotypes.

In this study, we found that the haplotype CCAACG with a “mutation” at HLA-DR rs3135338 and “wild-
types” at other five SNPs was significantly associated with a decreased risk of HCC, compared to HBV-free 
subjects and HBV-infected subjects without HCC, indicating the upregulation of HLA-DRA might 
predispose the Th1 response to reduce the risk of HCC. Similarly, TCAATA with two “mutations” at HLA-
DP functional SNPs rs3077 and rs9277535 was significantly associated with a decreased risk of HCC 
compared to HBV-free subjects, indicating an increased transcription of HLA-DPA1 and HLA-DPB1 in 
normal liver might predispose the Th1 immune response too. Interestingly, TCAACA with one “mutation” 
at HLA-DP rs9277535 was associated with an increased risk of benign liver diseases (CHB + LC) compared 
to ASCs, possibly because HLA-DPB1 in normal liver predisposes to Th2-, Th22-, Th17-, and Treg-related 
inflammation. TTAACG with one “mutation” at rs477515 was associated with an increased risk of LC 
compared to ASCs and CHB patients, indicating that high expression of HLA-DRB1 alone might be 
sufficient to induce the polarity towards higher Th17/Treg ratio, which is related to HBV-caused liver 
fibrosis[19,31,33]. Interestingly, TCGATA with one “mutation” at HLA-DQ rs2856718 and two “mutations” at 
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Table 4. Associations of HLA class II genes haplotypes with the risk of CHB and LC

CHB and LC vs. ASCs
Genotype Haplotype ASCs (%) CHB and LC (%)

AOR (95%CI) P value

Subtotal TCAACG 28.77 23.32 1

CCAACG 4.68 4.20 0.93 (0.51-1.68) 0.92

CCGACG 5.21 2.96 0.75 (0.42-1.34) 0.41

TCAACA 2.40 6.17 2.43 (1.16-5.11) 0.03

TCAATA 8.05 6.36 1.01 (0.63-1.63) 0.87

TCGACG 8.06 9.78 1.46 (0.91-2.35) 0.13

TCGATA 5.29 5.86 1.14 (0.70-1.86) 0.54

TTAACG 3.73 5.69 1.77 (1.01-3.07) 0.04

Genotype B TCAACG 26.98 24.44 1

CCAACG 9.19 7.47 1.23 (0.44-3.47) 0.66

CCGACG 2.44 3.08 -

TCAACA 5.91 8.33 1.47 (0.45-4.74) 0.62

TCAATA 6.11 4.56 1.06 (0.32-3.44) 0.93

TCGACG 11.84 7.33 0.66 (0.25-1.71) 0.17

TCGATA 9.33 6.91 0.93 (0.39-2.22) 0.95

TTAACG 5.28 5.70 0.79 (0.28-2.17) 0.63

Genotype C TCAACG 27.18 20.21 1

CCAACG 3.99 3.21 0.77 (0.31-1.91) 0.70

CCGACG 5.67 3.10 0.65 (0.32-1.32) 0.32

TCAACA 1.55 4.98 3.84 (1.06-13.85) 0.04

TCAATA 9.76 6.78 1.00 (0.53-1.85) 0.91

TCGACG 6.47 11.20 2.63 (1.32-5.22) < 0.01

TCGATA 4.41 5.91 1.55 (0.71-3.40) 0.23

TTAACG 2.98 6.52 4.16 (1.60-10.81) < 0.01

AOR: Odds ratio adjusted for age and gender; CI: confidence interval; ASCs: asymptomatic hepatitis B surface antigen carriers; CHB: chronic 
hepatitis B; LC: liver cirrhosis; HLA: human leukocyte antigen.

HLA-DP rs3077 and rs9277535 was significantly associated with a decreased risk of HCC and an increased 
risk of LC [Tables 2 and 5], possibly because the co-expression of HLA-DQ, HLA-DPA1, and HLA-DPB1 
might contribute to the polarity towards higher Th9- and Th17-mediated immune responses in liver. Th17 
cells differentiate from Th0 naïve T cells in response to transforming growth factor β1 and interleukin-6, 
which drive the development of liver fibrosis[34]. HBV-specific Th9 cells are decreased in HBV-related HCC 
patients[35]. Thus, the haplotypes of HLA-DR, HLA-DQ, and HLA-DP might predispose the polarity of 
immune response upon HBV infection and even the consequences of chronic HBV infection.

An insufficient and persistent antiviral immune reaction can contribute to the generation of the HBV 
mutations during HBV evolution. We hypothesize that different expression profiles of HLA-DR, HLA-DQ, 
and HLA-DP might affect the development of HCC or LC via influencing the generation of HCC- or LC-
related HBV mutations. In this study, the haplotypes promoting HBV persistence were found to be 
associated with a higher prevalence of HCC-risk HBV mutations, indicating that the effect of the haplotypes 
on the development of HCC might be indirectly influenced by the generation of HCC-risk HBV mutations. 
The immune polarity regulated by the expression profile of HLA isotypes might maintain the 
proinflammatory microenvironment for the generation and immune selection of HCC-risk HBV 
mutations. APOBECs whose expressions are trans-activated by IL-6 and other inflammatory factors can 
cause APOBEC-signature mutations in the HBV genome[10]. APOBEC-signature mutations can promote the 
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Table 5. Associations of HLA class II genes haplotypes with the risk of LC

LC vs. ASCs and CHB
Genotype Haplotype ASCs and CHB (%) LC (%)

AOR (95%CI) P value

Subtotal TCAACG 25.36 21.78 1

CCAACG 4.36 4.53 1.20 (0.72-1.99) 0.49

CCGACG 3.37 3.38 1.35 (0.79-2.31) 0.28

TCAACA 5.00 6.45 1.41 (0.90-2.23) 0.14

TCAATA 6.99 5.55 0.92 (0.59-1.45) 0.73

TCGACG 8.86 10.55 1.39 (0.95-2.04) 0.09

TCGATA 5.30 7.21 1.54 (1.03-2.30) 0.03

TTAACG 4.48 7.54 2.23 (1.50-3.33) < 0.01

Genotype B TCAACG 28.28 17.99 1

CCAACG 8.10 7.19 1.49 (0.49-4.53) 0.49

CCGACG 2.39 3.46 2.18 (0.48-10.02) 0.32

TCAACA 7.90 6.23 0.85 (0.29-2.54) 0.77

TCAATA 5.34 2.49 0.59 (0.09-3.87) 0.59

TCGACG 9.52 8.79 1.61 (0.53-4.83) 0.4

TCGATA 8.54 6.42 1.05 (0.34–3.30) 0.93

TTAACG 3.21 11.89 3.87 (1.35-11.13) 0.01

Genotype C TCAACG 21.62 21.53 1

CCAACG 3.96 3.21 0.79 (0.29-2.12) 0.64

CCGACG 3.94 3.58 1.00 (0.46-2.18) 0.99

TCAACA 3.51 5.47 1.50 (0.68-3.33) 0.31

TCAATA 8.52 5.78 0.75 (0.39-1.43) 0.38

TCGACG 9.73 10.8 1.19 (0.68-2.07) 0.71

TCGATA 4.41 7.12 1.45 (0.78-2.73) 0.24

TTAACG 5.17 7.13 1.88 (1.05-3.35) 0.03

AOR: Odds ratio adjusted for age and gender; CI: confidence interval; ASCs: asymptomatic hepatitis B surface antigen carriers; CHB: chronic 
hepatitis B; LC: liver cirrhosis; HLA: human leukocyte antigen.

Table 6. Significant associations of HLA class II genes haplotypes with frequencies of HCC-associated HBV mutations

Haplotype HCC-associated HBV mutation AOR (95%CI) P value

TCAACG 1.00

CCAACG preS1 deletion 0.34 (0.12-0.94) 0.04

CCGACG APOBEC-signature mutations in the core promoter region (< 2 vs. ≥ 2) 0.35 (0.13-0.96) 0.04

APOBEC-signature mutations in the preS region (< 3 vs. ≥ 3) 0.35 (0.13-0.93) 0.03

A51C/T 0.46 (0.21-0.99) 0.04

G104C/T 0.45 (0.21-0.97) 0.04

G146C/T 0.45 (0.21-0.98) 0.04

TCAATA APOBEC-signature mutations in the core promoter region (< 2 vs. ≥ 2) 0.49 (0.26-0.92) 0.03

AOR: Odds ratio adjusted for age and gender; CI: confidence interval; HBV: hepatitis B virus; HCC: hepatocellular carcinoma; HLA: human 
leukocyte antigen.

development of HCC[11]. Thus, APOBECs can bridge chronic hepatitis and HCC. However, the effect of the 
haplotypes with the development of LC is unlikely to be influenced by the generation of LC-risk HBV 
mutations. The haplotype TTAACG was associated with an increased risk of LC, but it was positively 
associated with T1674C/G and T48A, whereas T1674C/G was associated with a decreased risk of LC 
compared to ASCs and CHB patients [Supplementary Table 5]. Thus, the effect of TTAACG on the 
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development of LC should be determined by other pathways such as Th17-related signaling pathways.

The haplotype analysis provides an important option to know the effects of one or more SNPs of the three 
HLA-II isotypes on the development of HBV-related diseases especially HCC. It also provides an excellent 
opportunity to know which one or two of the HLA-DR, HLA-DQ, and HLA-DP expressions contribute to 
the polarity towards Th1 or other T helper isotypes. However, our study has several limitations. First, cases 
and controls were not matched on age and gender. HCC is more frequent in males than in females[1,6]. 
Second, the sample size was small, especially for those with HBV-related LC and HBV natural clearance 
subjects, resulting in the uncertainty of some associations. Third, the sample size of the HBV-infected 
subjects whose HBV fragments have been both amplified and sequenced was small, resulting in loss of data 
concerning HBV mutations. Further studies with larger sample sizes are needed to validate our findings. 
Fourth, although we excluded people who received antiviral treatment, other potential confounders might 
also influence the results.

In summary, the present study suggests that the haplotypes CCAACG, CCGACG, TCAATA, and TCGATA 
at rs3135338, rs477515, rs2856718, rs9275319, rs3077, and rs9277535 are significantly associated with a 
decreased risk of HCC. These haplotypes are also associated with decreased frequencies of most HCC-risk 
HBV mutations including the APOBEC-signature mutations in the core promoter and preS regions of the 
HBV genome. These data provide epidemiological evidence regarding the effect of haplotypes of HLA class 
II alleles in chronic HBV infection, viral evolution, and HCC development, which help provide genetic clues 
for choosing proper prophylactic and therapeutic options for HBV-infected subjects.
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