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Abstract
Colorectal cancer (CRC) is a common health problem due to its high prevalence and high mortality rate. Adjuvant 
and neo-adjuvant strategies, chemotherapy and radiotherapy alone or in combination, have substantially improved 
survival and local recurrence rates. Their effectiveness remains limited due to the intrinsic build-up of resistance of 
cancer cells to chemotherapy drugs, dose-limiting toxicities and other major side effects. New strategies to overcome 
these issues are being developed, one of which is cancer nanomedicine, a rapidly developing interdisciplinary research 
field. The last few decades have seen a rapid growth of interest in utilising nanoparticles and nanotechnology in cancer 
medicine. This is mainly due to the suitable physical and chemical properties of nanoparticles for in vivo applications. 
Cancer nanomedicine for targeted drug delivery and imaging has been widely investigated preclinically and clinically. 
Nanomedicine has been considered as a novel solution to enhance CRC diagnosis and treatment, both separately and 
in combination using theranostic techniques. This review highlights the research, opportunities, and challenges for the 
development of nanoplatforms for diagnosing and treating CRC.
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INTRODUCTION
Colorectal cancer (CRC) is the third most diagnosed cancer in the world[1-3]. In stage III rectal cancer 
surgical resection followed by adjuvant chemotherapy, and of late neo-adjuvant chemo-radiotherapy in 
locally advanced disease, survival rates up to 58% at 5 years[3-6] have been reported. Recurrence, local 
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and/or distant, may occur in up to approximately 50% of patients, but 5-year survival if curative re-
resection or R0 metastasectomy is achieved, may still be from 22%-49%[7,8]. In primary CRC survival is 
very much stage dependent and varies from 90% 5-year survival rate in stage I rectal cancer to less than 
10% of people diagnosed with distant metastatic cancer[6,9]. Lymph-node (LN) metastases are the most 
powerful predictor of survival and need for adjuvant treatment in all solid cancer and almost always follow 
a well-defined tumour-draining lymph node basin[10]. Due to their small size and poor vascularisation, 
LN metastases are difficult to detect with certainty using conventional imaging modalities. Given that 
chemotherapy and radiation in the (neo-) adjuvant setting have their specific adverse effects and limited 
efficacy profile, it is imperative to increase the diagnostic accuracy of LN metastases in the pre-operative 
setting[11]. Nanomedicine may offer an alternative and potentially may be more effective in diagnostics. 
In combination with therapeutics, it may offer a less toxic theranostic pathway[12-20]. The present paper 
highlights the current understanding of nanomedicine and its role in the management of CRC, and rectal 
cancer in particular. Nanomedicine is in its adolescence and is slowly transitioning from cell and animal 
studies towards human trials. To develop appropriate first-in-human trials it is important for clinicians 
to understand the variety of nano-platforms and particles currently available along with their specific 
features.

NANOMEDICINE 
The ability to explore the structure and characteristics of materials at the nanoscale has made a 
great change in many fields of science such as medicine. In the comparison of nanoparticles to their 
bulk systems, the main properties of nanoparticles that make them fundamentally different in their 
behaviour are surface-related characteristics and quantum characteristics[21-25]. Efficient drug and medical 
radioisotopes loading (due to the highly reactive surfaces of nanoparticles) in combination with unique 
physical (e.g., magnetic) properties of nanoparticles have led to rapidly growing interest in nanoparticles 
for medical applications such as drug delivery and imaging[26-33]. Particles or molecules with 10-100 atoms 
(at least in one dimension) are normally regarded as nanoparticles[34-37] [Figure 1]. Generally, nanoparticles 
are sized between 1-100 nanometers. Nanoparticles compared to their bulk system (e.g., microparticles) 
have high surface area-to-volume ratio. Therefore in a nanoparticle, the number of atoms at the surface is 
greater than those within their internal core and consequently they have a high number of interaction sites 
available at the surface which makes them chemically more reactive[38]. Moreover, at nano-scale where the 
size of particles (e.g., nanocrystal) is comparable to the de Broglie wavelength of an electron, the change 
in electronic energy levels become discretely discrete, a condition known as the quantum confinement of 
the electron wave function[39]. This effect is responsible for some of the unique behaviour (e.g., optical) of 
nanoparticles such as quantum dots. These unique properties (e.g., optical, magnetic, active surface) give 
nanoparticles the potential to be used as a diagnostic agent or carrier for delivering therapy and thus to be 
an ideal platform for developing theranostic nano-agents in medicine.

NANO-PLATFORMS FOR DRUG DELIVERY 
Tumour tissues of different cancer types such as colon, breast, prostate and lung cancer are permeable 
to nano-molecules and nanoparticles[40-42]. This is due to their distinctive structural characteristics such 
as the hyper-permeable vasculature and impaired lymphatic drainage[40,43,44]. Nanoparticle and nano-
molecule drug delivery mechanisms can be classified into active and passive targeting. Active targeting 
highly depends on the interaction between the target cell receptors and nanoparticles whereas passive 
targeting relies on a number of factors such as longer biological half-life, long-circulating time at tumour 
locations and the flow rate of nanoparticles to the impaired lymphatic system[45-49]. Moreover, the enhanced 
permeability and retention effects and nanoparticle clearance by the mononuclear phagocyte system 
play an important role in determining the effectiveness of the nano-platform drug delivery system[44,50]. 
The reticuloendothelial system (RES) effect is one of the most common problems among all different 
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types of nanoparticles. RES effect refers to the quick absorption of nanoparticles by macrophages which 
usually results in clearing nanoparticles from the circulation in vivo[51-53]. Specific types of nanoparticle 
coating may prevent and minimise the RES effect. Nanoparticles with surfactants or covalent linkage of 
polyoxyethylene have shown to effectively minimise the RES effect[54]. The size and shape of nanoparticles 
are the other two main factors that affect the delivery of conventional therapeutics to solid tumours. 
Nanoparticles larger than 500 nm are shown to be rapidly removed from the circulation in vivo[44,55]. 
In addition, targeted nanoparticles as a drug delivery system based on monoclonal antibodies are 
currently one of the main approaches for CRC therapy under preclinical development[56,57]. A list of these 
nanoplatforms is presented in Table 1. 

LIPOSOMES-BASED NANOPARTICLES 
The first therapeutic nano-platform applied in medicine was introduced by Bangham et al.[63] in 1961. This 
nano-platform was based on liposomes which were the first drug-delivery system approved by FDA for 
clinical practice. Liposome-based nanoparticles are one of the commonly used nanoparticles for delivering 
small peptides, nucleic acids, and proteins in nano-platform drug delivery[64-66]. Nanoliposomes are non-
toxic, spherical nano-carriers containing an aqueous core with phospholipid bilayer[67,68]. Nanoliposomes 
are considered as one of the most effective drug delivery systems at a cellular level. This is mainly due 
to their size, ability to incorporate various substances and slow-releasing and targeting characteristics 
which also results in decreasing side effects[69,70]. There are three main types of nanoliposomes: (1) stealth 
liposomes or long-circulating liposomes, which have a modified phospholipid bilayer structure and added 
gangliosides or a polyethylene glycol (PEG) to assist avoiding blood plasma opsonins proteins binding 
to the liposome surface and minimise the RES effect; (2) active nanoliposomes: this type of nanoparticle 
targets receptors, hormones, peptides and antibodies; and (3) sensitive nanoliposomes: they are special 
active nanoliposomes with unique properties such as pH-sensitive, thermo-sensitive and magnetic[21,70,71]. 
Doxorubicin (Doxil®)-liposome is an example of FDA approved nanoliposome for chemotherapy for CRC[72]. 
Doxil is approximately 100 nm and although it has much less gastrointestinal and cardiac toxicity, it causes 
other side effects such as redness and peeling of the skin[73]. Marqibo® is another recent nanoliposomal 
drug approved by FDA[74-76]. Marqibo is approximately 100 nm and it is a cell cycle-dependent anticancer 
drug. Thermo-sensitive liposome doxorubicin (Thermodox®) is another promising nanoliposomal drug for 
colorectal liver metastases in combination with radiofrequency ablation[77]. Thermodox® is a nanoliposomal 
with doxorubicin formulation which releases the drug upon a mild hyperthermic trigger[77]. Thermodox 
can deliver 25 fold more doxorubicin into tumours than IV doxorubicin does[77].

CORE-SHELL NANOPARTICLES  
There has been an increasing interest in developing and synthesizing core-shell nanoparticles[78,79]. The 
core-shell nanoparticles are composed of two or more materials which can be synthesised with different 
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Table 1. Current nanoplatforms under preclinical development for colorectal cancer[58-62]

Formulation Ligand Target
Nanosized particle Antibody Carcinoembryonic antigen (CEA)
Dextran and PEG-coated superparamagnetic 
iron oxide nanoparticles 

Single-chain Fv antibody fragment (scFv) CEA

Gold and iron oxide hybrid nanoparticle scFv A33 antigen
Polymer capsules Humanized A33 monoclonal Fas receptor 
Chitosan nanoparticles loaded with 
5-aminolaevulinic acid

Folic acid HT29 colorectal cancer cell lines overexpressing 
folate 

HPMA-copolymer-doxorubicin conjugates Peptide GE11 A431, HT29 and SW480 cell lines
Mesoporous silica nanoparticle Coated with poly-(L-lysine) and hyaluronic HCT-116 cancer cells

PEG: polyethylene glycol; HPMA: hydroxypropyl methacrylate



combinations of inorganic and organic materials[80]. To enable efficient surface modification, increasing the 
functionality and stability, the core nanoparticles is coated. The core-shell has different applications in the 
medical field such as controlled drug delivery, multimodal-imaging, cell labelling and nuclear medicine 
therapy[81,82]. Superparamagnetic iron oxide nanoparticles (SPIONs) are one of the most common core-shell 
nanoparticles that are used in medical imaging and therapy[83-93].

SPIONS
SPIONs are nanoparticles that have become the focus of nanomedicine research since 1980[94], and have 
evolved to include SPIONs with a biocompatible polymer coating and core surface modification specifically 
for nanomedicine and nuclear medicine applications. The key features of SPIONs include exhibiting 
magnetisation only in an applied magnetic field and the ability to load drugs and medical radioisotopes 
(due to their highly active surface). Over the past few decades, further developments in radiochemistry 
and radiation sciences have led to applying the field of nanomedicine to nuclear medicine for enabling 
multimodal medical imaging (radiolabelled nanoparticles with imaging isotopes) and radionuclide therapy 
(radiolabelled nanoparticles with therapeutic isotopes) of different types of cancer. This has significantly 
improved cancer diagnosis and therapy[95]. Currently nanoparticle-based magnetic resonance imaging 
(MRI) is utilised in cancer medicine for enhancing the MR image contrast. There are key advantages of 
SPION drug delivery including longer circulation half-lives, improved pharmacokinetics, capability to 
carrying a large amount of drugs, reduction in side effects and targeting the drug to a specific location in 
the body[26,38]. 

Additionally, the doped gold-SPIONs have been developed for targeted photothermal therapy for 
destruction of CRC[96]. The developed gold-SPIONs were also functionalised with a single chain antibody to 
enable active targeting of the A33 antigen, which is overexpressed in CRC cells. Results demonstrated that 
the internalisation of gold-SPIONs was five times faster for cells expressing the A33 antigen than cells not 
expressing the antigen. Furthermore, this study has shown that upon 6 min of laser radiation exposure (with 
an 800 nm laser at 5.1 W·cm-2), 53% A33-expressing cells died whereas only 5% of A33 non-expressing cells 
died. These results demonstrated an excellent selectivity for targeting and killing CRC.

Moreover, SPION-based MRI has emerged as a common approach in medical imaging specifically of 
lymph nodes in solid cancers, including CRC[97]. This caused by a preferential uptake of SPIONs in lymph 
node as well as the ability of SPIONs to produce high contrast between cancerous and healthy tissues[96]. 
Due to the physical and chemical properties (e.g., highly reactive surface and magnetisation) of SPIONs, 
they have attracted enormous attention in cancer diagnosis and therapy[83-93]. SPIONs in vivo can perform 
actively (targeting a tissue or an organ) or passively. Peptide or antibody labelled SPIONs act as an active 
carrier for targeting the organ or tissue of interest. However, passive SPIONs mainly rely on the polymer 
type and particle size to achieve accumulation at the target site. Hydrophilic SPIONs with dextran and 

Figure 1. Illustration of relative sizes of objects
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PEG surfaces are able to evade the RES as well as resisting the opsonisation (destruction by an immune 
cell) which leads to the increase of their biological half-life (circulation time) and the probability of 
targeting a specific cell[98-100]. Moreover, SPIONs with a size of less than 30 nm can also slowly extravasate 
from vascular space to interstitial space, from where they can be taken up by immune cells (monocytes/
macrophages) and delivered via lymphatic vessels to lymph nodes. These passive SPIONs can remain in 
normal nodal tissue and reduce MRI signal intensity, thereby enhancing contrast against any metastatic 
lesions in the node [Figure 2]. 

CONCLUSION AND FUTURE DEVELOPMENT
Nanoplatforms constitute valuable drug delivery systems that have been shown to serve the dual purpose 
of improving diagnostic accuracy and therapeutic effectiveness for CRCs. Cancer nanomedicine is a 
rapidly developing interdisciplinary research field that may have a transforming effect on diagnostic 
accuracy, toxicity and drug delivery specifically in rectal cancer. Finally, cancer nanomedicine for targeted 
drug delivery and enhanced imaging holds great promise and is moving from basic cell line research and 
subsequent animal studies work into the next stage of the translational pipeline: first-in-human trials. 
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