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Abstract
Heavy metals such as arsenic can be effectively removed through adsorption. Through material property evaluation 
and adsorption parameter optimization, machine learning (ML) modeling provides an alternative to lengthy 
laboratory experimentation. In this work, adsorption data from an earlier study employing a waste-material 
composite were used. To create prediction models, four non-neural network algorithms - support vector machines 
(SVM), Gaussian process regression (GPR), linear regression, and ensemble approaches - were used and 
contrasted with neural network algorithms. Nine predictors were utilized, ranging from adsorbent composition 
alterations to experimental circumstances. Using principal component analysis (PCA) and feature selection, 
together with the F-test and minimum redundancy maximum relevance (MRMR) algorithms for feature reduction, 
optimization was accomplished. With an R-squared of 0.939, mean absolute error (MAE) of 5.778, and root mean 
squared error (RMSE) of 7.119 for training and an R-squared of 0.942, MAE of 5.450, and RMSE of 6.870 for 
testing, the optimized GPR method offered the best predictive performance. The best R-squared values found for 
other algorithms were: SVM (0.922), linear regression (0.925), and ensemble (0.927). The most important 
variables influencing adsorption efficiency were initial arsenic concentration, time, and the iron salt content. Local 
interpretable model-agnostic explanations (LIME), partial dependence plot (PDP), and Shapley additive 
explanations (SHAP) plots were used to explain these results. This work shows that, based on model-derived 
parameters, non-neural network algorithms may efficiently simulate and optimize arsenic adsorption tests, 
providing a trustworthy substitute for neural network techniques and markedly increasing adsorption efficiency.
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INTRODUCTION
The ecosystem and human health can suffer greatly when toxic heavy metals, even in trace amounts, are 
released into groundwater[1]. Most often, various industrial and agricultural activities, urbanization, and 
other factors release this type of hazardous element into the land, water, and atmosphere[2]. Arsenic (As) is 
one of the most well-known heavy metals for its toxicity. The current estimate of the affected population 
worldwide is approximately 150 million, which is certain to rise as more afflicted places are identified[3]. All 
natural waterways contain arsenic, which can originate from biological processes as well as natural 
processes occurring in the Earth’s crust[4]. There are two primary types of inorganic arsenic: arsenite 
[As(III)] and arsenate [As(V)][5]. Arsenate is the main species present in naturally occurring surface water 
basins, while arsenite is the predominant form in groundwater[6]. While As(III) and As(V) are not equally 
dangerous, As(III) is approximately 60 times more poisonous[7]. Since As(III) frequently exists in neutral, 
undissociated forms, removal of it is quite challenging[8]. Arsenic poses a global health danger to humans. 
Long-term exposure to arsenic, mostly from tainted food and water, can cause serious illnesses such as lung, 
kidney, liver, and skin cancers[9]. The World Health Organization (WHO) has set a maximum allowable 
concentration of arsenic in drinking water at 10 µg/L[10].

Hence, it is still imperative to completely eradicate this toxic heavy metal. In addition to biological 
approaches, coagulation, precipitation, reverse osmosis, filtering, and adsorption are some of the ways that 
have been developed to remove arsenic[11,12]. Adsorption is arguably the most successful strategy among 
these[13]. With modified adsorbents such as chars, activated carbons, activated aluminium, thiol-
functionalized chitin nanofibers, goethite-based adsorbent, zero-valent iron, synthetic siderite, titanium 
dioxide, and many more, adsorption is a commonly used physical separation method for the removal of 
hazardous heavy metals from groundwater[14]. For the removal of both organic and inorganic contaminants, 
adsorption is the method of choice in the water and wastewater sectors due to its ease of handling, low 
sludge production, affordability, and regeneration potential[15]. Adsorbents derived from solid waste are 
frequently employed in water and wastewater treatment procedures[16-18]. Moringa waste, a type of 
agricultural solid waste, can serve as a biosorbent to adsorb heavy metals[19]. Various parts of the Moringa 
oleifera plant, including seeds, leaves, and bark, have also been shown to possess the ability to remove heavy 
metals[20,21]. Metal salts, such as iron and aluminum, are frequently used to remove arsenic[22]. On the other 
hand, porous composite materials formed of metal salts combined with solid waste are employed to extract 
heavy metals. It is crucial to evaluate the many control elements affecting adsorption and overall efficiency 
in order to optimize composite adsorbents. Historically, mathematical models have been employed to 
optimize efficiency and evaluate the influence of parameters[23,24].

Currently, the water and wastewater treatment industry is increasingly employing machine learning (ML) to 
forecast treatment procedures, thanks to improvements in computational efficiency resulting from 
enhanced hardware and software[25-28]. Developing high-performance solid adsorbents typically involves 
intuition-based, factor-by-factor techniques, with response surface procedures serving as the primary means 
of experimental design[29]. The aqueous phase adsorption of heavy metals involves many factors, including 
the interaction between adsorbents and adsorbates and ambient variables[30,31]. A growing number of ML 
algorithms, including artificial neural networks (ANN), tree-based techniques, and support vector 
regression, are being used to simulate and examine the processes of heavy metal adsorption by solid 
adsorbents[32-34]. However, some research has been undertaken without considering appropriateness or 
context[35,36] and several papers omitted the findings of the present experiment and instead only incorporated 
a limited portion of data from previous publications[37,38]. Adsorption isotherms and batch studies are two 
common methods used to analyze the adsorption behavior of heavy metals and organic pollutants in the 
aqueous phase. However, both methods can be laborious and ineffective[39]. ML can be used to automatically 
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map complex systems and produce the mapping relationship between input and output variables[40]. The 
foundation of ML is sufficient and high-quality data, which effect model performance[41]. The ANN was first 
created to replicate the workings of the human brain using a rigorous data analysis technique. 
Consequently, numerous environmental studies pertaining to water pollution have been using an expanding 
number of different ANN methodologies. The ANN technique was effectively applied by Mandal et al. to 
model an As(III) removal process[42]. According to Sakizadeh, ANN have various shortcomings, especially in 
the environmental sciences, despite their effective application in many modeling studies[43]. One of the main 
constraints is the lack of sufficient data records. Training on a limited dataset may result in overfitting, a 
situation in which the model exhibits good generalization ability when it performs well on training data but 
badly on unseen data. In addition to ANN, the applications of other advanced machine learning algorithms 
(MLAs) such as support vector machine (SVM)[44,45] random forest (RF)[46], gradient boosted regression 
tree[47], Bayesian network[48], adaptive network-based fuzzy inference system[49], and Ensemble models[50] have 
been proven to be accurate and useful for different learning problems in multiple domains. A recent study 
investigated the adsorption of arsenic (III) using a porous filter media block (PFMB). The study employed 
classical isotherm and kinetic models alongside ANN modeling to analyze the adsorption process[51]. A 
PFMB made of biochar and moringa bark as bio-adsorbents and enhanced with sodium bicarbonate, ferric 
chloride, aluminum sulfate, and commercial gypsum was examined for its capacity to adsorb arsenic. Seven 
different PFMB samples, each prepared with different amounts of aluminum-iron salts and moringa-based 
bio-adsorbents (biomass and biochar), were used in batch studies. The experimental parameters 
encompassed different agitation rates, pH levels, duration, initial concentration, and quantity of adsorbent. 
This study will employ identical data sets to assess non-neural network approaches in forecasting arsenic 
adsorption and juxtapose them with the neural network model.

This study aims to predict the adsorption capacity of the PFMB using a total of four non-neural network 
machine-learning algorithms. The best non-neural network algorithms will be evaluated and compared with 
neural network results from the previous study. ANN were used in the previous study; although they are 
successful, they are computationally demanding and perform best with huge datasets. In order to overcome 
those constraints, this paper investigates non-neural network approaches for assessing adsorption trials. It 
draws attention to the effectiveness, relevance, and insights offered by non-neural models by contrasting 
neural with non-neural methods. The study provides a unique comparative examination of different 
approaches, with a focus on algorithm selection, model performance optimization, and finding critical 
experimental conditions. The efficacy of four non-neural network strategies - SVM, ensemble approaches, 
Gaussian process regression (GPR), and linear regression - in predicting adsorption capacity and identifying 
contributors in the PFMB will be evaluated. To provide a thorough explanation of the model results, the 
study will make use of Shapley additive explanations (SHAP), partial dependence plot (PDP) analysis, and 
local interpretable model-agnostic explanations (LIME).

METHODS
Data collection and preprocessing
A total of 507 data sets were gathered from batch experiments conducted in a previous study to facilitate 
ML analysis[51]. The dataset included nine predictive parameters, with arsenic uptake capacity serving as the 
response parameter [Table 1]. Modeling was performed using MATLAB R2023b, implementing four non-
neural network algorithms: linear regression, SVM, ensemble methods, and GPR.

The first step in non-neural network modeling after data gathering is data preprocessing, which cleans and 
formats the data. Data preprocessing is an essential phase in the ML process that involves cleaning, 
transforming, and preparing raw data for training ML models[52]. This phase has a major impact on the final 
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Table 1. Data collection for the non-neural network analysis

Parameters Ranges Nos Role

Initial concentration of arsenic [As(III)] in ppm (initial conc.) 0.25-4.0 507 Predictor

Amount of adsorbent used (g per 50 mL solution) (adsorbent) 0.25-1.0 507 Predictor

pH of the solution (pH) 2.5-11.3 507 Predictor

Shaking speed in revolutions per minute (rpm) (shaking) 100-200 507 Predictor

Contact time in minutes (time) 30-300 507 Predictor

FeCl3·6H2O used in PFMB preparation (g per 50 g of media) (Fe/Iron salt) 0.25-0.75 507 Predictor

[Al2(SO4)3] used in PFMB preparation (g per 50 g of media) (Al salt) 0.25-0.75 507 Predictor

Moringa bark biomass included in PFMB (g per 50 g of media) (M. Biomass) 0.25-0.75 507 Predictor

Moringa bark biochar included in PFMB (g per 50 g of media) (M. Biochar) 0.25-0.75 507 Predictor

Adsorption capacity for As(III) in micrograms per gram (µg/g) (arsenic uptake) 507 Response

PFMB: Porous filter media block.

models’ efficacy and performance. Among the crucial phases in data preprocessing are data cleaning, data 
transformation, feature engineering, data normalization, scaling, normalizing, and encoding categorical 
information into numerical representations, which are common transformations[53,54]. Each predictor’s 
significance was examined independently using the F-test technique, and the features were ranked based on 
the analysis of the p-values obtained from the F-test findings. In ML and data analysis, the minimum 
redundancy maximum relevance (MRMR) test is a feature selection technique that helps find a subset of 
characteristics with high relevance to the target variable while preserving low redundancy among the 
features chosen. The best feasible set of characteristics that can maximally and mutually diverge from one 
another and accurately represent the response variable was chosen using the MRMR algorithm. Principal 
component analysis (PCA) is a dimensionality reduction approach used in feature importance analysis that 
can be used to characterize the association between descriptors and output variables[55]. Information gain is 
used to demonstrate the significance of the descriptors[56]. Most of the information present in a big set of 
variables can be retained when converting it into a smaller set of variables using PCA[57]. A new variable that 
corresponds to a linear combination of the original variables is the resultant main component[58]. In 
regression learners, dimensionality reduction can produce regression models that lessen the risk of 
overfitting. Next, the data are divided into testing and training sets. The model is trained using algorithms 
such as ensemble techniques, GPR, SVM, and linear regression on the training data. Reliability is ensured 
using validation techniques such as cross-validation, and the model’s performance is assessed on the testing 
set. Lastly, the model’s predictions are interpreted and important characteristics influencing arsenic 
adsorption are identified using respective techniques [Figure 1].

Non-neural network algorithms
Adsorption behavior can be modeled by researchers using ML techniques, considering a range of 
parameters including arsenic concentrations, adsorbent properties, and environmental factors. Non-neural 
network ML algorithms have shown great promise in the field of arsenic adsorption modeling utilizing 
PFMBs[59]. Cost-effective and practical descriptors for assessing adsorbent properties and predicting 
adsorption efficiency encompass macro-level factors such as operational parameters (adsorbent dosage, 
adsorbate concentration, contact time, and stirring speed)[60] and synthesis conditions (composition and 
proportion of raw materials, synthesis duration, and pH)[61]. In model training, output variables that are 
easily accessible and have cost-effective experimental attributes, such as adsorption capacity, removal rate, 
and efficiency, are commonly used[62,63]. The main goal of regression analysis is to identify a linear, planar, or 
hyperplanar model that minimizes the gap between the observed and predicted values[64,65]. ML can be 
classified into four main types based on the nature of the datasets and their corresponding labels: 
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Figure 1. Schematic flow chart of ML toolbox. ML: Machine learning; SVM: support vector machines; GPR: Gaussian process regression; 
MRMR: minimum redundancy maximum relevance; RMSE: root mean squared error; MAE: mean absolute error; SHAP: Shapley additive 
explanations; PDP: partial dependence plot.

supervised, unsupervised, semi-supervised, and reinforcement learning[66]. The objective of this study is to 
utilize supervised ML to target the adsorption capacity. The techniques used for estimating adsorption 
capacity and identifying major contributing factors include ensemble methods, GPR, SVM, and linear 
regression. These techniques provide robust frameworks for these purposes [Table 2].

Linear regression is a simple and widely used statistical method for modeling the relationship between a 
dependent variable (target) and one or more independent variables (features) by fitting a linear equation to 
the observed data. A linear relationship between the independent variable X and the dependent variable y is 
assumed by the linear regression model. The model can be expressed as follows:

y = β0 + β1·x1 + β2·x2 + … + βn·xn + ϵ

When the error term is represented by ϵ, the coefficients for the independent variables are xi, the intercept 
term is β0, and the coefficients for the independent variables are βi. According to linear regression, there 
must be a linear relationship between the variables, a normally distributed distribution of the errors, and a 
constant variance (homoscedasticity) of the errors. Among various available techniques, linear, interactions 
linear (IL), robust linear, and stepwise linear (SL) regression were evaluated in this study. The two best-
performing models, interaction linear regression and stepwise linear regression, were chosen for further 
evaluation with varying input features, both with and without the application of PCA.

SVM regression concentrates on identifying a hyperplane that captures a given fraction of the data inside a 
margin around the predicted values[57], in contrast to classic regression models that seek to directly reduce 
the mean squared error. Finding the hyperplane that best fits the data while permitting some variation or 
error is the goal of SVM regression[67]. SVM maps the input space derived from the independent variables in 
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Table 2. Algorithms evaluated for each model

GPR SVM Linear regression Ensembles of trees

Rational quadratic GPR Linear SVM Linear Boosted trees

Squared exponential GPR Quadratic SVM Interactions linear Bagged trees

Matern 5/2 GPR Cubic SVM Robust linear Optimizable trees

Exponential GPR Fine/medium/coarse SVM Stepwise linear

Optimizable GPR Optimizable SVM

GPR: Gaussian process regression; SVM: support vector machines.

a kernel function and focuses mostly on the border between classes[68]. The epsilon (ε), kernel function, and 
penalty parameter are all connected to the prediction accuracy of SVR. The parameter ε, which is utilized 
for training data fitting, governs the function of the ε-insensitive zone width. From available different 
presets, linear, quadratic, cubic, fine/medium/coarse and optimizable SVM were evaluated and the best one 
was selected as SVM. SVM, which operates based on statistical learning theory, is regarded as an exacting 
ML methodology[69]. SVM has been considered for regression analysis because of its great flexibility and a 
small number of tuning factors[70].

Ensemble methods, a supervised ML modeling technique for simulating the heavy metal adsorption 
process, are tree-based techniques[62]. It incorporates a variety of techniques, including decision trees, 
gradient boosting (GB), and RF, and can adapt to both classification and regression scenarios[71]. One of the 
ensemble learning methods, the boosting technique, is used to train the GB method[72]. By minimizing the 
prediction error for a regression problem, boosting is usually used to combine several weak prediction 
models into a final strong model with improved predictive performance. Bootstrap sampling is used in the 
RF algorithm to randomly choose the input variables and split the training data so that the trees develop 
independently of one another[73]. Cross-validation and other similar approaches are frequently used in 
hyperparameter tuning[74]. Among various Ensembles of trees, boosted trees, bagged trees, and optimizable 
trees were evaluated in this study before selecting the best one to train and model.

GPR is a non-parametric Bayesian regression technique that uses a distribution over functions to model the 
connection between input data and output values. When providing uncertainty estimates for forecasts, it is 
an effective way to capture intricate and non-linear interactions. A covariance (kernel) function and a mean 
function constitute a Gaussian Process. A key factor in GPR is the kernel function selection. It is crucial to 
select the right hyperparameters, such as those found in the kernel function. To increase the likelihood of 
the observed data, these hyperparameters are frequently optimized for GPR. Among various available 
techniques, rational quadratic, squared exponential, Matern 5/2, exponential, and optimizable GPR were 
tried and evaluated in this study.

Parameters optimization and model selection
Each of the four regression approaches, namely GPR, SVM, linear regression, and ensemble methods, offers 
a variety of pre-existing algorithms to choose from. The algorithms underwent rigorous testing and were 
evaluated based on their predictive accuracy. The algorithm with the highest effectiveness for each method 
was chosen, and feature selection techniques were subsequently utilized to improve the performance of the 
model. The feature selection approach entailed systematically lowering the least significant features to 
discover the ideal subset for each regression model, by assessing different combinations. Later on, PCA was 
utilized both with and without feature selection to assess its influence on model correctness. The integration 
of feature selection and PCA resulted in improved model accuracy. Ultimately, an optimization strategy was 
employed to further refine the model, utilizing the most effective combinations of PCA and feature selection 
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Figure 2. Evaluation and optimization of model (GPR). GPR: Gaussian process regression; PCA: principal component analysis; MAE:
mean absolute error; RMSE: root mean squared error.

[Figure 2]. In order to achieve optimization, three techniques were taken into consideration: Bayesian
optimization, grid search, and random search. Eventually, Bayesian optimization was chosen to fine-tune
the models.

Evaluation of model and validation
In order to overcome the constraints and possible shortcomings of ML models utilized in arsenic
adsorption research from aqueous solutions, evaluation and validation are essential. Inadequate or non-
representative datasets, sensitivity to hyperparameters, or problems such as underfitting or overfitting can
all pose problems for these models. To maximize the model’s performance and adaptability for adsorption
investigations under various experimental settings, rigorous validation guarantees the accuracy of
predictions. In order to ensure the data’s excellent quality, preprocessing procedures were employed. Both
the trial-and-error methodology and hyperparameter tuning approaches, specifically Bayesian optimization
in this case, were employed to fine-tune the hyperparameters. Regression models are assessed using several
approaches, such as the coefficient of determination (R2), mean absolute error (MAE), and root mean
squared error (RMSE)[75]. Training ML models requires avoiding both overfitting and underfitting[76]. By
adding a regularization loss function and expanding the training dataset, overfitting can be prevented[77]. On
the other hand, lowering regularization parameters and raising the model’s complexity - for example, by
utilizing larger polynomial terms or more features - can lessen underfitting[78]. Three types of validation
schemes are available: cross-validation, holdout validation, and resubstitution. Resubstitution is incapable of
preventing overfitting, whereas holdout validation is more effective for large datasets. Cross-validation is an
effective approach for evaluating a model’s ability to generalize and handle variations[79]. Ten percent of the
data in this study were allocated for testing, while the remaining 90% were used to train the model randomly
using five-fold cross-validation[80]. After the training process, a random selection of 10% of the data was set
aside to test the model and confirm its validation. ML models are often interpreted using the PDP, SHAP,
and LIME. By visualizing the correlation between certain input properties and the anticipated result, PDP
offers valuable insights into how modifications to particular variables impact the model’s predictions. SHAP
provides consistent and thorough explanations for the entire dataset by quantifying the contribution of each
feature to the model’s prediction using cooperative game theory. Rather than discussing the complete
model, LIME concentrates on elucidating specific predictions. It achieves this by constructing a localized,
simplified model approximation around the specific prediction being examined. When used in tandem,
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these techniques improve comprehension of intricate ML models and make them more accessible and 
useful. R2, RMSE and MAE equations are as follows: (1), (2), and (3). In these Equations, y represents the 
response value (sorption capacity), y represents the average response value, y is the model predicted value, 
and N is the observation number.

RESULTS AND DISCUSSION
Data collection and preprocessing
The initial data analysis involved calculating the mean, minimum, maximum, and standard deviation. 
Additionally, preprocessing processes were performed when required. No missing values were present. The 
histogram plot of all predictors is shown in Figure 3. In order to be suitable for regression analysis, data 
must undergo preprocessing techniques such as standardization, normalization, and modification. From the 
histogram plot, data transformation was done to make it normally distributed as much as possible. Figure 4 
shows the correlation coefficient values of arsenic adsorption capacity with nine variables among them. 
There was no presence of collinearity among the nine variables examined in the study. The significance 
levels of the different factors were consistent, and the Pearson correlation coefficients revealed a similar 
level of linkage among these variables.

These plots did not include fixed parameters beyond those used in the plot. The strongest correlation 
between the adsorption capacity and the starting concentration amount was observed. Since there are more 
ions available for adsorption, a higher initial concentration of arsenic leads to higher adsorption. 
Furthermore, it might decrease at low adsorbent concentrations, which would leave fewer sites available for 
adsorption[81,82]. The correlation plot revealed that the amount of iron salt utilized in the production of 
PFMB, together with the duration of the batch experiment, were identified as the two most significant 
elements impacting the outcome. The plot of adsorbent quantity utilization demonstrates an initial increase 
with higher amounts, followed by a subsequent drop with further increases in quantity. Once a location 
becomes accessible for adsorption, it can significantly enhance the effectiveness of removal.

Oversaturation can lead to ineffective adsorption since more adsorption sites might go unused, which 
would reduce overall efficiency[83,84]. The observed decline in correlation was partly caused by variations in 
the relationship between the parameters, which were shown by the correlation plot. For example, 125 rpm 
was the shaking speed that resulted in the best adsorption efficiency, but both lower and higher speeds 
decreased adsorption[51]. As shaking speed increased, desorption increased and adsorption decreased at 
lower speeds. Additionally, as iron salts were more successful in adsorbing heavy metals, the adsorption 
capacity was negatively correlated with adsorbent quantities and the substitution of iron salts for aluminum 
salts[85]. Interestingly, despite the fact that biomass and charcoal were supposed to improve porosity, their 

(1)

(2)

(3)

 

presence had no discernible effect on adsorption. Research has shown that biosorbents made from Moringa 
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Figure 3. Histogram plot of 09 predictors (507 nos).

Figure 4. Correlation coefficient plot for predictors and response.
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Figure 5. The analysis of feature importance using (A) MRMR and (B) F-test algorithms. MRMR: Minimum redundancy maximum 
relevance.

oleifera are effective in adsorption; nevertheless, compared to iron salts, metal salts may degrade composite 
performance[86]. Furthermore, interactions between the adsorbent and particular types of arsenic are 
significantly influenced by the point of zero charge (PZC). Higher pH values, usually between 5 and 10, 
improve adsorption, according to the link between pH and adsorption effectiveness[87]. Excellent As(III) 
adsorption capabilities were demonstrated by mesoporous iron oxide in the pH range of 5-9, with peak 
adsorption occurring at pH 8.0[88].

The analysis of feature importance using the MRMR and F-test algorithms is displayed in Figure 5. After 
that, the nine predictors were divided into three groups: composition of the adsorbent, condition of the 
pollutant, and experimental condition. The findings from both algorithms were quite similar, showing that 
the state of the pollutant had a greater influence on adsorption than any other factor, accounting for over 
50% of the total. The adsorbent composition had the least significant impact on adsorption.

ML models
SL and IL were the two methods used in the linear regression model. Using the F-test and MRMR to assess 
each feature’s relevance, the nine features were reduced to the top five. In addition, PCA was used. Based on 
the evaluation, it was determined that the IL model with six essential features produced the best results for 
training and validation when neither PCA nor the robust form were used. The three unused features were 
biochar, biomass, and Al salt. With a training duration of 7.7448 s, this model was able to predict 8,800 
observations per second. Evaluation parameters for the most efficient model were as follows: RMSE 7.867, 
MSE 61.89, R-squared 0.92503, and MAE 6.4483 for training validation; and RMSE 8.6876, MSE 75.475, R-
squared 0.9194, and MAE 7.4623 for testing [Figure 6].

The quadratic SVM was found to be the most effective model for our adsorption analysis during the 
training and testing phases of the SVM algorithm. The appropriate algorithms were chosen, and then 
feature selection, PCA, and optimization were carried out. The quadratic SVM, which employed an 
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Figure 6. GPR, GPR with PCA, and GPR optimize algorithms were used with variating input features to (A) R squared; (B) RMSE; and 
(C) MAE. Model of GPR optimize algorithm was tested with (D) R squared; (E) RMSE; and (F) MAE. GPR: Gaussian process regression; 
PCA: principal component analysis; RMSE: root mean squared error; MAE: mean absolute error.

automatic epsilon, automatic box constant, automatic kernel size, and quadratic kernel function, was the 
best SVM model. PCA was used, without optimization, keeping nine numerical components with all nine 
features that were chosen. The model’s prediction speed was about 4,200 observations per second, and its 
training time was 4.7034 s. We next compared these outcomes with those of other models. For training and 
validation, the most efficient SVM model showed RMSE of 8.0644, MSE of 65.034, R-squared of 0.92188, 
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and MAE of 6.5322; for testing, the results showed RMSE of 8.2772, MSE of 68.513, R-squared of 0.91671, 
and MAE of 6.7366 [Figure 6].

We used the bagged tree, boosted tree, and optimizable tree algorithms in the ensemble regression analysis. 
After applying feature selection, PCA was employed with every feature that had been chosen. The ensemble 
methods were then optimized, and the outcomes were contrasted to assess the performance of the 
regression. With an R-squared value of 0.92739, it was verified that the optimization ensembles including all 
9 characteristics produced the best outcomes without the use of PCA. The strong predictive performance of 
this model is indicated by the close alignment of test results and training time validation findings. Table 3 
lists all of the parameters that were used in the best ensemble model. An optimizable ensemble, the most 
efficient model, showed the following assessment metrics: RMSE was 7.7964, MSE was 60.784, R-squared 
was 0.92739, and MAE was 6.0745 for training and validation; RMSE was 6.85, MSE was 46.923, R-squared 
was 0.94389, and MAE was 5.414 for testing [Figure 6].

The GPR algorithm was used for regression analysis and modeling. Three presets were used: Matern 5/2 
GPR, rational quadratic GPR, and squared exponential GPR. The Matern 5/2 preset yielded the best results 
out of all of them and was kept for additional examination. After that, feature selection was used to examine 
the top 8, 7, 6, and 5 features with and without PCA. To preserve numerical values and the 95% variance, 
PCA was used. Thereafter, an optimizable GPR model was used and contrasted with alternative GPR 
models. The optimizable GPR with all 9 characteristics and no PCA produced the best results [Figure 6]. 
Table 4 provides a thorough breakdown of the parameters used in the optimized GPR model. The 
optimized GPR model demonstrated the subsequent assessment measures, making it the most efficient 
model: In testing, RMSE was 6.8707, MSE was 47.207, R-squared was 0.94289, and MAE was 5.45; in 
training and validation, RMSE was 7.1194, MSE was 50.686, R-squared was 0.93956, and MAE was 5.7789.

Comparison of ML models
Upon evaluating the efficacy of distinct ML methods in forecasting arsenic (III) adsorption capacity through 
the utilization of PFMBs, significant insights become apparent. The optimal GPR model performed better 
than the others, with the highest R2 values (0.94289 for the test and 0.93956 for validation) and the lowest 
RMSE (7.1194 for validation and 6.8707 for the test), demonstrating higher accuracy and dependability 
[Table 5]. For this approach, the test and training outcomes are likewise close, indicating the model’s 
accuracy. Figure 7 displays the true reaction and forecast, demonstrating how the perfect prediction and 
true values line up. According to the optimization iteration, after about 30 iterations, the lowest MSE 
difference between the observed and model values was reached. With an R2 of 0.94389 and a test RMSE of 
6.85, the improved ensemble model performed admirably, closely trailing the GPR in terms of predictive 
power. Comparing the parameters of a neural network model with a non-neural network model (GPR) 
using similar data sets showed that the neural network performed better than the GPR model during the 
validation stage. However, in the testing phase, the non-neural network model exhibited superior efficiency. 
The allocation of data varied among the training, validation, and testing stages for each model. Within the 
neural network, 70% of the dataset was allocated for training purposes, while 15% was designated for 
validation and the other 15% was set aside for testing. Conversely, in the case of non-neural network 
models, 90% of the data were utilized for training the model, which involved validation using five-fold 
cross-validation. The remaining 10% was set aside specifically for testing purposes. This comparison 
demonstrates that non-neural network techniques can be equally effective as neural network algorithms 
when used in these experimental data sets. In comparison to GPR and the ensemble model, the SVM with 
PCA showed lower R2 values (0.92188 for validation and 0.91671 for test) and somewhat higher error 
metrics (validation RMSE of 8.0644 and test RMSE of 8.2772), despite being effective. Using fewer features 
led to less accurate predictions, as evidenced by the interaction linear model with the best six features 
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Table 3. The parameters were used for the best Ensemble algorithms

ML 
model

Prediction 
speed

Training 
time Preset Method Minimum 

leaf size
Nos of 
learners

Learning 
rate

Nos of 
predictors 
used

iterations Training 
time limit

Ensemble ~600 obs/s 225.76 s Optimize Boosted 
trees

1 14 0.38311 9 30 False

ML: Machine learning.

Table 4. The parameters were used for the best GPR algorithms

ML 
model

Prediction 
speed

Training 
time

Signal 
standard 
deviation

Optimize 
numeric 
parameters

Basic 
function

Kernel 
function

Kernel 
scale Sigma iterations Training 

time limit

GPR 
optimize

~1,300 
obs/s

1,305.9 s 20.4671 Yes Constant Nonisotropic 
rational 
quadratic

0.12835 0.0020662 30 False

GPR: Gaussian process regression; ML: machine learning.

Table 5. Four ML algorithms with best model input conditions and results

Algorithms 
used

Feature 
used

RMSE 
(validation)

R squared 
(validation)

MAE 
(validation)

MAE 
(test)

RMSE 
(test)

R squared 
(test)

SVM (PCA) All 9 8.0644 0.92188 6.5322 6.736 8.2772 0.91671

GPR (optimize) All 9 7.1194 0.93956 5.7789 5.45 6.8707 0.94289

Ensemble 
(optimize)

All 9 7.7964 0.92739 6.0745 5.414 6.85 0.94389

Interaction linear Best 6 7.867 0.92503 6.4483 7.4623 8.6876 0.9194

Neural network[51] All 9 6.75 0.955 7.76 0.928

ML: Machine learning; RMSE: root mean squared error; MAE: mean absolute error; SVM: support vector machines; PCA: principal component 
analysis; GPR: Gaussian process regression.

Figure 7. (A) Model plots of optimizable GPR minimum MSE plot, and (B) prediction vs. true response plot of optimized GPR. GPR: 
Gaussian process regression; MSE: mean squared error.

having the greatest error metrics (validation RMSE of 7.867 and test RMSE of 8.6876). The investigation, 
taken as a whole, emphasizes the value of ensemble approaches and feature optimization in reaching high 
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Figure 8. Shapley plot for training [(A) for index:289], and for test [(B) for index: 30] with response plot of the model optimized GPR. 
GPR: Gaussian process regression.

predicted accuracy for adsorption capacity.

Model explanations
In this investigation, the contributions of individual variables to the adsorption capacity predictions were 
interpreted using SHAP. The SHAP values suggest that the initial concentration of arsenic and the time of 
contact have the most significant beneficial impact on adsorption efficiency. This highlights the critical roles 
that these factors play in the process. Furthermore, the interactions between features were emphasized using 
SHAP value distributions. For example, the combined impacts of temperature and pH had a greater 
influence on adsorption capacity than each variable alone. These observations are consistent with 
theoretical interpretations of adsorption dynamics, confirming the resilience of the model and improving 
our understanding of the underlying mechanisms. SHAP analysis was carried out utilizing both conditional 
and interventional approaches for a particular training data point (index 289), where the true value was 
94.52 and the predicted value was 101.4, and a test data point (index 30), with a true value of 89 and a 
predicted value of 84.84 [Figure 8]. The use of iron salt and the starting concentration of arsenic were 
shown to have the greatest effects in both situations, whereas the amount of adsorbent had the opposite 
impact. The dependability of the model’s explanations is supported by the consistency of these outcomes 
across approaches. These results were visually verified by the SHAP plots, which displayed the various 
contributions to the model’s predictions and how well they matched the actual values[89,90]. PCA was used to 
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Figure 9. PDP of the optimized GPR model. PDP: Partial dependence plot; GPR: Gaussian process regression.

reduce components to improve accuracy and simplify the model. PCA was applied in both available ways: 
by specifying explained variance and the number of components. For this study, all regression analyses 
showed better results when specifying the number of components than the explained variance. The figure 
shows the number of components required to explain 95% of the variance in the data.

The optimized GPR model was used to illustrate the association between nine important factors and the 
anticipated adsorption capacity of arsenic (III) onto PFMBs using PDPs [Figure 9]. The PDPs have detected 
some noteworthy tendencies, which are as follows: A direct correlation was observed between the sorption 
efficiency and the starting arsenic concentration, as the adsorption capacity increased rapidly from 40 to 
120 µg/g with an increase in the initial arsenic concentration ranging from 0.5 to 4 ppm. However, the 
sorption efficiency decreased from 75 to 55 µg/g when the quantity of adsorbent was raised from 0.25 to 1 g 
per 50 mL. The adsorption capacity exhibited a slight increase from 60 to 70 µg/g and 60 to 75 µg/g, 
respectively, with varying shaking speeds (100 to 200 rpm) and pH levels (3 to 12). The pH range specified 
denotes the optimal range for achieving maximum efficiency. The addition of iron salt (used as 0.25 to 0.75 
g per 50 g) enhanced the adsorption capacity from 50 to 90 µg/g. However, the addition of aluminum salt 
somewhat decreased it from 68 to 65 µg/g. The addition of 0.25 to 0.75 g of biochar and biomass reduced 
the adsorption capacity from 70 to 60 µg/g. Capacity rose from 50 to 90 µg/g when the adsorption duration 
was extended from 30 to 300 min. These results draw attention to the intricate interactions between 
variables and offer suggestions for improving adsorbent formulations and testing setups[91,92].
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Figure 10. LIME plots for training [(A) index:186], and for test [(B) index: 46] with response plot of the model optimized GPR using 
linear and decision tree model. LIME: Local interpretable model-agnostic explanations; GPR: Gaussian process regression.

Here, optimized GPR predictions on adsorption capacity were analyzed using artificial predictor data with 
5,000 samples, and LIME was used to provide an explanation. At index 46, where the experimental 
adsorption capacity was 93.27 and the model anticipated 87.36, we looked at the test data while maintaining 
a focus on local data locality with 1,500 neighbors and a kernel width of 0.75. Indicating that the linear 
model offered a closer approach to the model’s prediction, the LIME explanation values were 86.56 for the 
linear model and 63.89 for the tree-based model. As can be seen in Figure 10, the LIME explanations for the 
training data at index 186, with an experimental value of 114 and a model prediction of 116.4, were 112.04 
for the linear model (with a kernel width of 0.95) and 113.38 for the tree-based model. This implies that 
although the tree-based model can also give plausible explanations depending on the situation, the linear 
model constantly provides closer approximations.

CONCLUSIONS
Arsenic removal is sometimes difficult and expensive; however, using inexpensive adsorbents is a viable way 
to produce safe water. An efficient method for estimating adsorbent capacity without requiring a lot of trial-
and-error laboratory testing is ML modeling. In this work, we employed non-neural network algorithms as 
a feasible substitute for conventional neural network techniques in modeling arsenic adsorption studies. The 
data used in this work came from earlier batch tests on the adsorption of arsenic using a PFMB made of 
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biomass, aluminum salt, gypsum-based iron salt, and moringa bark biochar. Predictive models were created 
using four non-neural network algorithms: ensemble techniques, linear regression, GPR, and SVM. Nine 
predictors were considered, including variations in the adsorbent composition, such as the proportions of 
iron salt, aluminum salt, moringa biochar, and moringa biomass, as well as experimental circumstances 
such as pH, shaking speed, initial concentration, adsorbent amount, and time. Every algorithm underwent 
optimization via feature selection and PCA application. F-test and MRMR algorithms were utilized for 
feature reduction. Using R-squared, MAE, and RMSE values for comparative study, it was shown that the 
optimized GPR algorithm performed the best in terms of prediction. The most important variables in 
adsorption efficiency were the initial arsenic concentration, time, and iron salt content in the adsorbent. 
This was further clarified using SHAP, LIME, and PDP plots, which also demonstrated the effectiveness of 
the most efficient model. This paper shows that adsorption tests can be efficiently modeled by non-neural 
network techniques, and the performance of adsorbents may be optimized by using parameters that are 
generated from the model. By adding more controllable parameters or predictors, such as more specific 
physicochemical characteristics and experimental settings, the model’s effectiveness can be further 
increased. For the effective removal of heavy metals or other contaminants, this methodology provides a 
useful way to optimize composite adsorbents in removal technologies. In order to optimize the efficacy of 
the adsorbent composition and potentially expand its use in a variety of environmental cleanup initiatives, 
future research should investigate the integration of these extra components.
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