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Abstract
Understanding the impact of the primary structure of peptides on a range of physicochemical properties is crucial 
for the development of various applications. Peptides can be conceptualized as sequences of amino acids in their 
biological representation and as molecular architectures composed of atoms and chemical bonds in their chemical 
representation. This study examines the influence of different biological and chemical representations of peptides 
on the local interpretability and accuracy of their respective prediction models and has developed “feature 
attribution” methodologies based on these representations. The effectiveness of these methodologies is validated 
through physicochemical analyses, specifically within the context of peptide aggregation propensity (AP) 
prediction, with training datasets derived from high-throughput molecular dynamics (MD) simulations. Our 
findings reveal significant discrepancies in the attribution extracted from sequence-based and chemical structure-
based representations, which has led to the proposal of a co-modeling framework that integrates insights from 
both perspectives. Empirical comparisons have demonstrated that the contrastive learning-based co-modeling 
framework excels in terms of effectiveness and efficiency. This research not only extends the applicability of the 
attribution method but also lays the groundwork for elucidating the intrinsic mechanisms governing peptide 
activities and functions with the aid of domain-specific knowledge. Moreover, the co-modeling strategy is poised to 
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engineering.
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INTRODUCTION
Peptides, which are short chains of amino acids[1], have become a major research focus in the field of “AI for 
Science” due to their substantial potential across a variety of fields, including drug discovery[2,3], tissue 
engineering[4], and the development of semiconducting materials[5,6], catalysts[7,8], etc. By leveraging the 
predictive capabilities of AI, researchers have been able to analyze and predict secondary and tertiary 
structures[9], molecular interactions[10], and physicochemical properties[11-13] of peptides in the vast chemical 
space (over 2050 sequences). These scientific advancements have led to transformative advances in high-
throughput screening techniques, paradigm-shifting the development of peptide-based functional materials 
and thereby initiating a new era across multiple industries, including healthcare, semiconductors, 
nanotechnology, etc.

Characterized by their short length (typically no more than 50 amino acids[14]), peptides inherently possess 
simpler secondary structures[15] and less stable tertiary structures than proteins[16]. This intrinsic simplicity 
has led AI-driven peptide research to focus on predicting correlations between primary structures (e.g., 
sequence) and properties. The primary structure of a peptide can be represented biologically as a sequence 
of amino acids or chemically as a molecular graph consisting of atoms and chemical bonds. Machine 
learning models related to amino acid sequences include support vector machines (SVM)[17], random forest 
(RF)[18], and multilayer perceptron (MLP)[19], which encode the primary structure data into one-dimensional 
vectors[11,20]. In recent years, sequential models, such as recurrent neural networks (RNN)[21], long short-term 
memory (LSTM)[22], and transformers[23] have been extensively utilized to process sequential data[24-26]. 
Simultaneously, geometric deep learning models[27] that address molecular structures involving atoms and 
chemical bonds primarily employ graph neural networks (GNNs)[28], which are designed to learn from 
graph-structured data[29,30].

In this study, we delve into the impact of distinct representations of the same peptide - from both biological 
and chemical perspectives - on the local interpretability of their respective sequence-based and graph-based 
prediction models. Inspired by the up-to-date work on dual-modality models for molecular 
representations[31,32] and the successful application of attribution methods for small molecules[33], we have 
developed gradient-based feature attribution techniques tailored to sequence- and graph-based peptide 
prediction models. The goal of this research is to identify the specific amino-acid level features that 
contribute to peptide aggregation, a prerequisite of self-assembling. The reliability of these attributions is 
validated by analyses focused on the prediction of peptide aggregation propensity (AP) and by comparison 
with established aggregation principles[34-37]. This research extends the application of the attribution method 
to a broader range of peptide prediction models and has the capacity to reveal the intrinsic mechanisms 
governing peptide activities and functions by integrating additional domain-specific knowledge.

The analysis of the attribution results aligns with current domain knowledge, yet it also reveals intriguing 
discrepancies between the attributions derived from sequence-based and molecular graph-based prediction 
models, suggesting that different levels of representation of the prediction models would capture 
inconsistent information from the same peptide. These findings prompt us to propose a co-modeling 
framework that integrates both biological and chemical representations for more comprehensive analysis of 
peptides. To implement this co-modeling framework, we propose several fundamental feature integration 
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methods and have demonstrated through extensive comparisons that the contrastive learning-based co-
modeling framework outperforms other methods [i.e., weighted sum (WS)[38], concatenation (Concat)[39], 
cross-attention (CA)[23], and compact bilinear pooling (CBP)[40]] in terms of efficacy and efficiency. In this 
implementation, we incorporate contrastive learning loss as a regularization term to enhance the correlation 
between the hidden features extracted from two representations of the same peptide modality, aiming to 
enrich the chemical information within sequence-based models. To validate the reliability of the proposed 
co-modeling approach, we have performed a comparative analysis of the accuracy between co-modeling 
and non-co-modeling methods across four datasets containing both regression and classification tasks.

In summary, the main contributions of this work are as follows: (1) We have developed gradient-based 
feature attribution methods for peptide prediction models, which are employed to evaluate the significance 
of amino acids at each position within the peptide sequence to various physicochemical properties. The 
reliability of the attribution was confirmed using the AP dataset generated by high-throughput molecular 
dynamics (MD) simulations; (2) Our research has revealed intriguing discrepancies between the models 
trained on sequence data and those that are trained on molecular data, highlighting the substantial impact 
of the peptide’s primary structure on prediction results; (3) We propose a novel co-modeling framework 
that leverages contrastive learning to integrate biological and chemical representations for a more 
comprehensive peptide analysis. This research holds the potential to revolutionize our understanding of 
deep learning applications in peptide-related tasks and to streamline future studies in drug discovery and 
protein engineering.

MATERIALS AND METHODS
Coarse-grained MD simulations for obtaining AP
The coarse-grained MD (CGMD) simulations provide low-noise, consistent, and highly reproducible AP 
data within aqueous environment with pH = 7, covering samples from pentapeptides to decapeptides. 
Specifically, the AP values in our study were measured using GROMACS open-sourced package and the 
Martini 2.2 force field[41,42] to efficiently model peptide aggregation. For simulation preparation, all-atom 
peptide structures were first generated based on the CHARMM36 force field[43,44] and subsequently coarse-
grained via the martinize.py script[41]. The coarse-graining significantly reduced computational cost by 
encoding four atoms into a single bead, each characterized by specific properties such as polarity, charge, 
and hydrogen bonding capacity. Approximately 150 pentapeptides to 81 decapeptides of the same type were 
placed in a simulation box of 15 nm × 15 nm × 15 nm, solvated with 28,400 water beads, achieving solvent 
concentrations of 0.074 mol/L for pentapeptides to 0.040 mol/L for decapeptides[34]. The system was 
neutralized with Na+ or Cl- ions as needed, followed by energy minimization and thermodynamic 
equilibration at 300 K and 1 bar using the Berendsen algorithm. All simulations are performed for 125 ns 
(equivalent to 500 ns due to coarse-graining effect) to ensure that the AP values were fully converged[35].

To quantify AP, we defined it as the ratio of the solvent-accessible surface area (SASA) at the beginning of 
the simulation (SASAt=beg) to that at the end (SASAt=end), i.e., AP = SASAt=beg/SASAt=end. Initially, AP equals to 
1. For peptides undergoing aggregation, the SASA decreases as clustering occurs, causing AP to rise above 1. 
In contrast, for peptides that do not aggregate, the SASA remains relatively constant, with fluctuations 
around 1 due to minor computational noise.

To generate the training dataset, we performed simulations for a total of 62,159 peptide types, encompassing 
pentapeptides to decapeptides, thereby ensuring comprehensive coverage of various peptide lengths and 
compositions. The resulting AP values constituted a robust and high-throughput dataset, suitable for 
training and validating machine learning models.
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Amino acid-level feature attribution
Peptides, whether represented by sequences or molecular graphs, are characterized by discrete variables. 
Consequently, attributing features to the primary structure of peptides necessitates addressing the challenge 
of assessing the activation of non-differentiable, discrete input variables.

Notably, discrete variables are transformed into differentiable vectors upon embedding in a continuous, 
high-dimensional space. The principle of attribution for predictive models entails extracting the gradient 
saliency in the continuous feature space after embedding and subsequently integrating this information 
back into the discrete input space. For a peptide object X, X = {x1, x2, ..., xn} represents the primary structure 
of the peptide composed of n discrete components. In the context of sequential models, n corresponds to 
the number of amino acids; for graphical models, n represents the number of nodes after coarse-graining in 
molecular simulations, with the coarse-graining rules taken from reference[42]. The feature vectors after the 
embedding layer are denoted as H = {h1, h2, ..., hn}, where the feature vector of the i-th component is denoted 
as hi = Embedding(xi). The process of determining the saliency of each component xi based on H is as 
follows:

Equation (1) calculates the gradient saliency on the feature vectors H, which are the output of the 
embedding layer. In this context, the loss function Lattr depends on the label and the specific task. For 
classification tasks, the loss function can be a cross-entropy loss, while for regression tasks, it may be 
directly equivalent to the predicted output of the model. Equation (1) gives the backpropagation process to 
derive the gradient with respect to the embedding layer H, where ○ represents the element-wise product, i.e., 
the multiplication of the feature value and the gradient value, and m represents the number of steps used in 
the Riemann approximation of the integral. Equation (1) uses the integrated gradient method[45] to 
circumvent issues of gradient saturation, asymptoting the features in the embedding layer from an initial 
zero matrix to H. The product of the gradient value and the feature value represents the saliency of that 
particular feature.

Equation (2) first integrates the saliency of the i-th feature vector hi
saliency into the saliency of the discrete 

variable xi. The saliency of each component xi is calculated as the sum of the saliency of all feature vectors in 
their respective embedding layer. Subsequently, the saliency values for x1, x2, ..., xn are then normalized to 
ensure that the sum of the saliency of all components within each peptide X is equal to 1.

Sequence-based models can directly calculate the importance at the amino acid level through Equations (1) 
and (2). In contrast, graph-based models operate at the atomic level, necessitating additional integration to 
evaluate the amino acid contributions to peptide’s physicochemical properties (i.e., AP). The sum of the 
saliencies of the nodes belonging to an amino acid in the molecular graph represents the saliency of that 
amino acid.

(1)

(2)
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Figure 1. Schematic representation of the contrastive learning-based co-modeling framework for sequences and molecular graphs. This 
framework consists of a sequence-based encoder module (top left), a graph-based encoder module (bottom left), a fusion module 
(middle), and a predictor (right).

This approach can be broadly generalized to other tasks. Specifically, it can be tailored to discriminative 
tasks that take amino acid sequences or molecular graphs as input and predict classification or regression 
labels for peptides. By incorporating additional domain-specific knowledge, it becomes feasible to elucidate 
the underlying mechanisms governing the activities and functions of peptides.

Co-modeling of sequence and molecular graph
To fully exploit the diverse information extracted, we propose a co-modeling framework designed for 
concurrently modeling peptides using both sequence and molecular graphs (i.e., chemical information). As 
shown in Figure 1, the proposed co-modeling framework includes a sequence-based and a graph-based 
encoder module, a fusion module responsible for integrating the representations (implemented via 
contrastive learning as shown in Figure 1) and an MLP predictor. The fusion module, which is designed to 
combine the representations learned by the sequence-based and graph-based encoders, can be implemented 
using various principles. A number of fusion methods are tested in this research, including WS, Concat, 
CBP, CA, and contrastive learning [Supplementary Materials].

The WS, a conventional ensemble learning technique, suffers from information loss due to the substantial 
divergence between the representations extracted from sequences and molecular graphs. Concat, on the 
other hand, avoids this problem by directly merging the representations into a new vector. However, both 
WS and Concat fail to capture the correlations between representations. CBP, CA, and contrastive learning 
resolve this issue by effectively merging representations based on input correlations. Both CBP and CA 
explicitly integrate features so that the noisier of the two input representations affects the fused 
representation. In contrast, contrastive learning employs an implicit fusion of representations. By treating 
the representations from the different representations of the same peptide as positive pairs and those from 
different peptides as negative pairs, contrastive learning endeavors to improve the correlation between the 
representations extracted from two depictions. Since both representations capture primary structure 
information, there is a higher degree of similarity between them compared to representations from 
multimodalities. Therefore, we incorporate a contrastive loss-based regularization term during the training 
phase. The pseudocode of the training and testing of the co-modeling framework is presented in Figure 2.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4091-SupplementaryMaterials.pdf
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Figure 2. Pseudocode of the training and testing protocols of the contrastive-based co-modeling framework.

AI experiments
This section details the experimental setup, including the datasets, comparative baselines, and configuration 
parameters, to validate and elucidate the efficacy of the co-modeling framework and compare the 
performance of the various fusion methods described previously.

Datasets
Dataset statistics are presented in Table 1. The datasets for the regression tasks consist of the AP dataset 
from CGMD simulations[35] and retention time (RT) prediction dataset from the previous project 
PXD006109[46]. The MD simulations offer low-noise, consistent, and highly reproducible AP data, covering 
samples from pentapeptides to decapeptides, characterizing the extent of peptide aggregation in aqueous 
environments. The AP dataset contains approximately 10,000 peptide samples of each length category, 
totaling over 60,000 entries. Notably, the AP values for peptide sequences in our dataset are fully dependent 
on the Martini 2.2 force field[41,42], offering a comprehensive understanding of the underlying principles 
governing aggregation. Therefore, the reliability of the proposed feature attributions can be substantiated by 
evaluating the consistency of the attributed importance of amino acids with the physicochemical principles 
prescribed in the Martini 2.2 force field.

For the classification tasks, the datasets include antimicrobial peptides (AMPs)[12] and peptide families from 
the PeptideDB (the data is deposited as Supplementary Materials)[47]. These datasets have been refined to 
include only peptide samples composed of the 20 standard natural amino acids, with a sequence length not 
exceeding 50 amino acids. In the PepDB dataset, class 0 denotes AMPs, 1 denotes peptide hormones, and 2 
denotes toxins and venom peptides. In the AMP dataset, class 1 represents AMPs, while class 0 represents 
non-AMPs. The RT, PepDB, and AMP datasets are randomly divided into training, validation, and testing 
sets with an approximate ratio of 8:1:1.

Baselines
We aim to evaluate the performance difference between the co-modeling framework and non-co-modeling 
baselines and evaluate the implementations of different fusion modules. We follow the non-co-modeling 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4091-SupplementaryMaterials.pdf
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Table 1. Statistics of datasets

Dataset Task Samples Classes Length

AP Regression 62,159 - 10

RT Regression 121,215 - 50

AMP Classification 9,321 2 50

PepDB Classification 7,016 3 50

AP: Aggregation propensity; RT: retention time; AMP: anti-microbial peptide; PepDB: Peptide DataBase.

baselines established for the AP benchmark[35], which include sequence-based models such as RNN[21], 
LSTM[22], Bi-LSTM[22] and Transformer[23], and graph-based models such as graph convolutional networks 
(GCN)[48], graph attention networks (GAT)[49] and graph sampling and aggregation networks 
(GraphSAGE)[50]. Within the co-modeling framework, the sequence component employs multi-head 
attention blocks, while the molecular graph component leverages the graph convolution layers of 
GraphSAGE. The baseline implementations of the fusion module include WS, Concat, CA, and CBP. The 
method we employ for representation fusion via contrastive learning is termed Regularization by 
representation contrasting, or RepCon for short.

Implementation detail
The dimensions of the hidden and output layers of the sequence and graph encoders are both set to 64, and 
the feedforward network layer in the multi-head attention is set to 2048. The sequence encoder contains six 
multi-head attention blocks, with the number of attention heads set to 8. The number of graph 
convolutional layers in the graph encoder is set to 2. In the MLP predictors, the MLP contains four linear 
layers, utilizes the LeakyReLU activation function, and employs dropout for regularization. RepCon 
includes a hyperparameter λ for weighting loss terms. The λ controls the relative importance of the 
contrastive loss compared to the supervised loss. Generally, as a regularization term, the weight of the 
contrastive loss should be set so that its effect on the model weights is smaller than that of the supervised 
loss. Given the distinct nature of the mean squared error (MSE) loss and cross-entropy loss in their 
gradients when updating the model, λ is set to 2E-5 for regression tasks and 1E-2 for classification tasks 
through empirical experimentation. Note that RepCon is the combination of two end-to-end models. When 
the contrastive loss component is removed from RepCon, it effectively becomes two independent end-to-
end networks, meaning that the non-co-modeling baselines inherently include an ablation study of RepCon. 
To evaluate the performance of the baseline models in regression tasks, we use mean absolute error (MAE), 
MSE, and the coefficient of determination (R2). In classification tasks, classification accuracy (Acc.) serves as 
the metric of choice.

RESULTS AND DISCUSSION
Evaluating reliability via peptide aggregation attribution
The attribution analysis provides a quantitative evaluation of the influence of each amino acid on the AP of 
peptides. Preliminary validation of the amino acid attribution to aggregation was performed using 
decapeptides[37]. The findings suggest that highly polar amino acids (e.g., N and Q) and charged amino acids 
(e.g., D and K), significantly contribute to mitigating the aggregation tendency. In contrast, aromatic amino 
acids (e.g., F, W, and Y) have a substantial effect in promoting aggregation. These attribution results are 
consistent with previously reported aggregation rules[11,34,37,51].

Inconsistencies between sequence- and graph-based attribution
Sequence- and graph-based models, which are trained on sequence data and molecular graphs, respectively, 
achieve high levels of accuracy but provide inconsistent explanations for their prediction results. By 
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Figure 3. (A) Average attribution values of each amino acid in the AP prediction task. The x-axis represents the types of amino acids and 
y-axis shows the average attribution scores from the sequence-based (in yellow) and graph-based (in green) models; (B and C) 
Variation in attribution results for models with different random seed initializations for the Transformer (B) and the GraphSAGE (C) 
architectures. The results indicate that different initializations of the learnable parameters have minimal impact on the consistency of 
the attribution results. AP: Aggregation propensity; GraphSAGE: graph sampling and aggregation networks.

applying peptide attribution techniques to the Transformer model for sequence analysis and GraphSAGE 
for molecular graph analysis, we have identified significant discrepancies in attribution between these two 
types of models, as shown in Figure 3A. These discrepancies exceed the variation that can be attributed to 
the randomness inherent in model initialization, as detailed in Figure 3B and C.

Figure 3A presents the average attribution values for each amino acid category within the testing dataset, 
highlighting the importance of each amino acid in the AP prediction. Both models consistently assign high 
significance to aromatic amino acids F, W, and Y, and the charged amino acids K and R. However, there are 
notable discrepancies in the attribution of other amino acids. The sequence-based model prioritizes [A and 
G], which have simple side chains, [D and E] with negative charges, and [Q and N], which have polar and 
hydrophilic side chains. In contrast, the graph-based model highlights [C and M], which contain sulfur in 
their side chains, [S and T] with polar side chains, and [V, L, and I] with hydrophobic side chains. Providing 
a physical rationale for the observed discrepancies is challenging; however, compared with the established 
aggregation rules[37], the Transformer model is more consistent with published findings[37]. Specifically, D, E, 
R, and K are known to have significant negative effects on aggregation due to hydrophilicity and 
electrostatic repulsion, while F, W, and Y contribute positively to aggregation due to hydrophobicity and π-π 
interactions.
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Figure 3B and C presents a comparative analysis of the attribution results for the sequence-based 
Transformer model across various initializations [Figure 3B] and for the graph-based GraphSAGE model 
[Figure 3C], both trained on the AP prediction task. The attribution results for the Transformer model 
exhibit minimal variance with respect to model initialization, indicating a robust and consistent attribution 
pattern across all amino acids. For GraphSAGE, while there are minor variations in the mean attribution 
values for certain amino acids, such as P, a predominantly consistent trend in attribution values is 
maintained for the majority of amino acids.

Based on this comparison, both the sequence-based Transformer and the graph-based GraphSAGE are 
minimally affected by model initialization. This experiment rules out the possibility that model initialization 
is the cause of the significant attribution differences between Transformer and GraphSAGE, and further 
proves that it is the representations of peptide primary structures and the mechanisms of the corresponding 
neural networks that lead to their attribution differences.

This attribution study highlights that different models can extract inconsistent features from the same 
peptide data, depending on whether the primary structure of the peptides is characterized biologically or 
chemically. This discrepancy suggests that the models relying solely on a single modality may fail to capture 
the full complexity of peptides, along with the potential benefits of a model that integrates both sequence 
and structure information to achieve more comprehensive feature extraction. Therefore, we propose a 
unified co-modeling framework that utilizes both sequence and graph representations of peptide primary 
structures, aiming to enhance the peptide feature extraction across multiple modalities.

Evaluation on regression tasks of co-modeling framework
Table 2 details the performance of a number of models on the AP and RT datasets, divided into three 
categories: sequence-based, graph-based, and co-modeling frameworks. The metrics used to evaluate 
performance include MAE, MSE, and R2.

Among the sequence-based models, the Transformer model demonstrates superior performance on the AP 
dataset, achieving an MAE of 3.81E-2, an MSE of 2.33E-3, and an R2 of 0.947 on the AP dataset. On the RT 
dataset, the Transformer model again shows the best performance, with an MAE of 1.57, an MSE of 5.02, 
and an R2 of 0.991.

Among the graph-based models, the GraphSAGE model exhibits the highest performance. On the AP 
dataset, it achieves an MAE of 3.89E-2, an MSE of 2.44E-3, and an R2 of 0.945. When applied to the RT 
dataset, the GraphSAGE model achieves an MAE of 2.57, an MSE of 12.9, and an R2 of 0.977.

Among the co-modeling frameworks, the RepCon model demonstrates superior performance. On the AP 
dataset, it achieves the lowest MAE of 3.62E-2, the lowest MSE of 2.12E-3, and the highest R2 of 0.953. 
Consistently, on the RT dataset, the RepCon model also exhibits the lowest MAE of 1.41, the lowest MSE of 
4.40, and the highest R2 of 0.993.

Summarizing the results above, we found that although R2 values provide an overall assessment of model fit, 
they tend to plateau at high values (i.e., show minimal difference), especially in well-performing models. 
Metrics such as MAE and MSE, on the other hand, directly measure prediction errors and provide a clearer 
view of how accurately the models perform. For example, in the AP dataset, the co-modeling framework 
(RepCon) achieved an MAE of 3.62E-2 and an MSE of 2.12E-3, outperforming both sequence- and graph-
based models. These lower error values highlight the superior accuracy of RepCon in predicting AP, even 
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Table 2. Sequence-based baselines, graph-based baselines, and co-modeling frameworks with different fusion module 
implementations on AP and RT datasets

AP RT Inference
Input Model

MAE (× 10-2) MSE (× 10-3) R2 MAE MSE R2 Seq Graph

RNN 4.52 ± 0.10 3.23 ± 0.02 0.927 ± 0.013 1.95 ± 0.12 7.84 ± 0.44 0.986 ± 0.013 √

LSTM 4.28 ± 0.03 2.88 ± 0.04 0.935 ± 0.013 1.79 ± 0.04 6.59 ± 0.52 0.988 ± 0.014 √

Bi-LSTM 4.25 ± 0.06 2.87 ± 0.04 0.936 ± 0.011 1.54 ± 0.06 4.93 ± 0.33 0.991 ± 0.015 √

Sequence

Transformer 3.81 ± 0.06 2.33 ± 0.03 0.947 ± 0.014 1.57 ± 0.09 5.02 ± 0.21 0.991 ± 0.014 √

GCN 4.11 ± 0.03 2.76 ± 0.04 0.938 ± 0.017 3.34 ± 0.14 21.4 ± 1.32 0.962 ± 0.016 √

GAT 4.09 ± 0.04 2.72 ± 0.06 0.939 ± 0.016 2.99 ± 0.16 17.3 ± 1.12 0.970 ± 0.017 √

Graph

GraphSAGE 3.89 ± 0.06 2.44 ± 0.04 0.945 ± 0.012 2.57 ± 0.11 12.9 ± 1.07 0.977 ± 0.015 √

WS 4.05 ± 0.06 2.68 ± 0.11 0.940 ± 0.011 1.92 ± 0.07 7.75 ± 0.98 0.986 ± 0.013 √ √

Concat 3.75 ± 0.11 2.27 ± 0.06 0.949 ± 0.012 1.45 ± 0.08 4.67 ± 0.33 0.992 ± 0.014 √ √

CA 3.79 ± 0.07 2.32 ± 0.08 0.948 ± 0.019 1.44 ± 0.05 4.52 ± 0.67 0.992 ± 0.016 √ √

CBP 3.76 ± 0.06 2.31 ± 0.05 0.948 ± 0.014 1.48 ± 0.03 4.82 ± 0.56 0.992 ± 0.013 √ √

Co-modeling

RepCon 3.62 ± 0.06 2.12 ± 0.04 0.953 ± 0.016 1.41 ± 0.03 4.40 ± 0.63 0.993 ± 0.014 √

The best-performing results are shown in bold. The column “Inference” specifies the required input for each model during the inference phase 
with the corresponding feature extraction modules. All the results presented are averages of ten outcomes obtained from ten random seeds. AP: 
Aggregation propensity; RT: retention time; MAE: mean absolute error; MSE: mean squared error; R2: the coefficient of determination; RNN: 
recurrent neural networks; LSTM: long short-term memory; GCN: graph convolutional networks; GAT: graph attention networks; GraphSAGE: 
graph sampling and aggregation networks; WS: weighted sum; CA: cross-attention; CBP: compact bilinear pooling; RepCon: representation 
contrasting.

when the R2 value shows only a marginal improvement. Similarly, for the RT dataset, RepCon’s MAE of 
1.41 and MSE of 4.40 represent substantial reductions in prediction error compared to the Transformer 
(MAE = 1.57, MSE = 5.02) and GraphSAGE (MAE = 2.57, MSE = 12.9), underscoring the advantage of 
integrating sequence and graph representations through contrastive learning.

Based on these results, it is evident that the co-modeling frameworks tend to outperform models that rely 
solely on sequence or graph data. This suggests that the combination of sequence and chemical information 
can improve the predictive accuracy of the models. Among the co-modeling frameworks evaluated, RepCon 
not only exhibits superior performance but also demonstrates greater efficiency in the inference process. By 
leveraging the complementary strengths of both representations, our approach not only significantly 
improves predictive performance but also offers richer insights into peptide structure-function 
relationships. This integration is crucial for advancing our understanding of peptide mechanisms and 
accelerating the development of peptide-based functional materials and drugs.

Evaluation on regression tasks of co-modeling framework
The boxplots presented in Figure 4 provide a comparative analysis of the classification accuracy of five co-
modeling implementations (WS, Concat, CBP, CA, RepCon) and two non-co-modeling baselines (T: 
Transformer, G: GraphSAGE) on the AMP and PepDB datasets.

The co-modeling method utilizing the RepCon framework shows the highest accuracy among the evaluated 
methods. The median accuracy of RepCon exceeds that of the other methods, indicating reliable and robust 
performance. The interquartile range (IQR), represented by the height of the box, and the whiskers of 
RepCon, while not the smallest, are comparatively modest, suggesting a moderate level of variability in the 
accuracy of RepCon.
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Figure 4. Comparison of classification accuracy between two non-co-modeling baselines (T: Transformer; G: GraphSAGE) and co-
modeling implementations (WS: weighted sum; Concat: concatenation; CA: cross-attention; CBP: compact bilinear pooling; RepCon: 
representation contrasting) on the datasets AMP and PepDB. Each box represents the distribution of accuracy for a method, including 
the minimum, first quartile (bottom of the box), median (line within the box), third quartile (top of the box), and maximum. GraphSAGE: 
Graph sampling and aggregation networks; AMP: anti-microbial peptide; PepDB: Peptide DataBase.

The Concat method ranks second in performance after RepCon, with a median accuracy lower than 
RepCon, but higher than the other methods. In the AMP dataset, the IQR and whiskers of Concat are 
slightly larger than those of RepCon, but smaller in the PepDB dataset, suggesting a comparable level of 
performance variability. The median accuracies of the other co-modeling methods - WS, CBP, and CA - are 
all below that of Concat. Notably, the median accuracy of CBP is close to the non-co-modeling baselines, 
and it has the largest IQR and whiskers, indicating the highest level of variability and thus the least 
reliability among the co-modeling methods. The accuracy and reliability of WS and CA also do not 
significantly exceed those of the baseline models.

In summary, the co-modeling approaches generally demonstrate superior performance compared to the 
non-co-modeling baselines. In particular, models based on contrastive learning and Concat outperform the 
other co-modeling frameworks. Notably, even though RepCon does not require the integration of a GNN 
during the inference phase, it maintains a performance advantage over Concat. This suggests that RepCon’s 
efficiency and effectiveness in feature extraction is competitive without the additional computational 
overhead associated with graph-based components.

Attribution study: attribution shifts in contrastive learning-based co-modeling
Table 3 provides a comparison of the amino acid level attribution value similarities between non-co-
modeling baselines and the RepCon model in the context of AP prediction. The models being compared 
include the Transformer (T), a Transformer with different initialization (T’), GraphSAGE (G), and RepCon 
(R). We use four metrics to evaluate these similarities: Kendall’s Tau, Spearman’s Footrule, Jensen-Shannon 
Divergence (JS Divergence), and Cosine Similarity. The notation “↑” indicates that higher values imply a 
stronger correlation, while “↓” indicates that higher values imply a weaker correlation.

When comparing the Transformer model with different initializations (T & T’), the metrics reveal a high 
degree of similarity. Kendall’s Tau and Spearman’s Footrule, which evaluate the correlation between the 
rankings, yield values of 0.860 (± 0.142) and 0.945 (± 0.107), respectively. These high scores indicate a robust 
correlation in the rankings between the two models with different initializations. The JS Divergence records 
a low value of 0.099 (± 0.043), indicating a high degree of similarity between the distributions of the two 
models. Finally, the Cosine Similarity, another measure of similarity between value distributions, presents 
an extremely high value of 0.992 (± 0.010), further confirming the high similarity between the two 
Transformer models.
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Table 3. Similarities of amino acid level attributions on AP prediction between non-co-modeling baselines and the RepCon model

Metric T vs. T’ T vs. R G vs. T G vs. R

Kendall’s Tau↑ 0.860 ± 0.142 0.795 ± 0.154 0.165 ± 0.301 0.183 ± 0.313

Spearman’s Footrule↑ 0.945 ± 0.107 0.886 ± 0.115 0.227 ± 0.379 0.258 ± 0.340

JS Divergence↓ 0.099 ± 0.043 0.119 ± 0.049 0.366 ± 0.107 0.329 ± 0.101

Cosine Similarity↑ 0.992 ± 0.010 0.984 ± 0.014 0.782 ± 0.140 0.817 ± 0.125

T: Transformer, T’: Transformer with a different initialization, G: GraphSAGE, and R: RepCon. “A vs. B” represents a comparison of the attribution 
similarities between model A and model B. The results are presented as mean ± standard deviation. AP: Aggregation propensity; GraphSAGE: 
graph sampling and aggregation networks; RepCon: representation contrasting.

Comparing the T and R models, the correlation metrics show a moderate decrease compared with those of 
transformer models with different initializations (T vs. T’), with Kendall’s Tau at 0.795 (± 0.154) and 
Spearman’s Footrule at 0.886 (± 0.115). The JS Divergence increases to 0.119 (± 0.049), and the Cosine 
Similarity decreases to 0.984 (± 0.014), reflecting a slightly lower similarity between the Transformer and 
RepCon models compared to the comparisons between the Transformer models with different 
initializations. These results suggest that although the Transformer and RepCon models exhibit a high 
degree of correlation, this correlation is somewhat less pronounced than that observed between the two 
Transformer models, indicating a distinction in their attribution patterns.

When comparing GraphSAGE with both the Transformer (G vs. T) and RepCon (G vs. R), the correlation 
metrics are notably lower than those observed when comparing Transformer models with different 
initializations (T vs. T’) and Transformer and RepCon models (T vs. R). This indicates a weaker correlation 
between models that use different representations and architectures for the input peptides. However, the 
similarities are slightly higher in the comparison between GraphSAGE and RepCon (G vs. R) than in the 
comparison between GraphSAGE and the Transformer (G vs. T), suggesting that the GraphSAGE’s 
predictions are closer to those of RepCon than to those of the Transformer model.

In summary, the RepCon's model’s explanation differs from that of the Transformer model despite using 
the same architecture during inference, as is also evidenced by that the GraphSAGE’s prediction 
explanation is closer to RepCon than that of the Transformer model, indicating a shift caused by integrating 
the chemical information in RepCon.

Comparisons with previous state-of-the-art
This study significantly advances peptide prediction models by proposing a co-modeling framework that 
integrates both sequence and chemical representations, outperforming previous approaches. Compared to 
the work by Wang et al., which demonstrated the potential of deep learning for predicting self-assembling 
peptides but relied solely on sequence-based models, our co-modeling framework incorporates both 
sequence and graph-based encoders[34]. This dual-modality approach achieves superior performance, as 
evidenced by lower prediction errors (e.g., MAE of 3.62E-2 and MSE of 2.12E-3 on the AP dataset) 
compared to sequence-only models such as the Transformer (MAE of 3.81E-2; MSE of 2.33E-3). Similarly, 
Liu et al. explored sequential and graphical encoding but did not integrate them[35]. Our contrastive 
learning-based co-modeling framework (RepCon) not only enhances prediction accuracy but also improves 
efficiency by leveraging complementary strengths of both representations. For instance, on the RT dataset, 
RepCon achieved an MAE of 1.41 and MSE of 4.40, outperforming both sequence-based Transformer and 
graph-based GraphSAGE models. This demonstrates the ability of the co-modeling framework to capture 
more comprehensive features from peptide data, leading to enhanced model performance.
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In terms of model interpretability, our co-modeling framework addresses limitations observed in previous 
studies. Batra et al. highlighted the importance of overcoming human biases in peptide discovery but 
focused primarily on the discovery aspect without detailed attribution analysis[11]. Our study provides a 
robust attribution methodology, revealing discrepancies between sequence-based and graph-based models 
and demonstrating how the co-modeling framework can reconcile these differences. The attribution results 
show that graph-based models’ explanations are closer to RepCon than sequence-only models, indicating a 
shift in feature importance due to the integration of chemical information. This detailed analysis offers 
deeper insights into peptide behavior and enhances the reliability of predictions, setting a new benchmark 
for model performance and interpretability in peptide research.

CONCLUSIONS
In this research, we investigate the impact of two peptide representations (i.e., sequence and graph) on the 
interpretability of predictive models. We have developed and validated gradient-based feature attribution 
techniques for both sequence-based and molecular graph-based models, revealing substantial differences 
between these model types. Our results have led to the proposal of a co-modeling framework that fuses 
information from both representations, offering a comprehensive analysis of peptides. The co-modeling 
framework not only improves prediction accuracy but also enhances the interpretability of models through 
attribution analysis. Future work could explore the application of this framework to other peptide 
properties and biomolecules, expanding its potential impact on drug discovery and protein engineering. By 
building on previous studies and addressing their limitations, this work sets a new standard for integrating 
diverse data types in AI models, paving the way for more effective and comprehensive peptide research, 
which could enhance efficiency in subsequent applications of peptide drug design and functional materials 
development.
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