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Abstract
Nasopharyngeal carcinoma (NPC) has a distinct geographical prevalence in Southern China and Southeast Asia 
with a high overall survival rate (> 90%) in the early stage of the disease. However, almost 85% of patients suffer 
from the locally advanced disease with nodal metastasis at diagnosis. The overall survival rate would drastically 
drop to 63%. In addition to the generic tumor, nodal, and metastasis (TNM) staging, radiomic studies focusing on 
primary nasopharyngeal tumors have gained attention in precision medicine with artificial intelligence. While the 
heterogeneous presentation of cervical lymphadenopathy in locally advanced NPC is regarded as the same clinical 
stage under TNM criteria, radiomic analysis provides more insights into risk stratification, treatment differentiation, 
and survival prediction. There appears to be a lack of a review that consolidates radiomics-related studies on lymph 
node metastasis in NPC. The aim of this paper is to summarize the state-of-the-art of radiomics for lymph node 
analysis in NPC, including its potential use in prognostic prediction, treatment response, and overall survival for this 
cohort of patients.
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INTRODUCTION
Nasopharyngeal carcinoma (NPC) is cancer arising from the epithelium of the nasopharynx, frequently 
originating at the Fossa of Rosenmüller. According to World Cancer Research Fund International, NPC is 
ranked the twenty-second most common cancer worldwide, with over 133,000 new cases in 2020[1]. 
Although NPC is uncommon in western countries, it is characterized by distinct geographical prevalence 
and male predominance in the orient. More than 80% of the global cases were diagnosed in endemic areas 
such as Southern China and Southeast Asia. For instance, in Hong Kong, it was the seventh most common 
cancer in men and the seventeenth most common cancer in women in 2019, with a male-to-female ratio of 
2.9 to 1[2].

The staging of NPC adheres to the Tumor, Node, Metastasis (TNM) system of the Union for International 
Cancer Control (UICC) and the eighth edition of the American Joint Committee on Cancer (AJCC)[3]. For 
accurate disease staging, magnetic resonance imaging (MRI) or positron emission tomography with 
computed tomography (PET-CT) images are essential. The overall survival rate in early-stage (stage I or II) 
NPC can be as high as 93%, while it drops to 63% in the advanced stage (stage III to IVb)[4]. A meta-analysis 
showed that 85% of locally advanced NPC patients presented with nodal metastasis at diagnosis and bear a 
poor survival outcome[5].

With the recent trend of investigating the applications of artificial intelligence (AI) and deep learning (DL), 
the use of radiomics has drawn more attention in the precision therapy of NPC. There are numerous 
comprehensive reviews on the applications of AI in NPC[6,7]. These reviews focused mainly on the radiomic 
analysis of the gross tumor volume[8], while others evaluated the radiomics in PET-CT of NPC lymph nodes 
and primary tumors. A recent study by Xia et al. proposed that lymph node assessment as opposed to that 
of primary tumors performed better in survival prediction[9]. However, to the best of our knowledge, 
minimal effort has been placed to explore and summarize radiomics-related studies on lymph node 
metastasis in NPC[9].

This review aims to summarize the current evidence for the radiomics use for NPC with nodal metastasis 
and explore its clinical potential in the prognostic prediction, treatment response, and overall survival of 
NPC patients with lymph node metastasis.

ARTIFICIAL INTELLIGENCE AND RADIOMICS
The term “radiomics” is regarded as novel among clinicians. It is often misunderstood as synonymous and 
interchangeable with artificial intelligence, machine learning, and deep learning. This section provides an 
overview and the interrelationship of these terminologies.

Artificial intelligence (AI) is a constantly evolving technology, and with recent efforts exploring the 
applications of AI and medical imaging in NPC from diagnosis, imaging segmentation for radiotherapy 
planning to treatment monitoring and prognostication.

Ng et al. reviewed the implementation of AI in NPC, summarizing four main types of applications, namely 
auto-contouring, diagnosis, prognosis, and treatment planning[7]. AI, first termed by an American computer 
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scientist John McCarthy in 1956, has been expanded to a wide spectrum of applications and abilities 
demonstrated by the machine[10]. For example, knowledge representation, natural language processing, 
automatic reasoning, machine learning, intelligent robots, and automatic programming are under the 
category of AI[11].

Machine learning is a branch of AI using algorithmic systems to perform tasks such as prediction and 
diagnosis of interest[12]. Deep learning, also called deep neural network learning, employs a neural network 
to allow automatic learning capability mimicking a learning process in the human brain[13].

Radiomics is a quantitative approach in which models are built based on high-dimensional spatial features 
in medical imaging that are not visually perceptible and interpretable by human beings[14,15]. Radiomics is a 
high-frequency lexicon in oncological medicine. It requires of the acquisition, preprocessing, and extraction 
of a huge amount of data in medical images for quantitative analysis, providing additional information 
based on the differences in tumor characteristics such as shape and textures[16]. In radiomics, a large number 
of features are generated to determine the non-linear relationship between them. With AI development, 
computer scientists adopt deep learning algorithms and machine learning methods for tumor segmentation, 
feature extraction, and selection, and finally formulating a model for analysis [Figure 1].

METHODS
A literature search was conducted to retrieve all studies of NPC with nodal metastasis under radiomic 
analysis. Keywords were combined using Boolean logic to produce the resulting search phrase: (“artificial 
intelligence” OR “machine learning” OR “deep learning” OR “neural networks, computer” OR 
“algorithms”) AND (“nasopharyngeal neoplasm” OR “Nasopharyngeal carcinoma” OR “NPC”) AND 
("lymph nodes” OR “lymphatic metastasis”). Using this search phrase, studies were searched on PubMed, 
Ovid Medline, and Embase between Jan 2002 to June 2022. The studies were screened, with duplicates 
removed. Inclusion and exclusion criteria were defined to allow evaluation only on those applying 
radiomics in NPC with nodal metastasis [Table 1]. The authors looked into the methodology and image 
segmentation methods of individual studies. Studies with lymph node-based radiomic analysis as regions of 
interest (ROI) were included. Studies that are limited to primary tumors as ROI or those without detailed 
descriptions of lymph node analysis were excluded. Fourteen studies were selected to highlight the current 
state-of-the-art lymph node-based radiomics applications in NPC.

RADIOMIC STUDIES IN LYMPH NODE ANALYSIS AND RISK STRATIFICATION 
There are studies exploring the full potential of radiomic analysis in both primary tumor and nodal 
metastasis in head and neck cancer, suggesting that the additional metastatic lymph node radiomic 
information could be a complementary prognostic factor in loco-regional control of the disease[17,18]. Studies 
extracted in Table 2 investigated the radiomic features of lymph node metastasis in NPC patients to predict 
high-risk patients requiring treatment adjustment and modification.

Five studies from 2018 to 2022 adopted various machine learning algorithms for radiomic analysis with 
regions of interest in nodal metastasis. All these studies achieved AUCs between 0.725-0.984 in training and 
testing sets. Of these, four studies employed MRI images for analysis[19-22]. Li et al. identified the NPC 
recurrence patterns using radiomic analysis, suggesting the feasibility of using radiomics as imaging 
biomarkers to identify RT-resistant cases. This may facilitate early intervention for NPC patients[19].
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Table 1. Inclusion and exclusion criteria for study selection

Inclusion criteria Original studies 
Published in English language 
Published from 2002 to date 
Full-text paper available 
Details of image data and features extraction were described 
Image segmentation specifically mentioned on lymph node analysis as regions of interests 
Studies related to Nodal metastasis of NPC 

Exclusion criteria Conference papers and literature reviews 
Written in other languages 
Full-text not available 
Deep learning or radiomics were not used for modelling 
Only the primary site of tumour was segmented as regions of interest in features selection

Currently, there is no set protocol to identify patients requiring adaptive radiation therapy (ART). During 
the course of intensity modulated radiotherapy (IMRT), oncologists may consider ART in some patients 
based on clinical factors such as significant weight loss, changes in palpable cervical lymph node volume, ill-
fitting masks, or prolonged treatment breaks. NPC patients at the same clinical TNM stage may respond 
variably in terms of tumour size and lymph node volume after IMRT. In many cases, the decision of 
employing ART is dependent on the individual clinicians’ judgment and is not standardized. Lam et al. used 
CT-based imaging protocol for nodal radiomic analysis in predicting the use of ART, demonstrating the 
radiomics model outperformed the clinical staging model significantly (P < 0.0001)[23]. The choice of CT was 
pragmatic and logically sound for its robust, shorter scanning time and good lymph node identification 
quality in ill-fitting thermoplastic casts (ifTMs). CT offers quick re-assessment of cases with extensive 
cervical lymphadenopathy before treatment and subsequent shrinkage of the disease during radiotherapy. 
In addition, studies were able to stratify high-risk NPC patients using the pre-treatment MRI-based 
radiomic analysis for ART eligibility assessment, facilitating oncologists in streamlining resources to 
enhance efficiency[20,22].

RADIOMICS STUDIES IN TREATMENT OPTIONS PREDICTION
NPC with nodal metastasis at presentation and time of diagnosis is not uncommon. In fact, more than 75% 
of patients with NPC are diagnosed at advanced stages (i.e., Stages III and IV)[5,24]. In addition to IMRT, 
chemotherapy and neoadjuvant chemotherapy are used as adjuncts in the treatment of locally advanced 
NPC. However, with the known acute and long-term toxicities from radiation and chemotherapy, not all 
patients are able to tolerate or respond well to the combined treatment modalities. Studies on deep learning 
and radiomics analyses attempted to predict the treatment response based on an individual’s clinical and 
biochemical status. By developing various radiomic-based models, therapeutic response prediction could 
make personalized treatment possible and avoid the unnecessary adverse side effects from chemoradiation. 
Xu et al. and Wang et al. developed MRI-based radiomic models on NPC lymph node metastasis cohorts to 
predict treatment responses in chemoradiotherapy (ChemoRT) and neoadjuvant chemotherapy (NAC), as 
shown in Table 3[25,26]. The sensitivity and specificity of the radiomic models were higher in training cohorts 
than in validation cohorts. The AUCs of these models were over 0.9 for treatment response prediction for 
most studies.

RADIOMICS STUDIES IN SURVIVAL PREDICTION
The clinical staging of NPC is an important prognostic factor for survival. The one-year survival rates of 
NPC at stage I and stage IV diseases were 99.0% and 78.8% respectively. For stage I disease, the five-year 
survival has a small decline to 92.7%. However, the five-year survival of a stage IV NPC has a drastic drop to 
47.1%[24]. Despite a distinct geographical prevalence in southern China and Southeast Asia, over three-
quarters of patients still present late with a neck mass due to its asymptomatic nature at an early stage[24]. 



Page 5 of Chan et al. J Cancer Metastasis Treat 2023;9:6 https://dx.doi.org/10.20517/2394-4722.2022.100 14

Table 2. Studies of lymph node analysis for NPC in treatment planning and risk stratification using radiomics

Authors, 
year

No. of cases 
(patients)

No. of 
radiomic 
features

Image 
modalities AI methods* Study aim Performance 

metrics/results Conclusion Limitation

Li et al., 
2018[19]

306 1,117 MRI ANN, KNN, SVM 
models

To analyse the recurrence patterns and 
reasons in NPC patients with IMRT;  
To investigate the feasibility of 
radiomics for analysis of 
radioresistance

AUCs: 0.727-0.835 
True positive rate: 
ANN: 0.815 
KNN: 0.778 
SVM: 0.741 
Accuracy: 
ANN: 0.812, 
KNN: 0.775,  
SVM: 0.732

The main recurrence patterns: 
In-field and high-dose region relapse. 

Small sample cohort; 
Single centre; 
Retrospective study; 
Lack of independent 
external validation

Yu et al., 
2019[20]

70 
Training set = 
51; 
Testing set = 19 

479 MRI SMOTE 
algorithm, center 
and scale and 
boxcox, 
Pearson 
correlation 
coefficient, and 
LASSO regression 

To determine tumoral biomarkers using 
pre-treatment MR images for 
predicting ART eligibility in NPC 
patients prior to the start of treatment

Average AUCs of 3 
different MRI set models: 
Training set: 0.895-0.984 
Testing set: 0.750-0.930

MRI-based radiomic features are 
capable for pre-treatment identification 
of ART eligibility in NPC patients

Heterogeneity of 
image acquisition and 
reconstruction 
protocols; 
Small cohort; 
Low rate of adaptive 
replanning; 
Retrospective study

Kang et al., 
2021[21]

243 10,400 MRI SMOTE 
algorithm, center 
and scale and 
boxcox, 
Pearson 
correlation 
coefficient, and 
LASSO regression

A combined model was established 
based on the MRI-radiomics of pre- and 
mid-treatment (Tx) to assess the risk 
of disease progression or death in 
locally  advanced NPC

Training set:  
AUC pre-Tx: 0.8003 
AUC mid-Tx: 0.9253 
Accuracy: 0.725 
Precision: 0.704 
Sensitivity: 0.618 
Specificity: 0.805 
Test set:  
AUC pre-Tx: 0.8527 
AUC mid-Tx: 0.8849 
Accuracy: 0.790 
Precision: 0.795 
Sensitivity: 0.686 
Specificity: 0.868

The log-rank test of  
high- and low-risk groups had better 
prognostic performance in PFS, LRFS, 
DMFS, and OS  than TNM stage. A 
combined model of pre- and mid-
treatment MRI-radiomics successfully 
categorized patients into high- and 
low-risk groups

Retrospective study; 
Single agency; 
Non-endemic 
Areas of NPC; 
Lack of external 
validation; 
Disunity of the 
treatment plan affects 
the prediction effect 
of the model

Lam, et al., 
2021[22]

135 55 CT and MRI Ridge algorithm 
(for single-omics 
model); 
MKL algorithm 
(for 
multi-omics 
model)

To investigate the role of different 
multi-organ omics-based prediction 
models for pre-treatment prediction 
ART eligibility in  
NPC patients

Radiomic model average 
AUCs:  
Training set = 0.942; 
Testing set = 0.927; 
64%-94% radiomic 
features were selected in all 
the studied multi-omics 
models

The Radiomic model was found to play 
a dominant role for ART eligibility in 
NPC patients, and Radiomic features 
accounted for the 
largest proportion of features in all the 
multi-omics models

Small size single 
cohort; 
Model overfitting; 

182 
Training set + 
Internal 

In-house 
developed 
pipeline tool 

To investigate the capability of CT 
based neck nodal radiomics for 
predicting IfTMs triggered ad hoc ART 

AUCs of 
Training + internal 
validation set: 

CT-based neck nodal radiomics was 
capable 
of predicting IfTM-triggered ART 

Retrospective study;  
Significant difference 
in patients between 

Lam et al., 
2022[23]

2,130 CT
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validation: 124  
External 
validation set: 
58

based on Python 
v3.7.3. 
 
Radiomic (R), 
clinical (C), and 
combined (RC) 
models

events in NPC patients R model: 0.784 
C model: 0.648 
RC model: 0.782 
 
External validation: 
R model: 0.723 
C model: 0.673 
RC model: 0.710

events in NPC patients undergoing RT two cohorts; 
Small sample size 

ANN: Artificial neural network model; IMRT: intensity modulated radiotherapy; AUC: area under the receiver operating characteristic curve; KNN: K-nearest neighbour model; SVM: support vector machine model; 
LASSO: the least absolute shrinkage and selection operator logistic regression model; ART: adaptive radiation therapy; SMOTE: synthetic minority oversampling technique; VOI: volume of interest; SLN: sentinel 
lymph node; ICC: intra-class correlation coefficient (ICC ≥ 0.9 = excellent robust); PFS: 5-year progression free survival; LRFS: loco-recurrence-free survival; DMFS: distant metastasis-free survival; OS: overall 
survival; TNM: tumor, node and metastasis stage; IfTMs: Ill-fitted thermoplastic masks; *refer to Figure 1 for AI classifications.

Table 3. Radiomics studies for treatment response prediction

Authors, 
year

No. of cases 
(patients)

No. of 
radiomic 
features

Image 
modalities AI methods* Study aim Performance 

metrics/results Conclusion Limitation

Xu et al., 
2021[25]

145  
Training set: 
102; 
Testing set: 
43

2,704 MRI IBSI standard; 
LASSO

To predict the treatment 
response of metastatic 
cervical lymph node to 
ChemoRT in NPC

Primary cohort:  
AUC = 0.927  
Sensitivity = 0.911  
Specificity = 0.826  
Accuracy = 0.872  
Validation cohort: 
AUC = 0.772 
Sensitivity = 0.792 
Specificity = 0.790 
Accuracy = 0.791

MRI-based 
radiomic models might facilitate individualized therapy 
for metastatic lymph nodes before treatment

Retrospective study; 
Heterogeneity in MRI 
image;  
PET/CT excluded;  
Single institution 

Wang et al., 
2022[26]

165 
Training set: 
85 
Testing set: 
80

31,920 MRI RECIST 1.1; 
Logistic regression and 
cross-validated by BS 
with a resampling 
number of 1,000

To develop and evaluate a 
modified radiomic model 
for the NAC response 
prognosis in NPC patients

Cross-validation 
cohort: 
AUC = 0.948  
Sensitivity = 0.849  
Specificity = 0.840  
 
Independent testing 
cohort: 
AUC = 0.925 
Sensitivity = 0.821 
Specificity = 0.792. 

MRI-based radiomic model showed promising 
capability for the individual prediction of NAC 
response in NPC patients, which might provide 
chances for individualized treatment in NPC patients 
while retrenching the cost of clinical resources

NAC regimen and 
treatment cycles are 
not controlled; 
Single centre study

MKL: Multi-kernel learning; RECIST: response evaluation criteria in solid tumours 1.1; BS: bootstrapping; NAC: neoadjuvant chemotherapy; IBSI: image biomarker standardization initiative; ChemoRT: chemoradiation 
therapy; *refer to Figure 1 for AI classifications.



Page 7 of Chan et al. J Cancer Metastasis Treat 2023;9:6 https://dx.doi.org/10.20517/2394-4722.2022.100 14

Figure 1. Relationship of artificial intelligence, machine learning, deep learning, radiomics.

With the development in radiomics research, the prognostic performance of clinical staging is often 
compared with the novel development of radiomic models on survival analysis in locally advanced NPC. 
Studies focusing on the use of radiomics in predicting survival are listed in Table 4. Yang et al. developed a 
multidimensional nomogram using nodal volume-based radiomic features to predict progression-free 
survival, superseding the model using the clinical tumor-node-metastasis (TNM) staging[27].

Similar to Yang’s study, all seven studies published from 2019 to 2021 suggested that radiomic models or 
combined clinical and radiomic models performed better than conventional clinical models in predicting 
distant metastasis and survival. There are only four studies that provided the quantity of radiomic features 
used, ranging from 208 to 2,364, for model development and training for reference[27-30].

Locoregional recurrence free survival (LRFS) and distant metastasis free survival (DMFS) are of particularly 
concern to clinicians in the management of locally advanced NPC with lymph node metastasis. The 
variability of treatment options, such as neoadjuvant or induction chemotherapy, combined concurrent 
chemoradiotherapy, IMRT, or targeted therapy, are often compared with its efficacy, survival outcomes and 
toxicities in locally advanced NPC. Radiomics models could provide useful information in guiding 
treatment options and predicting survival outcomes based on the imaging-specific “tumor-fingerprint” of 
each individual patient.

DISCUSSION
This article reviewed studies specifically on lymph node metastasis in NPC for radiomics analysis to 
evaluate several objectives: risk stratification, treatment response, and survival predictions. Notably, the 
application of machine learning for the clinical management of NPC commenced more than a decade ago. 
Aussem et al. used a Bayesian network in machine learning to classify and identify risk factors in NPC in 
2012[34]. Ng et al. observed exponential growth in using AI in NPC since 2018[7]. While there is a shift of 
interest from gross primary tumor volume to cervical lymphadenopathy in NPC for imaging analysis, 
studies of radiomics targeting lymph node metastasis in NPC have drawn researchers’ attention. Despite the 
growing number of radiomics studies on locally advanced NPC, they are often piecemeal and fall short of 
knowledge-building in the area of NPC management. This paper attempted to review and classify relevant 
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Table 4. Radiomics based studies for survival analysis

Authors, 
year

No. of cases 
(patients)

No. of 
radiomic 
features

Image 
modalities

 AI methods*Study aim Performance metrics/results Conclusion Limitation

Yang et al., 
2019[27]

224  
Training set: 
149; 
Test set: 75

260 MRI LASSO 
regression

To develop a 
multidimensional 
nomogram for predicting 
PFS in patients with 
locoregionally advanced 
NPC

C-index of nomogram: 
Training cohort: 0.843 
Validation cohort:0.811  
 
C-index of TNM staging: 
Training cohort: 0.592 
Validation cohort: 0.613 

A novel nomogram involving 
DVHs, GTVnd based radiomic signature 
could effectively predict the PFS in patients 
with advanced NPC

Small sample size

Ming et al., 
2019[28]

303 
Training: 200; 
Validation: 103

208 MRI LASSO cox 
regression

To develop prognosis 
signatures through a 
radiomics analysis for NPC 
patients by pre-treatment 
MRI

C-index of training set in 
DFS/OS/DMFS:Radiomics model: 
0.692/0.716/0.695; Clinical model: 
0.676/0.688/0.634; Combination model: 
0.736/0.717/0.719 
C-index of validation set in 
DFS/OS/DMFS:Radiomics model: 
0.689/0.786/0.602; Clinical model: 
0.722/0.738/0.586; Combination model: 
0.751/0.845/0.643

The DFS and OS radiomics nomograms 
demonstrated the excellent prognostic 
estimation for NPC patients with a non-
invasive way of MRI. The combination of 
clinical and radiomics features can provide 
more information for precise treatment 
decision

Insufficient 
number of follow-
up; 
Lack of LRFS 
analysis; 
No external 
validation;

Bologna et 
al., 2020[29]

136 2,144 MRI Multivariate 
Cox 
regression

To develop prognostic 
models for overall survival 
in patients from non-
endemic 
areas (Europe or United 
States)

The radiomics-based signature had good 
prognostic power. 
C-index of OS: 0.68  
C-index of LRFS: 0.72

Radiomic features can provide independent 
prognostic information in NPC patients 
from non-endemic areas

Absence of an 
independent 
validation cohort; 
Only include 
positive nodal 
disease

Zhang et
al.,  2020[30]

220; 
Training set: 
132; 
Internal 
testing: 44; 
External 
testing: 44

2,364 MRI Univariate 
analysis;  
MRMR; 
Random 
forest;  
CPH; 
DCNN;

To explore the prognostic 
value of radiomics-based 
and digital pathology-based 
imaging biomarkers from 
macroscopic MRI and 
microscopic 
whole-slide images for 
patients with NPC

C-index of DCNN: 
Training cohort: 0.741 
Internal test: 0.779 
External test: 0.689 
C-index of combined CRH model: 
Training cohort: 0.817 
Internal test: 0.828 
External test: 0.834 
C-index of TNM stage: 
Training cohort: 0.737 
Internal test: 0.593 
External test: 0.654

The multi-scale nomogram 
may serve as a non-invasive, cost-effective, 
and useful tool for facilitating individualized 
treatment and future decision-making in 
NPC

Retrospective 
study;  
Relatively small 
sample size; 
Molecular profile 
was not included. 
All Chinese 
cohorts

Chen et al., 
2021[31]

1,643; 
Training set: 
847; 
Internal 
testing: 400; 
External 
testing: 396

- MRI LASSO; 
XGB; 
SHAP

To predict distant 
metastasis in locoregionally 
advanced NPC patients 
using MRI-based tumor 
burden features

C-index of Internal/External Validation 
cohorts: 
LASSO: 0.707/0.699 
XGB-A: 0.683/0.589 
XGB-B: 0.739/0.621 
XGB-C: 0.766/0.760

The proposed survival system provides a 
promising tool for risk stratification in 
locoregionally advanced NPC patients

-
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Qiang et al., 
2021[32]

3,444; 
Training set: 
1,838; 
Internal 
testing: 787; 
External 
testing: 819

- MRI 3D-CNN; 
XGB;

To distinguish low-risk 
patients with locally 
advanced NPC for whom 
CCRT is sufficient

C-index for DFS: 
Training cohort: 0.787 
Internal validation: 0.776 
External validations: 0.719-0.757 
The AUCs for DFS: 
Training cohort: 0.809 
Internal validation: 0.806 
External validations: 0.756-0.857

The proposed 
framework can capture more complex and 
heterogeneous information to predict the 
prognosis of patients with locally advanced 
NPC and potentially contribute to clinical 
decision making

Retrospective 
study; 
Histologically only 
included WHO 
types II and III 
cases;

Zhang et
al., 2021[33]

233 
Training set: 
169; 
Internal 
testing: 19; 
External 
testing: 45

- MRI LASSO; 
AIC 
algorithms

To develop a model to 
evaluate DMFS in locally 
advanced NPC

AUCs of Clinical/Radiomic/Combined 
models  
Training cohort:  
0.698/0.789/0.796 
Validation:  
0.727/0.761/0.795 
Testing:  
0.649/0.765/0.808

The MRI-based combined model  
evaluates the risk of DMFS in locally 
advanced NPC patients to provide a 
complementary tool for making treatment 
decisions

Retrospective 
study; 
Difference in data 
distribution; 
Poor radiomic 
signatures 
repeatability

LASSO: Least absolute shrinkage and selection operator; PFS: progression-free survival; C-index: concordance index; DVHs: dose volume histogram signature; GTVnd: gross tumor volume of regional lymph nodes; 
OS: overall survival; LRFS: locoregional recurrence free survival; MRMR: minimal redundancy maximum relevance; CPH: cox proportional model; DCNN: deep convolutional neural network; CRH: clinical-radio-
histopathologic model; SHAP: shapley Additive explanations; XGB: extreme gradient boosting; XGB-A: based on T stage, N stage and clinical stage; XGB-B: based on stage factors and other clinical factors; XGB-C: 
based on LASSO Cox regression; 3D-CNN: 3 dimensional convolutional neural network; CCRT: concurrent chemoradiation therapy; DFS: disease free survival; DMFS: disease metastasis free survival; AIC: akaike 
information criterion; *refer to Figure 1 for AI classifications.

pieces of literature according to clinical use. Hence, the knowledge could be better integrated for unleashing the future potential of radiomics in the treatment 
of NPC with lymph node metastasis.

As a clinician, the concepts of radiomics and deep learning in NPC appear to be a “black box” compared to traditional statistical models for prediction and 
survival analysis. The lack of understanding and explanation of how the model was built by image feature selection and algorithms raises clinicians’ skepticism 
about the generated outcomes. Critically analyzing the pitfalls of these studies are difficult from a clinician’s perspective, creating a huge resistance to 
translating these findings into real clinical applications. To improve the interpretability of AI models, Lundberg and Lee proposed a unified framework - 
Shapley additive explanations framework (SHAP) to understand how the machine learning models predict based on various weighting of selected features[35]. 
For example, Chen et al. adopted SHAP to highlight the six features (BMI, EBVDNA, LDH, tumor volume, lymph node volume, and diameter) contributing to 
the complex nonlinear relationship with distant metastasis in NPC[31]. SHAP was also used in nonmetastatic NPC scenarios. Du et al. suggested tumor shape 
sphericity, first-order mean absolute deviation, T stage, and overall stage influenced the outcome of 3-year disease[36]. Although SHAP provides an explanation 
of the pattern learned by radiomic models, it does not correlate nor explain the patient’s characteristics with the imaging trained in the models. Yet, it does 
provide insights to clinicians in understanding the chain of thoughts of the machine learning models in predicting the outcomes in radiomics analysis.
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Besides, whether the models reported could be extended from the training sample to the entire population is 
a key factor for promoting radiomics analysis into clinical use for the treatment of lymph node metastatic 
NPC. Most of the current studies involved retrospective data in a single or a few institutions. Since different 
imaging parameters affect the radiomic features being extracted, reproducibility of the data and feature 
selection become the major barrier. The major challenge in consideration of the clinical implementation of 
radiomics is whether the developed models are applicable across different institutions. Tumor segmentation 
is part of the key steps for radiomic implementation. The contouring of both primary tumor and nodal 
disease volume from imaging for radiomic features extraction is operator dependent and time-consuming 
even for an expert radiologist or oncologist. Likewise, the selection of radiomic features requires prior image 
processing and tumor contouring. Standardization and automation of this process may be a possible 
direction for this aspect. Automatic segmentation has been shown to reduce the time of radiotherapy 
planning by up to 30%-40%[37]. The reduction of intra- and inter-observer variability during tumor 
delineation has also improved the consistency of IMRT performance[37]. Different algorithms, such as single-
atlas-based, multi-atlas-based, and deep-learning-based auto segmentation models were developed to 
delineate the head and neck lymph node metastasis in automatic tumor contouring. Atlas-based auto 
segmentation takes a collection of image segmentations as an atlas to map and delineate the region of 
interest of a new patient’s image data set[38-40]. It could help to identify head and neck lymph node lesions[39]. 
Although atlas-based auto segmentation could reduce the time for lymph node contouring and selection 
bias, there is no single best atlas to fit all individual image data[38]. Multi atlas-based auto segmentation, 
using several patients’ tumor segmentations or peer-reviewed manual contours, provides more reference 
atlases to improve the accuracy in tumor contouring, at the expense of high computational power 
requirement[40,41]. Deep learning based auto segmentation, most commonly with convolutional neural 
networks algorithm, provides robust and consistent lymph node segmentation tasks in head and neck 
regions[41,42]. Using the automated approach for segmentation and radiomic feature extraction, it would pave 
the way for better radiomics model generalizability.

Factors that affect the radiomics variabilities due to image acquisition are collectively known as the batch 
effect[43]. The protocol of medical imaging taken for NPC could be different among different centers. This 
heterogeneity predisposes the difficulty in the standardization of protocol development. In addition, the 
toolboxes for image pre-processing and radiomic feature definitions may lead to unwanted variations, 
affecting the generalizability of the model produced.

FUTURE DIRECTION
There is so far no consensus to interpret the NPC nodal metastasis within the imaging study - whether the 
number of lymph nodes, its size, or the radiological features of the malignant nodal lesion (e.g., the presence 
of extra-nodal extension) that would affect the radiomic model. The major future directions of radiomics 
studies are to address the issue of a batch effect in image acquisition and feature extraction standardization, 
and ultimately to improve radiomics reproducibility and generalizability[14].

Approaches to imaging standardization
It has been found that radiomic feature repeatability is largely variable with image acquisition, especially for 
textural features[44]. Much work has been done to minimize the variations in the acquisition and 
reconstruction of images before feature extraction. One of which is the standardization of image acquisition 
protocol in CT and PET/CT imaging[45,46]. The current challenge is that standardization is only emphasized 
on basic quantitative measurements, such as the standardized uptake values (SUVs), but not for the more 
complicated features of radiomics analysis. Moreover, in MRI there are no existing guidelines and the 
images produced are not quantitative[47]. It is hoped that a more standardized and reproducible imaging 
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workflow will be developed shortly, thus improving generalizability. MRI fingerprinting demonstrates the 
capability to reproduce quantitative measurements of tissue properties by mapping the unique signal 
evolutions, i.e., “fingerprint”, with a dictionary through a pattern-matching process. If the issue of getting a 
widely recognized mapping dictionary were being solved, MRI fingerprinting would be a key step to solving 
the challenge of imaging standardization[48].

Approaches to feature standardization
Given that the existing imaging acquisition is not standardized, researchers seek different approaches to 
enhance feature reproducibility. In earlier studies, researchers addressed this by performing test-retest 
stability investigations[49]. By doing so, researchers selected only those features that were “robust” enough to 
be included in the modeling. However, this approach may not help to improve the issue of feature 
reproducibility, instead, uncovered its variability. The majority of CT-based radiomic features were not 
reproducible even when the images were acquired under the same imaging protocol[50]. One of the widely 
used methods to improve feature reproducibility is called Combine Batches (ComBat), a method to remove 
the batch effect using a statistical approach. It has been shown to be useful in reducing the radiomic features 
that are significantly affected by the batch effect[51]. The use of ComBat is still under development as 
researchers recognized its limitations. These include the incompatability of datasets from unknown imaging 
parameters[52]. Also, ComBat is only capable of handling one batch effect at a time, which may not be able to 
address the multifaceted and complicated batch effect due to variations in imaging parameters. To address 
this, a workflow combining ComBat and a test-retest approach has been suggested, and applying ComBat in 
reproducible features in test-retest[53]. By doing so, the radiomics robustness could be further improved.

The future directions of radiomics study lie in optimizing the reproducibility and repeatability of feature 
extraction. In addition, with the development of a globally recognized protocol for quantitative scans and 
the statistical methods to facilitate robustness, radiomics could become an efficient tool for clinical use and 
improved management of advanced stage NPC patients with nodal metastasis.

CONCLUSION
This review presented a summary of the vast applications of artificial intelligence in using radiomics and 
deep learning analysis on lymph node metastasis for advanced NPC. With the emerging technologies in the 
radiomic features applications, deep learning models have been readily developed and validated with good 
accuracy in auto-segmentation for tumor staging and treatment planning; risk-stratification for providing 
more personalized treatment options, and predicting the overall survival and disease-free survival.
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