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Abstract
This paper presents a Model Predictive Control (MPC) algorithm for Nonlinear systems represented through quasi-
Linear Parameter Varying (qLPV) embeddings. Input-to-state stability is ensured through parameter-dependent ter-
minal ingredients, computed offline via Linear Matrix Inequalities. The online operation comprises three consecutive
Quadratic Programs (QPs) and, thus, is computationally efficient and able to run in real-time for a variety of applica-
tions. These QPs stand for the control optimization (MPC) and a Moving-Horizon Estimation (MHE) scheme that
predicts the behaviour of the scheduling parameters along the future horizon. The method is practical and simple to
implement. Its effectiveness is assessed through a benchmark example (a CSTR system).
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1. INTRODUCTION
Model Predictive Control (MPC) is a very powerful control method, with widespread industrial application.
The core idea of MPC [1] is simple enough: a process model is used to predict the future output response of the
process; then, at each instant, the control law is found through the solution of an online optimization problem,
which is written in terms of the model, the process constraints and the performance goals. For the case of
processes represented by Linear Time-Invariant (LTI) models, MPC is translated as a constrained Quadratic
Programming Problem (QP), which can be evaluated in real-time by the majority of standard solvers.

Extra attention should be payed to the fact that the theoretical establishment MPC was especially consolidated
after the proposition of “terminal ingredients”, which served to demonstrate robust stability and recursive
feasibility properties [2]. These properties are enabled when some conditions with respect to a terminal stage
cost 𝑉 (·) and to a terminal constraint X 𝑓 are verified. Essentially, the terminal set must be robust positively
invariant for the controlled system, the stage cost must be K-class lower bounded and the terminal cost 𝑉 (·)
should be K-class upper bounded and Lyapunov-decreasing (it must decay along the horizon).

For many years, MPC was mostly seen in the process industry, regulating usually slower applications (with
longer sampling periods). This was mainly due to the fact that the inherent optimization procedures were
excessively costly (numerical-wise) and became impractical for real-time systems.

Nonlinear MPC (NMPC) algorithms yield complex optimization procedure, with exponential growth of the
numerical burden. Nevertheless, the majority of system is indeed nonlinear and, thus, literature has devoted
special attention to feasible NMPC design since the 00’s [3]. Originally, NMPC algorithms were hardly able to
run in real-time [4], but recent research effort has focused to a great extent on ways to simplify or approximate,
usually throughGauss-Newton, Lagrangian ormultiple-shooting discretization approaches [5], the online Non-
linear Programming Problem (NP) in order to make it viable for fast, time-critical processes. Some of these
faster NMPC algorithms run within the range of a few milliseconds, resorting to solver-based solutions (as in
ACADO [6] or GRAMPC [7] algorithms) or GPU-based schemes [8,9].

Parallel to these approximated methods, another research route is now expanding to address the complexity
drawback of “full-blown” NMPC strategies: using quasi-/Linear Parameter Varying (qLPV/LPV) model struc-
tures to embed the nonlinear dynamics, as in [10], and thus facilitate the online optimization. Since LPVmodels
retain linearity properties through the input/output channels, the optimization can be reduced to the complex-
ity of a QP. A recent survey [11] details the vast possibilities of issuing NMPC through LPV structures. The
basic requirement of these methods is that the nonlinearities must respect the Linear Differential Inclusion
(LDI) property [12,13], in such a way that they can be embedded into a qLPV realisation, appropriately “hidden”
in scheduling parameters 𝜌.

Instead of using a moving-window linearization strategy to yield fast NMPCs with time-varying models [14],
or of using approximated solutions of the NP iterations [6], this paper follows the lines of the qLPV embedding
framework, which allows for an exact description of the nonlinear system and, thereby, no time-consuming
linearization or Jacobian computation needs to take place. As previously evidenced [11], these qLPV methods
are able to use the scheduling proxy 𝜌(𝑘) = 𝑓 (𝑥(𝑘), 𝑢(𝑘)) to compute the process predictions rapidly. In fact,
these methods have recently been shown [15] to outrank (or perform equivalently as) fast NMPC solvers, such
as ACADO. Some of these recent development are further detailed:

• Some works [16,17] opt to consider a frozen/constant guess for the scheduling parameters along the future
horizon and ensure, through the use of terminal ingredients, that the trajectories are sufficiently regulated,
despite the uncertainty along the horizon;

• Morato et al. [18] propose a method to determine an educated estimation for scheduling variables using a
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recursive Least-Squares procedure. A similar procedure is applied in [19]. The main drawback is that the
results could be sub-optimal, meaning that local minima found through their QPs/ Sequential QPs (SQPs),
which may not ensure sufficient performances.

• Themost prominent results are those reported in the recent works byCisneros&Werner [20–22]. The original
idea [20] is to iteratively use the prediction for the future state trajectories (output of the QP) to compute a
guess of the scheduling parameters, using the nonlinear proxy 𝜌(𝑘 + 𝑗) = 𝑓 (𝑥(𝑘 + 𝑗)). The method was
extended [21] to reference-tracking and shown to yield a Second-orderCone Program (2𝑛𝑑OCP) formulation
for the resulting NMPC, which is easier to solve than an NP. The formulation was further smoothed in the
most novel reference [22], wherein the procedure is split into an offline preparation part, using LinearMatrix
Inequalities (LMIs) to compute a robust positively invariant terminal set, and an online residing solely in
re-iterating SQPs.

1.1. Contributions and rganization
oAs detailed in the prequel, the topic of NMPC through qLPV embedding has been studied by a handful of pa-
pers and deserves further attention. It seems that the development of these strategies can surely be established
as a competitive category for nonlinear MPC design, regarding time-critical applications.

Pursuing this matter and motivated by the previous discussion, this paper proposes an alternative formulation
to the recent algorithm by Cisneros and Werner [22]. In their work, the nonlinear proxy has to be evaluated
online w.r.t. to the future state evolution prediction originated through the QP. The alternative procedure pro-
posed herein relies on approximating the nonlinear proxy by a time-varying auto-regressive function, whose
parameters are found through another QP, based on a Moving-Horizon Estimation (MHE) method. This
alternative is able to slightly boost the numerical performances of the whole algorithm, which only needs to
evaluate three QPs to find the control law.

Accordingly, the contributions presented are the following:

• An alternative formulation for NMPC is proposed: using qLPV embeddings, the MPC operates together
with an MHE layer, which estimates the future behaviour of the scheduling parameters.

• The convergence of the algorithm is demonstrated.
• A benchmark example is used to demonstrate the effectiveness of the proposed scheme, in terms of perfor-
mance and numerical burden.

Regarding organization, this paper is structured as follows. Idn the next Section, the preliminaries and formal-
ities are presented, especially regarding how nonlinear processes can be embedded into a qLPV representation
through LDI. Moreover, the problem setup regarding MPC applied to such qLPVmodel is presented. Further-
more, the proposed MHE-MPC formulation and the discussion about stability and an offline LMI-solvable
remedy for the computation of the terminal ingredients is addressed. Lastly, Section simulation results and
general conclusions are drawn.

1.2. Basic efinitions

Definition 1. Nonlinear Programming Problem
Consider an arbitrary real-valued nonlinear function 𝑓𝑐 (𝑥𝑐). A Nonlinear Programming Problem determines the
vector 𝑥𝑐 that minimizes 𝑓𝑐 (𝑥𝑐) subject to 𝑔𝑖 (𝑥𝑐) ≤ 0, ℎ 𝑗 (𝑥𝑐) = 0 and 𝑥𝑐 ∈ X𝑐, where 𝑔𝑖 and ℎ 𝑗 are also
nonlinear.

Definition 2. Quadratic Programming Problem
A Quadratic Programming Problem (or simply Quadratic Problem) is a linearly constrained mathematical op-
timization problem of a quadratic function. A QP is a particular type of NP. The quadratic function may be
defined with respect to several variables, all of which may be subject to linear constraints. Considering a vector
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𝑐 ∈ R𝑛𝑐 , a symmetric matrix𝑄𝑐 ∈ R𝑛𝑐×𝑛𝑐 , a real matrix 𝐴𝑖𝑛𝑒𝑞 ∈ R𝑚𝑐×𝑛𝑐 , a real matrix 𝐴𝑒𝑞 ∈ R𝑚𝑐×𝑛𝑐 , a vector
𝑏𝑖𝑛𝑒𝑞 ∈ R𝑚𝑐 and another vector 𝑏𝑒𝑞 ∈ R𝑚𝑐 , the goal of a QP is to determine the vector 𝑥𝑐 ∈ R𝑛𝑐 that minimizes
a regular quadratic function of form 1

2
(
𝑥𝑇𝑐𝑄𝑥𝑥𝑐 + 𝑐𝑇𝑥𝑥

)
subject to constraints 𝐴𝑖𝑛𝑒𝑞𝑥𝑐 ≤ 𝑏𝑖𝑛𝑒𝑞 and 𝐴𝑒𝑞𝑥𝑐 = 𝑏𝑒𝑞 .

The solution 𝑥𝑐 to this kind of problem is found by many solvers seen in the literature, based on Interior Point
algorithms, quadratic search, etc.

1.3. Notation
In this work, the set of non-negative real number is denoted by R+, whist the set of non-negative integers
including zero is denoted by N. The index set N[𝑎,𝑏] represents {𝑖 ∈ N | 𝑎 ≤ 𝑖 ≤ 𝑏}, with 0 ≤ 𝑎 ≤ 𝑏. The
identity matrix of size 𝑗 is denoted as I 𝑗 ; col{𝑎 , 𝑏 , 𝑐} denotes the vectorization (collection) of the entries and
diag{𝑣} denotes the diagonal matrix generated with the line vector 𝑣.

The value of a given variable 𝑣(𝑘) at time instant 𝑘 + 𝑖, computed based on the information available at instant
𝑘 , is denoted as 𝑣(𝑘 + 𝑖 |𝑘).

K refers to the class of positive and strictly increasing scalar functions that pass through the origin. A given
function 𝑓 : R → R is of class K if 𝑓 (0) = 0 and lim𝜉→+∞ 𝑓 (𝜉) → +∞. A real-valued scalar function 𝜙 :
R+ → R+ belongs to classK∞ if it belongs to classK and it is radially unbounded (this is lim𝑠→+∞ 𝜙(𝑠) → +∞.
A function 𝛽 : R+ × R+ → R+ belongs to class KL if, for each fixed 𝑚 ∈ R+, 𝛽(·, 𝑚) ∈ K and, for each
fixed 𝑠 ∈ R+, 𝛽(𝑠, ·) is non-increasing and holds for lim𝑚→+∞ 𝛽(𝑠, 𝑚) = 0.

C𝑛 denotes the set of all compact convex subsets of R𝑛. A convex and compact set 𝑋 ∈ C𝑛 with non-empty
interior, which contains the origin, is named a PC-set. A subset of R𝑛 is denoted a polyhedron if it is an
intersection of a finite number of half spaces. A polytope is defined as a compact polyhedron. A polytope
can be analogously represented as the convex hull of a finite number of points in R𝑛. A hyperbox is a convex
polytope where all the ruling hyperplanes are parallel with respect to their axes.

Finally, consider two sets 𝐴 ⊂ R𝑛 and 𝐵 ⊂ R𝑛. TheMinkowski set addition is defined by 𝐴 ⊕ 𝐵 := {𝑎+𝑏 | 𝑎 ∈
𝐴 , 𝑏 ∈ 𝐵}, while the Pontryagin set difference is defined by 𝐴 	 𝐵 := {𝑎 | 𝑎⊕𝐵 ⊆ 𝐴}. The cartesian product
between two sets is defined asA × B.

2. PRELIMINARIES
In this Section, we detail how nonlinear processes can be described under a qLPV formalism; we also present
some other formalities.

2.1. The Nonlinear System and its qLPV Embedding
We consider the following generic discrete-time nonlinear system:{

𝑥(𝑘 + 1) = 𝑓 (𝑥(𝑘), 𝑢(𝑘)) ,
𝑦(𝑘) = 𝑓𝑦 (𝑥(𝑘), 𝑢(𝑘)) ,

(1)

where 𝑘 ∈ N represents the sampling instant, 𝑥 : N→ X ⊂ R𝑛𝑥 represents the system states, 𝑢 : N→ U ⊂
R𝑛𝑢 is the vector of control inputs and 𝑦 : N→ Y ⊆ R𝑛𝑦 stands for the measured outputs of the process.

We begin by characterizing this process, which should satisfy the following key Assumptions:

Assumption 1. The admissible zone for the states is given by a 2-norm upper bound on each entry 𝑥 𝑗 , this is:

X :=
{
𝑥 ∈ R𝑛𝑥 | | |𝑥 𝑗 | |2 ≤ 𝑥 𝑗 , ∀ 𝑗 ∈ N[1,𝑛𝑥 ]

}
. (2)
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Assumption 2. The admissible region for the control inputs is given by a 2-norm upper bound on each entry 𝑢 𝑗 ,
this is:

U :=
{
𝑢 ∈ R𝑛𝑢 | | |𝑢 𝑗 | |2 ≤ 𝑢 𝑗 , ∀ 𝑗 ∈ N[1,𝑛𝑢]

}
. (3)

Assumption 3. The nonlinear maps 𝑓 : X ×U → X and 𝑓𝑦 : X ×U → Y are continuous and continuously
differentiable with respect to 𝑥, i.e. class C∞

Assumption 4. This nonlinear system is controllable in terms of 𝑥 and 𝑦 through the input trajectory 𝑢.

To represent any nonlinear system, as the one in Eq. (1), under a qLPV formalism, this last Assumption must
be verified, since it is the LDI property that furnishes the settings for such representation.

The LDI property is as follows: suppose that, for each 𝑥, 𝑢 and 𝑦 and for every sampling instant 𝑘 , there exists
a matrix 𝐻 (𝑥, 𝑢, 𝑘) : X ×U × N→H such that[

𝑓 (𝑥(𝑘), 𝑢(𝑘))
𝑓𝑦 (𝑥(𝑘), 𝑢(𝑘))

]
= 𝐻 (𝑥, 𝑢, 𝑘)

[
𝑥(𝑘)
𝑢(𝑘)

]
, (4)

whereH ⊆ R(𝑛𝑥 )×(𝑛𝑥+𝑛𝑢) is the set within which the LDI property holds. Then, when there exists a matrix 𝐻 (·)
that verifies Eq. (4), the nonlinear model from Eq. (1) can be equivalently expressed as:

𝑥(𝑘 + 1) = 𝐴(𝜌(𝑘))𝑥(𝑘) + 𝐵(𝜌(𝑘))𝑢(𝑘) ,
𝑦(𝑘) = 𝐶 (𝜌(𝑘))𝑥(𝑘) + 𝐷 (𝜌(𝑘))𝑢(𝑘) ,
𝜌(𝑘) = 𝑓𝜌 (𝑥(𝑘), 𝑢(𝑘)) ∈ P ,

(5)

which is a qLPV formulation where 𝑓𝜌 : X × U → P ⊂ R𝑛𝑝 represents the endogenous nonlinear function
for the scheduling parameters. Note that 𝜌(𝑘) is bounded and known online at each instant 𝑘 , but generally
unknown for any future instant 𝑘 + 𝑗 , ∀ 𝑗 ∈ N[1,∞] .

We consider that the qLPV scheduling parameters have bounded rates of variations, this is: 𝜌(𝑘 +1) = 𝜌(𝑘) +
𝜕𝜌(𝑘 + 1), being 𝜕𝜌 ∈ 𝜕P, ∀ 𝑘 their variation rates. This is very reasonable for any practical application. To
assume that 𝜌 varies arbitrary implies in quite conservative control synthesis [23].

3. PROBLEM SETUP
Regarding the qLPV embedded model in Eq. (5), we proceed by detailing howMPC can be applied to regulate
and control this system. For the simplify of the reference tracking demonstrations, we drop the input-output
energy transfer, i.e. 𝐷 (𝜌(𝑘)) = 0. We note that the processes with 𝐷 (𝜌(𝑘)) ≠ 0 can still be dealt with the
proposed method, we no additional drawbacks.

The essential idea behind MPC is to consider a quadratic finite-horizon functional cost, which embeds the
performance objectives of the system within this given horizon. The implementation resides in minimizing
this cost with respect to a control signal sequence, using a model of the system in order to make predictions for
the future variable values along the horizon. The optimization also includes the operational constraints of the
process variables (admissibility region). Generically, we consider the following steady-state reference tracking
performance cost:

𝐽 (𝑥, 𝑢, 𝑘) = 𝑉
(
𝑥(𝑘 + 𝑁𝑝 |𝑘)

)
+
𝑁𝑝−1∑
𝑖=0
| |𝑥(𝑘 + 𝑖 |𝑘) − 𝑥𝑟 | |2𝑄 +

𝑁𝑝∑
𝑖=1
| |𝑢(𝑘 + 𝑖 − 1|𝑘) − 𝑢𝑟 | |2𝑅 , (6)

where𝑄 and 𝑅 are positive definite weightingmatrices and the pair (𝑥𝑟 , 𝑢𝑟 ) defines a known admissible steady-
state reference target for the nonlinear system. The optimization cost 𝐽 considers a prediction horizon of 𝑁𝑝
steps and a positive terminal stage value 𝑉

(
𝑥(𝑘 + 𝑁𝑝 |𝑘)

)
> 0.
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The MPC framework considers a moving-window strategy. Therefore, at each sampling instant 𝑘 , since 𝑥(𝑘),
and 𝜌(𝑘) are known, the corresponding optimization problem is solved, which gives the solution 𝑈𝑘 ∈
R𝑛𝑢×𝑁𝑝 . This solution constitutes the following sequence of control inputs

𝑈𝑘 =
[
𝑢(𝑘 |𝑘) . . . 𝑢(𝑘 + 𝑁𝑝 − 1|𝑘)

]𝑇 , (7)

whose first input 𝑢(𝑘 |𝑘) = 𝐼1𝑈𝑘 is applied to the process. Then, the horizon slides forward and the procedure
is updated. The complete optimization, at each sampling instant 𝑘 , is given as follows:

min
𝑈𝑘

𝐽 (𝑥, 𝑢, 𝑘) (8)

s.t.

LPV Process Model︷                                                                                 ︸︸                                                                                 ︷
𝑥(𝑘 + 𝑖 + 1|𝑘) = 𝐴(𝜌(𝑘 + 𝑖))𝑥(𝑘 + 𝑖 |𝑘) + 𝐵(𝜌(𝑘 + 𝑖))𝑢(𝑘 + 𝑖 |𝑘) ,
Control Input Admissibility︷                     ︸︸                     ︷
𝑢(𝑘 + 𝑖 − 1|𝑘) ∈ U ∀𝑖 ∈ N[1,𝑁𝑝] ,
Admissible Process Operation︷              ︸︸              ︷
𝑥(𝑘 + 𝑖 |𝑘) ∈ X ∀𝑖 ∈ N[1,𝑁𝑝] ,

Terminal Set Constraint︷                    ︸︸                    ︷
𝑥(𝑘 + 𝑁𝑝 |𝑘) ∈ X 𝑓 ,

whereX 𝑓 and𝑉 (·) are the terminal ingredients, combined to ensure recursive feasibility of the algorithm (see
Section Stability and Offline Preparations).

Due to Eq. (8), it follows that the future values for the qLPV scheduling variables 𝜌(𝑘 + 𝑖) are not known for
any 𝑖 ≥ 1. At each instant 𝑘 , the optimization operates based on the knowledge of 𝑥(𝑘) and 𝑢(𝑘), which can
be used to compute 𝜌(𝑘) through the nonlinear qLPV proxy 𝑓𝜌 (·). One could easily include this proxy into
the optimization, making it also subject to 𝜌(𝑘 + 𝑖) = 𝑓𝜌 (𝑥(𝑘 + 𝑖), 𝑢(𝑘 + 𝑖)) together with the process model,
but this would convert Eq. (8) into a Nonlinear Programming Problem, which is associated with numerical
complexity issues (as previously discussed).

The NP execution is computationally unattractive [22] because of this general nonlinear dependence of the pre-
dicted states on the control inputs and on previous states. Therefore, following the lines of previous works [19,22],
this paper pursues a fast implementation of the LPV MPC optimization procedure in Eq. (8), which means
that we do not seek to analytically include the nonlinear qLPV scheduling proxy 𝑓𝜌 (·) to the optimization, but
rather to provide values for the complete evolution of the scheduling parameters along the prediction horizon,
as if they were known (thus detaching the nonlinear dependency). This is, we aim to solve Eq. (8) based on
𝑥(𝑘), 𝜌(𝑘) and on the future ”scheduling sequence” vector 𝑃𝑘 ∈ R𝑛𝑝×𝑁𝑝 , being

𝑃𝑘 =
[
𝜌(𝑘) . . . 𝜌(𝑘 + 𝑁𝑝 − 1|𝑘)

]𝑇 . (9)

If the actual evolution of the scheduling sequence is as gives 𝑃𝑘 , the MPC ensures perfect regulation. Fur-
thermore, it is formulated as a Quadratic Programming Problem, which can be tackled for many time-critical
applications with modern solvers. In fact, we approximate the NP solution by one which resides in a ”guess”
for the scheduling sequence 𝑃𝑘 , which attractively converges to the actual value of this vector as the procedure
iterates. The solution to estimate 𝑃𝑘 is based on a Moving Horizon Estimation algorithm, which is further
detailed in SectionTheMHE-MPC Mechanism.

We must proceed by providing some complementary Assumptions regarding this qLPV MPC optimization
problem setup. For such, we denote 𝑋𝑘 ∈ R𝑛𝑥×𝑁𝑝 as the evolution of the state values along the prediction
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horizon, this is:

𝑋𝑘 =
[
𝑥(𝑘 + 1|𝑘) . . . 𝑥(𝑘 + 𝑁𝑝 |𝑘)

]𝑇 . (10)

Assumption 5. The qLPV scheduling proxy is set-wise and vector-wise applicable, this is, it holds as 𝑓𝜌 (X,U)
and also as 𝑓𝜌 (𝑋𝑘 ,𝑈𝑘 ). The first operation stand for the application of 𝑓𝜌 (·) to the bounds of each entry set, while
the later stands for the application of 𝑓𝜌 (·) to each sample of the entry vectors.

Assumption 6. The application of the scheduling proxy to the admissible zone for the states and inputs is a subset
of the scheduling set, this is:

𝑓𝜌 (X,U) ⊂ P . (11)

Assumption 7. The admissible regionX×U is a subset of the image of the inverse of the scheduling proxy domain,
being 𝑓𝜌 (·) bijective. This means that the inverse of the scheduling proxy always maps admissibility pairs (𝑥 , 𝑢)
from admissible scheduling variables 𝜌. This is mathematically expressed as follows:

{X ×U} ⊂ Im
{
𝑓 −1
𝜌 (P)

}
. (12)

From the viewpoint of each sampling instant 𝑘 , the scheduling sequence can be directly evaluated as:

𝑃𝑘 = 𝑓𝜌 (𝑋★𝑘 ,𝑈𝑘 ) , (13)

where 𝑋★𝑘 comprises the instantaneous states and the state evolution 𝑋𝑘 until 𝑥(𝑘 + 𝑁𝑝 − 1|𝑘):

𝑋★𝑘 =
[
𝑥(𝑘) . . . 𝑥(𝑘 + 𝑁𝑝 − 1|𝑘)

]𝑇 , (14)

which is directly given by [𝑥(𝑘)𝑇 𝑋𝑇𝑘 ] with the last entry suppressed.

With the previous discussion in mind, we proceed by using the qLPV model from Eq. (5) and the definitions
from Eqs. (7), (9) and (10) to analytically provide a solution to the state evolution which is explicitly dependent
on the scheduling sequence.

For the LTI case, the state evolution 𝑋𝑘 , departing from 𝑥(𝑘), is expressed on a linear dependent basis w.r.t.
𝑥(𝑘) and to the sequence of control inputs𝑈𝑘 , as follows:

𝑋𝑘 = A𝑥(𝑘) + B𝑈𝑘 .

Analogously, for the qLPV case, since linearity is retained through the input-output channels (i.e. from 𝑢 to
𝑥), the state evolution can be given in a quite similar fashion, but with parameter dependence on 𝑃𝑘 appearing
on the transition matrices, this is:

𝑋𝑘 = A(𝑃𝑘 )𝑥(𝑘) + B(𝑃𝑘 )𝑈𝑘 , (15)
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where the parameter dependent matrices are given by1:

A(𝑃𝑘 ) =


𝐴(𝜌(𝑘))

𝐴(𝜌(𝑘 + 1))𝐴(𝜌(𝑘))
...(

Π
𝑁𝑝−1
𝑖=0 𝐴(𝜌(𝑘 + 𝑖))

)

, B(𝑃𝑘 ) =


𝐵(𝜌(𝑘)) . . .

(
Π
𝑁𝑝−1
𝑖=1 𝐴(𝜌(𝑘 + 𝑖))

)
𝐵(𝜌(𝑘))

0
. . .

(
Π
𝑁𝑝−1
𝑖=2 𝐴(𝜌(𝑘 + 𝑖))

)
𝐵(𝜌(𝑘 + 1))

... . . .
...


𝑇

.

In order to compute matrices A(𝑃𝑘 ) and B(𝑃𝑘 ), some nonlinear operations should be performed. Anyhow,
the procedure to compute them can be done completely outside theMPC optimization. In this form, theMPC
receives, at each instant 𝑘 , the following inputs: 𝑥(𝑘), A(𝑃𝑘 ) and B(𝑃𝑘 ) (as well as the steady-state target
given by 𝑥𝑟 and 𝑢𝑟); then, solving the optimization problem in Eq. (8), it results in 𝑈𝑘 , from which the first
entry 𝑢(𝑘 |𝑘) is applied to the plant. For such goal, the MPC requires to internally explicitly minimize the cost
function 𝐽 (𝑥, 𝑢, 𝑘) from Eq. (6), which can be written in the vector form as follows:

𝐽 (𝑥, 𝑢, 𝑘) = (𝑋𝑘 − 𝑋𝑟 )𝑇 �̆� (𝑋𝑘 − 𝑋𝑟 ) + (𝑈𝑘 −𝑈𝑟 ) �̆� (𝑈𝑘 −𝑈𝑟 ) (16)
+ 𝑉 (𝑥(𝑘 + 𝑁𝑝 |𝑘)) ,
= (A(𝑃𝑘 )𝑥(𝑘) + B(𝑃𝑘 )𝑈𝑘 − 𝑋𝑟 )𝑇

�̆� (A(𝑃𝑘 )𝑥(𝑘) + B(𝑃𝑘 )𝑈𝑘 − 𝑋𝑟 )
+ (𝑈𝑘 −𝑈𝑟 ) �̆� (𝑈𝑘 −𝑈𝑟 )
+ 𝑉 (𝑥(𝑘 + 𝑁𝑝 |𝑘)) ,

=
1
2

(
𝑈𝑇𝑘 𝐻 (𝑃𝑘 )𝑈𝑘 −𝑈𝑇𝑘 𝑔(·) + 𝜅(·)

)
,

where𝐻 (𝑃𝑘 ) is theHessian of this cost function, 𝑔(·) its gradient and 𝜅(·) an offset term. The notation �̆� and �̆�

denote the block-diagonal version of these matrices, i.e. diag{

𝑁𝑝 times︷   ︸︸   ︷
𝑄 . . . 𝑄} and diag{

𝑁𝑝 times︷   ︸︸   ︷
𝑅 . . . 𝑅}, respectively, while

𝑋𝑟 =


𝑁𝑝 times︷  ︸︸  ︷
1 . . . 1


𝑇

𝑥𝑟 and𝑈𝑟 =


𝑁𝑝 times︷  ︸︸  ︷
1 . . . 1


𝑇

𝑢𝑟 . The Hessian, gradient and offset terms are analytically given by:

𝐻 (𝑃𝑘 ) = 2B(𝑃𝑘 )𝑇 �̆�B(𝑃𝑘 ) + 2�̆� , (17)
𝑔(·) = −B(𝑃𝑘 )𝑇 �̆�A(𝑃𝑘 )𝑥(𝑘) (18)

+ B(𝑃𝑘 )𝑇 �̆�𝑋𝑟 + �̆�𝑈𝑟 ,
𝜅(·) = 2𝑥(𝑘)𝑇A(𝑃𝑘 )𝑇 �̆�A(𝑃𝑘 )𝑥(𝑘) (19)

− 𝑥(𝑘)𝑇A(𝑃𝑘 )𝑇 �̆�𝑋𝑟 + 2𝑋𝑇𝑟 �̆�𝑋𝑟
+ 2𝑈𝑇𝑟 �̆�𝑈𝑟 + 2𝑉 (𝑥(𝑘 + 𝑁𝑝 |𝑘)) .

1Π(·) denotes the left-side product operator.
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3.1. Process constraints
The qLPV MPC problem solution proposed in this paper is formulated with respect to the scheduled state
evolution equation, as gave Eq. (15), with 𝐻 (𝑃𝑘 ), 𝑔(·) and 𝜅(·) being as passed as inputs to the resulting
MPC optimization. This means that the MPC optimization does not treat state evolution 𝑋𝑘 as optimization
variables, but the whole problem is formulated singularly in terms of𝑈𝑘 .

For this reason, the admissibility process constraints 𝑢(𝑘 + 𝑖 − 1|𝑘) ∈ U and 𝑥(𝑘 + 𝑖 |𝑘) ∈ X are conversely
written in the following fashion, w.r.t. A(·), B(·),𝑈𝑘 and 𝑥(𝑘), instead of 𝑢(𝑘 + 𝑗) and 𝑥(𝑘 + 𝑗):

𝑈𝑘 ∈ Ŭ , (20)
(A(𝑃𝑘 )𝑥(𝑘) + B(𝑃𝑘 )𝑈𝑘 ) ∈ X̆ , (21)

B(𝑃𝑘 )𝑈𝑘 ∈ X̆ 	 A(𝑃𝑘 )𝑥(𝑘) . (22)

The above formulations also facilitates the inclusion of slew rates on 𝑢, i.e. constraints on the control variation
𝛿𝑢(𝑘 + 𝑖) = 𝑢(𝑘 + 𝑖) − 𝑢(𝑘 + 𝑖 − 1), which can be done directly by adapting the vector-wise set Ŭ.

The terminal constraint 𝑥(𝑘 + 𝑁𝑝 |𝑘) ∈ X 𝑓 is stated in terms of𝑈𝑘 as:[
0𝑛𝑥 0𝑛𝑥 . . . I𝑛𝑥

]
(A(𝑃𝑘 )𝑥(𝑘) + B(𝑃𝑘 )𝑈𝑘 ) ∈ X 𝑓 ,[

0𝑛𝑥 0𝑛𝑥 . . . I𝑛𝑥
]
B(𝑃𝑘 )𝑈𝑘 ∈ 𝑋	𝑓 ,

where

𝑋	𝑓 := X 𝑓 	
( [

0𝑛𝑥 0𝑛𝑥 . . . I𝑛𝑥
]
A(𝑃𝑘 )𝑥(𝑘)

)
.

Additional output constraints are also easily formulated. If the process has some outputs 𝑦𝑐 (which are not
necessarily equal to 𝑦, but could be) that must be hard constrained, i.e. 𝑦𝑐 ∈ Y𝑐 . Then, assume that these
outputs can be described as:

𝑦𝑐 (𝑘) = 𝐶𝑐 (𝜌(𝑘))𝑥(𝑘) , (23)

In what follows, we take

𝑌𝑐𝑘 =
[
𝑦𝑐 (𝑘 + 1|𝑘) . . . 𝑦𝑐 (𝑘 + 𝑁𝑝 − 1) |𝑘)

]𝑇 .

Then, the additional constraint is formulated as follows2:

𝐶𝑐 (𝑃𝑘 ) = diag{ 𝐶𝑐 (𝜌(𝑘 + 1) . . . 𝐶𝑐 (𝜌(𝑘 + 𝑁𝑝 − 1)) 0 } ,
𝑌𝑐𝑘 = 𝐶𝑐 (𝑃𝑘 )𝑋𝑘 ,
𝑌𝑐𝑘 = 𝐶𝑐 (𝑃𝑘 ) (A(𝑃𝑘 )𝑥(𝑘) + B(𝑃𝑘 )𝑈𝑘 ) ,

thus

𝐶𝑐 (𝑃𝑘 )B(𝑃𝑘 )𝑈𝑘 ) ∈ Y̆𝑐 	 (𝐶𝑐 (𝑃𝑘 )A(𝑃𝑘 )𝑥(𝑘)) .

2Note that the last 𝑦𝑐 (𝑘 + 𝑁𝑝 |𝑘) is not constrained due to unavailability of 𝜌(𝑘 + 𝑁𝑝) inside 𝑃𝑘 . This issue is amendable by taking a
longer scheduling prediction guess 𝑃𝑘 , but out of the scope.
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3.2. Reference tracking
Finally, before showing the proposed mechanism to guess 𝑃𝑘 and solve the qLPV MPC problem, a comment
must be made regarding reference tracking. The considered cost function 𝐽 (𝑥, 𝑢, 𝑘) from Eq. (6) (or its vector
form of Eq. (16)) is set in order to minimize the variations from the desired set-point target 𝑝𝑟 = (𝑥𝑟 , 𝑢𝑟 ).

The majority of processes that require reference tracking, require it regarding the controlled outputs and not
the states. This is, to ensure that 𝑦(𝑘) tracks some steady-state value 𝑦𝑟 . Since the controlled outputs in Eq. (5)
are given by

𝑦(𝑘) = 𝐶 (𝜌(𝑘))𝑥(𝑘) ,

we can find a linear (parameter varying) combination of the states 𝑥 that, if tracked, ensures that 𝑦(𝑘) → 𝑦𝑟 .
We denote the output tracking target as 𝑝𝑦𝑟 = (𝑦𝑟 , 𝑢𝑦𝑟 ), which is known.

Then, following the lines of previous reference tracking frameworks [24–26], we use an offline reference opti-
mization selector, which is set to find the set-point target 𝑝𝑟 that abides to the constraints and ensures an
output tracking of 𝑦𝑟 . This nonlinear optimization procedure is as follows:

min
𝑥𝑟 ,𝑢𝑟

‖𝐶 (𝜌𝑟 )𝑥𝑟 − 𝑦𝑟 ‖2𝑄 + ‖𝑢𝑟 − 𝑢𝑟 ‖2𝑅 ,

s.t.
[ (
I𝑛𝑥 − 𝐴(𝜌𝑟 )

)
−𝐵(𝜌𝑟 )

𝐶 (𝜌𝑟 ) 0𝑛𝑥×𝑛𝑢

] [
𝑥𝑟
𝑢𝑟

]
=

[
0𝑛𝑥
𝑦𝑟

]
,

𝜌𝑟 = 𝑓𝜌 (𝑥𝑟 , 𝑢𝑟 ) ∈ P ,
𝑥𝑟 ∈ X ,
𝑥𝑟 ∈ X 𝑓 ,
𝑢𝑟 ∈ U .

This procedure ensures some steady-state 𝑥𝑟 = 𝐴(𝜌𝑟 )𝑥𝑟 + 𝐵(𝜌𝑟 )𝑢𝑟) that abides to the states constraints and
guarantees that the output tracking goal 𝑦𝑟 is followed.

Note that this optimization procedure has a steady-state target point 𝑝𝑟 = (𝑥𝑟 , 𝑢𝑟 ) as output, and not the full
state and input trajectories towards this target.

The state reference selection problem can be solved online, at each sampling instant, if the output reference goal
𝑦𝑟 changes over time. By doing so, an additional computational complexity appears, which can be smoothed if
the scheduling parameter guess 𝑃𝑘 is used instead of solving the nonlinear optimization itself. A full discussion
on periodically changing reference tracking for nonlinear MPC has been recently presented [27]. The focus of
this paper is constant reference signals, either given in terms of states 𝑥𝑟 or outputs 𝑦𝑟

It is important to notice that, in order for the method to hold, the state reference 𝑥𝑟 must be contained inside
the terminal set of the MPC problem from Eq. (8). This ensures that the stability and recursive feasibility
guarantees (as verified in Section Stability and Offline Preparations) hold.

4. THE MHE-MPC MECHANISM
In the general qLPV embedding case of Eq. (5), the scheduling proxy 𝑓𝜌 (·) is an arbitrary function of both
state and input. For notation ease, we drop the control input dependency, using taking 𝜌(𝑘) = 𝑓𝜌 (𝑥(𝑘)).
Anyhow, note that all that follows can be trivially extended to broader case.
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The backbone idea of the method proposed in this paper follows the fashion of previous papers [19,22]: to iter-
atively refine the predictions/guesses of the scheduling sequence 𝑃𝑘 based on the (adjusted) state predictions
𝑋★𝑘 . The main novelty of this paper is how the refining and estimation of 𝑃𝑘 is done: in the prior, the schedul-
ing sequence is taken, as each iteration, directly as gives Eq. (13), i.e. as a nonlinear operator upon a vector,
which can be computationally difficult to track, according to the kind of nonlinearity present on the schedul-
ing map 𝑓𝜌 (·); in contrast, in this paper, 𝑃𝑘 is taken according to a linear time-varying operator on 𝑋★𝑘 , this
is: 𝑃𝑘 = 𝑓MHE(𝑃𝑘−1,Θ𝑘 , 𝑋

★
𝑘 ). This linear operator derives from a Moving-Horizon Estimation procedure,

which proceeds by trying to match a fixed-size linear auto-regressive model for 𝑃𝑘 , being Θ𝑘 the model pa-
rameters computed by the MHE at a given sampling instant 𝑘 and 𝑃𝑘−1 the scheduling sequence guess at the
previous instant.

A priori, the operation of thisMHE has the computational complexity of a QP, which could be faster to evaluate
than the Eqs. (13) withA(𝑃𝑘 ) and B(𝑃𝑘 ), depending on the amount of nonlinearities present in 𝑓𝜌 (·). More-
over, the proposed MHE-MPC mechanism is able to provide convergence to the real scheduling sequence 𝑃𝑘
faster than looping Eq. (13) to the MPC [22], as demonstrated through the experiment presented in Section
Benchmark Example. The method follows:

Assumption 8. The scheduling map 𝑓𝜌 (·) is algebraic.

Proposition 1. The scheduling map 𝑃𝑘 = 𝑓𝜌 (𝑋★𝑘 ) can be approximated by the following regression:

𝜌(𝑘) ≈ 𝜌(𝑘 − 1) + 𝑎0,0𝑥(𝑘) + 𝑎0,1𝑥(𝑘 + 1|𝑘)
+ · · · + 𝑎 𝑗 ,𝑁𝑝−1𝑥(𝑘 + 𝑁𝑝 − 1|𝑘) , (24)
...

𝜌(𝑘 + 𝑁𝑝 − 1) ≈ 𝜌(𝑘 − 𝑁𝑝 − 2) + 𝑎𝑁𝑝−1,0𝑥(𝑘)
+ 𝑎𝑁𝑝−1,1𝑥(𝑘 + 1|𝑘) + . . .

𝑎𝑁𝑝−1,𝑁𝑝−1𝑥(𝑘 + 𝑁𝑝 − 1|𝑘) ,

which can be given in compact form by:

𝑃𝑘 ≈ 𝑃𝑘−1 +


𝑎0,0 . . . 𝑎1,𝑁𝑝−1
...

. . .
...

𝑎𝑁𝑝−1,1 . . . 𝑎𝑁𝑝−1,𝑁𝑝−1

︸                                  ︷︷                                  ︸
Θ𝑘

𝑋★𝑘 ,

being 𝑓MHE(𝑃𝑘−1,Θ𝑘 , 𝑋
★
𝑘 ) = 𝑃𝑘−1 + Θ𝑘𝑋

★
𝑘 a fairly easy map to compute with respect to numerical burden.

Proof. Indeed, due to Assumption 8, it is quite reasonable that Assumption 1 holds: any algebraic function of
form 𝜌(𝑘 + 1) = 𝑓𝜌 (𝑥(𝑘 + 1)) can be Taylor-expanded to achieve a linear dependency on 𝑥 with sufficiently
small error, i.e.

𝜌(𝑘 + 1) − 𝜌(𝑘) = 𝑓𝜌 (𝑥(𝑘 + 1) − 𝑓𝜌 (𝑥(𝑘)) ,
𝜌(𝑘 + 1) = 𝜌(𝑘) + 𝑓𝜌 (𝑥(𝑘 + 1)) − 𝑓𝜌 (𝑥(𝑘)) ,

𝜌(𝑘 + 1) ≈ 𝜌(𝑘) +
𝜕 𝑓𝜌

𝜕𝑥

����
𝑥(𝑘+1)

(𝑥(𝑘 + 2) − 𝑥(𝑘 + 1))

+
𝜕 𝑓𝜌

𝜕𝑥

����
𝑥(𝑘)
(𝑥(𝑘 + 1) − 𝑥(𝑘)) ,

≈ 𝜌(𝑘 − 1) + 𝑎2𝑥(𝑘 + 2)
+ 𝑎1𝑥(𝑘 + 1) + 𝑎0𝑥(𝑘) .
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This concludes the proof.

The proposed procedure uses aMHEmechanism to estimate these parameter values 𝑎0,0 to 𝑎𝑁𝑝−1,𝑁𝑝−1, at each
sampling instant, concatenated as Θ𝑘 , through the following QP:

min
Θ𝑘

𝑁𝑝−1∑
𝑗=0

(
𝑒𝑇 (𝑘 + 𝑗)𝑒(𝑘 + 𝑗)

)
(25)

s.t. 𝑒(𝑘 + 𝑗) =

Data from 𝑋★
𝑘︷      ︸︸      ︷

𝑥(𝑘 + 𝑗 |𝑘) −𝑥(𝑘 + 𝑗) ,∀ 𝑗 ∈ N[0,𝑁𝑝−1]

𝑥(𝑘 + 𝑗) = 𝐴(𝜌(𝑘 + 𝑗 − 1))𝑥(𝑘 + 𝑗 − 1|𝑘)

+ 𝐵(𝜌(𝑘 + 𝑗 − 1))

Data from𝑈𝑘︷         ︸︸         ︷
𝑢(𝑘 + 𝑗 − 1) ∀ 𝑗 ∈ N[0,𝑁𝑝−1] ,

𝜌(𝑘 + 𝑗) =

Data from 𝑃𝑘−1︷         ︸︸         ︷
𝜌(𝑘 + 𝑗 − 1) +𝑎 𝑗 ,0𝑥(𝑘) + . . .

+ 𝑎 𝑗 ,𝑁𝑝−1𝑥(𝑘 + 𝑁𝑝 − 1|𝑘) ∀ 𝑗 ∈ N[0,𝑁𝑝−1]

𝜌(𝑘 + 𝑗) ∈ P, ∀ 𝑗 ∈ N[0,𝑁𝑝−1] .

Essentially, this MHE scheme operates in order to find a parameter matrix Θ𝑘 that makes the linear auto-
regressive equation 𝑃𝑘 = 𝑃𝑘−1 + Θ𝑘𝑋

★
𝑘 yield the best match between the state evolution sequence 𝑋★𝑘 and

the qLPV model. Notice that the MHE algorithm only needs a few data from the previous step to find the
parameter matrix Θ𝑘 , being these the state predictions 𝑋★𝑘 , the scheduling sequence 𝑃𝑘−1 and the input vector
𝑈𝑘 .

Figure 1 syntheses the proposed algorithm, which relies in a coordination between the MHE and the MPC op-
timization procedures. We must note that the MHE loop should operate until 𝑃𝑘 converges to the actual value
for the scheduling sequence, or until a certain stop criterion/heuristic threshold for the number of iterations is
reached.

The proposed scheme is also detailed through the Algorithm below. Its application departs with an initial state
evolution sequence 𝑋0, that can be simply taken as constant/frozen evolution for the states and two initial
scheduling sequences 𝑃0 and 𝑃−1, which can be simply taken as if 𝜌(𝑘) remained frozen along the whole
prediction horizon, i.e. 𝑃𝑘 = 𝜌(𝑘)I1,𝑁𝑝 . The Algorithm also departs with a known terminal set condition X 𝑓

and a known target reference goal 𝑝𝑟 . The Hessian, gradient and offset of 𝐽𝑘 are taken as give Eqs. (17)-(19),
respectively.
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Figure 1. Proposed MHE-MPC Scheme using a qLPV Model.

Algorithm 1 Proposed qLPV MPC

Initialize: 𝑥(0) = 𝑥0, 𝜌(0) = 𝜌0, 𝑘 = 0.
Require: �̆�, �̆�, 𝑁𝑝 , 𝑝𝑟 .
Require: 𝑃0, 𝑃−1, 𝑋0,𝑈0.
Loop:
• Step (1): Loop until convergence of 𝑃𝑘 :

(i) Shift and update 𝑋𝑘 =⇒ 𝑋★𝑘 ;
(ii) Based on 𝑋★𝑘 , 𝑃𝑘−1 and𝑈𝑘 , solve the MHE optimization, from Eq. (25), which yields Θ𝑘 ;
(iii) Compute 𝑃𝑘 = 𝑓MHE(𝑃𝑘−1,Θ𝑘 , 𝑋

★
𝑘 ) according to Eq. (24);

(iv) Compute Hessian 𝐻 (𝑃𝑘 ), gradient 𝑔(·) and offset 𝜅(·);
(v) Solve the MPC optimization in Eq. (8), which yields𝑈𝑘 and 𝑋𝑘 .

• Step (2): Take 𝑢(𝑘) = 𝐼1𝑈𝑘 (first entry of the vector);
• Step (3): Apply this local control policy to the nonlinear process.
• Step (4): Increment 𝑘 , i.e. 𝑘 ← 𝑘 + 1.
end

4.1. Convergence property
In order to demonstrate the convergence of the proposed method (as in its implementation form given in Al-
gorithm 1), we will proceed by verifying a well-known results for Newton based SQPs from the literature [28–30].
This is the same path followed in a previous paper [22], which invokes established results to demonstrate that,
under certain conditions, theMHE-MPCmechanism that is solved at each iteration is equivalent to a quadratic
sub-problem used in standard Newton SQP. Therefore, a local convergence property is readily found.

Proposition 2. A quadratic sub-problem program of SQP algorithms is derived by a second-order approximation
of the SQP optimization cost and a linearization of its constraints.

Proof. Found in [28].

For illustration purposes regarding this matter, we consider the following generic NP (as given in Definition
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1):

min
𝑥𝑐

𝑓𝑐 (𝑥𝑐) , (26)

s.t. ℎ 𝑗 (𝑥𝑐) = 0 ,
𝑔𝑖 (𝑥𝑐) ≤ 0 .

This problem can be given as a quadratic sub-problem directly, as follows:

min
𝑥𝑐

(
𝑥𝑇𝑐

(
𝐻 𝑓𝑐 (𝑥𝑐) |𝑥𝑐 = 𝑥𝑐

)
𝑥𝑐 +

(
∇ 𝑓𝑐 (𝑥𝑐) |𝑥𝑐 = 𝑥𝑐

)𝑇
𝑥𝑐

)
, (27)

s.t.
(
∇ℎ 𝑗 (𝑥𝑐) |𝑥𝑐 = 𝑥𝑐

)
𝑥𝑐 +

(
∇ℎ 𝑗 (𝑥𝑐) |𝑥𝑐 = 𝑥𝑐

)
= 0 ,(

∇𝑔𝑖 (𝑥𝑐) |𝑥𝑐 = 𝑥𝑐
)
𝑥𝑐 +

(
∇𝑔𝑖 (𝑥𝑐) |𝑥𝑐 = 𝑥𝑐

)
≤ 0 ,

where 𝐻 𝑓𝑐 (𝑥𝑐) denotes the Hessian of the optimization cost 𝑓𝑐 (𝑥𝑐) and ∇ℎ 𝑗 (𝑥𝑐) and ∇𝑔𝑖 (𝑥𝑐) denote divergent
operators. We note that this sub-problem is evaluated at a given solution estimate 𝑥𝑐 (at some given iteration),
for which 𝑥𝑐 = 𝑥𝑐 − 𝑥𝑐 .

Regarding the proposedMHE-MPCmechanism, we can easily show that if either simple Jacobian linearization
or Linear Differential Inclusion are used to find a qLPVmodel (as in Eq. (5)) for the nonlinear system (as in Eq.
(1)), then, the proposed mechanism iterates in equivalence to a Newton SQP sub-problem. Notice how such
sub-problem in Eq. (27) is identical to the MHE-MPC optimization given through the consecutive iterations
of the MHE (Eq. (25)) and the MPC (Eq. (8)). The terminal constraint in the MPC optimization adds no
convergence trade-off.

Thence, it follows that if local convergence of the equivalent Newton SQP can be established, the proposed
MHE-MPC also yields convergence. The sufficient conditions for local convergence of a Newton SQP sub-
problem at 𝑥𝑐 = 𝑥𝑐 , as given by prior references [29–32], are that (i) the problem is set simply with equality
constraints (not the MPC case) or that (ii) the subset of active inequality constraints are known before the
optimization solution. The second condition is also not true for general MPC paradigms. However, one can
iterate the sub-problem until convergence is found at another point 𝑥𝑐 = 𝑥𝑐 , as previously discussed [22,33,34].

In practice, the proposed MHE-MPC will not be set to freely iterate until the convergence of 𝑃𝑘 . This is not
desirable because the number of iterations needed for convergence may require more time than the available
sampling period. Therefore, a stop criterion is added to the mechanism, so that iterations stop at a given
threshold. A warm-start is also included by shifting the result regarding 𝑋𝑘 and 𝑃𝑘 from one sampling 𝑘 as
the initial guess for the optimization at 𝑘 + 1, which ensures that the proposed algorithm reaches convergence
after a few discrete-time samples. We note that convergence of Newton SQP sub-problems with warm-start
have been assessed [33,34] and shown to be practicable for real-time schemes.

5. STABILITY AND OFFLINE PREPARATIONS
In this Section, we offer aTheorem to construct the terminal ingredients of theMPCalgorithm: (a) the terminal
set within which 𝑥(𝑘 + 𝑁𝑝 |𝑘) is bounded to, and (b) the terminal offset cost𝑉 (𝑥(𝑘 + 𝑁𝑝 |𝑘)) minimized by the
MPC.

Since the establishment of terminal ingredients toolkit [2,35] as the key way to ensure stability and recursive
feasibility of state-feedback predictive control loops, MPC grew on both theory and industrial practice.

The usual approach with terminal ingredients resides in some ensuring that conditions are met by (a) the
terminal set X 𝑓 and (b) the terminal cost 𝑉 (𝑥(𝑘 + 𝑁𝑝 |𝑘)) with respect to a nominal state-feedback controller
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𝑢(𝑘) = 𝐾n𝑥(𝑘), which is usually the unconstrained solution of the MPC problem. For the tracking case, the
nominal feedback is given by 𝑢(𝑘) = 𝐾n (𝑥(𝑘) − 𝑥𝑟 ) (and so is the terminal constraint

(
𝑥(𝑘 + 𝑁𝑝 |𝑘) − 𝑥𝑟

)
∈

X 𝑓 and the terminal cost𝑉 (𝑥(𝑘 +𝑁𝑝 |𝑘) − 𝑥𝑟 )). Accordingly, we develop a sufficient stability condition for the
proposed MHE-MPC mechanism in order to verify these conditions.

Firstly, we consider that there exists a parameter-dependent nominal state-feedback gain𝐾n : R𝑛𝑝 → R𝑛𝑥 × 𝑛𝑢 .
For demonstration simplicity and notation lightness, we will proceed with 𝑥𝑟 null3.

This nominal controller is purely fictional, used to demonstrate stability and recursive feasibility properties
of the proposed MHE-MPC mechanism. Anyhow, it stands for the infinite-horizon LPV Linear Quadratic
Regulator (LQR) solution, which verifies 𝐾n(𝜌) = arg min𝐾 ∈R𝑛𝑥 × 𝑛𝑢

(∑+∞
𝑖=1 ‖𝑥(𝑘 + 𝑖 |𝑘)‖2𝑄 + ‖𝐾𝑥(𝑘 + 𝑖 − 1)‖2𝑅

)
and the admissibility of 𝑥(𝑘 + 𝑖) and 𝑢(𝑘 + 𝑖 − 1).

Of course, there is a complexity barrier to solve this problem, because the states have parametric nonlinear-
ities that impact their trajectories (the qLPV scheduling parameters). Therefore, we determine this nominal
feedback gain together with the terminal ingredients, which are also taken as parameter-dependent on 𝜌. We
consider, for regularity, an ellipsoidal set as the terminal constraint, which is given by:

X 𝑓 =
{
𝑥 | 𝑥𝑇𝑃(𝜌)𝑥 ≤ 𝛼𝑃

}
. (28)

This ellipsoid is centered at the origin and has a radius of 𝛼𝑃. Furthermore, this terminal set is a sub-level set
of terminal cost 𝑉 (·), which is taken as a Lyapunov function as follows:

𝑉 (𝑥, 𝜌) = 𝑥𝑇𝑃(𝜌)𝑥 . (29)

This parameter-dependent nominal feedback gain 𝐾n(𝜌)) and the parameter dependent terminal ingredients
verbalized through the symmetric parameter dependent Lyapunovmatrix 𝑃(𝜌) are so that the following input-
to-state stability Theorem is guaranteed.

Theorem 1. Input-to-State Stable MPC [2,22,35,36]

Let Assumptions 4 and 7 hold. Assume that a nominal control law 𝑢 = 𝐾n(𝜌)𝑥 exists. Consider that the MPC is
in the framework of the optimization problem in Eq. (8), with a terminal state set given byX 𝑓 (𝜌) and a terminal
cost 𝑉 (𝑥, 𝜌). Then, input-to-state stability is ensured if the following conditions are hold ∀𝜌 ∈ P:

• (C1) The origin lies in the interior of X 𝑓 (𝜌);
• (C2) Any consecutive state to 𝑥, given by (𝐴(𝜌) + 𝐵(𝜌)𝐾n(𝜌)) 𝑥 lies within X 𝑓 (𝜌) (i.e. this is an invariant
set);

• (C3) The discrete algebraic Ricatti equation is verified within this invariant set, this is, ∀ 𝑥 ∈ X 𝑓 (𝜌(𝑘)):

𝑉 ((𝐴(𝜌(𝑘)) + 𝐵(𝜌(𝑘))𝐾n(𝜌(𝑘))) 𝑥, 𝜌(𝑘 + 1)) −𝑉 (𝑥, 𝜌(𝑘))
≤ −𝑥𝑇𝑄𝑥 − 𝑥𝑇 (𝐾n(𝜌(𝑘)))𝑇𝑅𝐾n(𝜌(𝑘))𝑥 .

• (C4)The image of the nominal feedback always lies within the admissible control input domain: 𝐾n(𝜌(𝑘))𝑥 ∈
U.

• (C5) The terminal set X 𝑓 (𝜌) is a subset of the admissible state domain X.

3The tracking equivalency is easily done with 𝑑𝑥𝑟
𝑑𝑡 = 0 and by computing the qLPV model with the states dynamics are given with

respect to 𝑥𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 (𝑘) = 𝑥(𝑘) − 𝑥𝑟 .
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Assuming that the initial solution of theMPCproblem𝑈★, computedwith respect to the initial state 𝑥(0), is feasible,
the MPC algorithm is indeed recursively feasible, asymptotically stabilizing the state origin.

Proof. Provided in Appendix Proof of Theorem 1.

In order to find some nominal state-feedback gain 𝐾n(𝜌), some terminal set X 𝑓 and some terminal offset
cost 𝑉 (·), an offline LMI problem is proposed in the sequel. This LMI problem is such that a 𝑃(𝜌) positive
definite parameter-dependent matrix is found to ensure that the conditions of Theorem 1 are satisfied. Due
to condition (C3), the LMI is solved over a sufficiently dense grid over 𝜌, consider its admissibility domain P.
We note that (C3) is a time-variant condition, which depends explicitly on 𝜌(𝑘) and 𝜌(𝑘 +1) due to the nature
of the parameter dependent 𝑉 (·).

This LMI problem is provided through the followingTheorem, which aims to find the largest terminal set X 𝑓

that is invariant under the nominal control policy 𝑢(𝑘) = 𝐾n(𝜌(𝑘))𝑥(𝑘) for all 𝑘 , while remaining admissible,
i.e. 𝐾n(𝜌)𝑥 ∈ U , ∀ 𝑥 ∈ X and 𝜌 ∈ P. Note that the largest ellipsoidal set as in the form of Eq. (28) is posed
through the maximization of 𝛼𝑃.

Theorem 2. Terminal Ingredients [22,37]
The conditions (C1)-(C5) of Theorem 1 are satisfied if there exist a symmetric parameter-dependent positive def-
inite matrix 𝑃(𝜌) : R𝑛𝑝 → R𝑛𝑥×𝑛𝑥 , a parameter-dependent rectangular matrix𝑊 (𝜌) : R𝑛𝑝 → R𝑛𝑢×𝑛𝑥 and a
scalar 0 < �̂�𝑃 ∈ R such that 𝑌 (𝜌) = (𝑃(𝜌))−1 > 0,𝑊 (𝜌) = 𝐾n(𝜌)𝑌 (𝜌) and that the following LMIs hold
for all 𝜌 ∈ P and 𝜕𝜌 ∈ 𝜕P, while minimizing �̂�𝑃:

𝑌 (𝜌) ★ ★ ★

(𝐴(𝜌)𝑌 (𝜌) + 𝐵(𝜌)𝑊 (𝜌)) 𝑌 (𝜌 + 𝜕𝜌) ★ ★

𝑌 (𝜌) 0 𝑄−1 ★

𝑊 (𝜌) 0 0 𝑅−1


≥ 0 , (30)

[
�̂�𝑃𝑢

2
𝑖 𝐼𝑖𝑊 (𝜌)

★ 𝑌 (𝜌)

]
≥ 0, 𝑖 ∈ N[1,𝑛𝑢] , (31)[

�̂�𝑃𝑥
2
𝑗 𝐼 𝑗𝑌 (𝜌)

𝐼𝑇𝑗 I𝑛𝑥

]
≥ 0, 𝑗 ∈ N[1,𝑛𝑥 ] , (32)

where 𝐼 𝑗 denotes the 𝑗-th row of the identity matrix I. In LMI (31), it is given w.r.t. to an identity I𝑛𝑢 , while in
LMI (32), it is given w.r.t. to an identity I𝑛𝑥 .

Proof. Refer to [37].

We must note that the above proof demonstrates that the solution of the LMIs presented in Theorem 2 ensure
a positive definite parameter dependent matrix 𝑃(𝜌) which can be used to compute the MPC terminal ingre-
dients𝑉 (·) andX 𝑓 such that input-to-state stability of the closed-loop in guaranteed, verifying the conditions
of Theorem 1. Furthermore, when the MPC is designed with these terminal ingredients, for whichever initial
condition 𝑥(0) ∈ X 𝑓 it starts with, it remains recursively feasible for all consecutive discrete time instants
𝑘 > 0.

Anyhow, Theorem 2 provides infinite-dimensional LMIs, since they should hold for all 𝜌 ∈ P and for all
𝜕𝜌 ∈ 𝜕P. To address this issue, one can handle the LMIs considering an sufficiently dense grid [38] of R𝑛𝑝×𝑛𝑝
points in P × 𝜕P, for which the LMIs must be enforced. This solves the infinite dimension of the problem,
which is converted into an 𝑛𝑔-dimensional LMI problem, being 𝑛𝑔 the number of grid points. For this solution
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Table 1. Model Parameters and Constraints

Parameter Value/Set Parameter Value/Set
𝑞 100 L min−1 𝐶𝐴𝑓 1 mol L−1

𝑘0 7.2 × 1010 min−1 𝐸/𝑅 8750 K
𝐻Δ −5 × 105 cal mol−1 𝜌𝐶𝑝 239 cal L−1 K−1

𝑊 7 × 5 104 cal min−1 K−1 𝑉 100 L
𝑇𝑓 350 K − −
𝐶𝐴 ∈ [0.03, 0.12]mol l−1 𝑇 ∈ [440, 460] K
𝑇𝑐 ∈ [200, 380] K − −

to be practically implementable, continuity on matrices 𝐴(𝜌) and 𝐵(𝜌) should be verified. We must also
note that parameter-dependency on 𝜌 may be dropped if the system is quadratically stabilizable, which is a
conservative assumption.

6. BENCHMARK EXAMPLE
In this Section, we pursue the application of the proposed MHE-MPC mechanism with terminal ingredients
found through Theorem 2. For such, we consider the application of our control method upon a benchmark
system, detailed in the sequel.

6.1. Continuouslystirred tank reactor
Consider the model of a Continuously-Stirred Tank Reactor (CSTR) process, which consists of an irreversible,
exothermic reaction, 𝐴 → 𝐵, in a constant volume reactor cooled by a single coolant stream which can be
modeled by the following equations:

¤𝐶𝐴 =
𝑞

𝑉
(𝐶𝐴 𝑓 − 𝐶𝐴) − 𝑘0𝑒

−𝐸
𝑅𝑇 𝐶𝐴

¤𝑇 =
𝑞

𝑉
(𝑇 𝑓 − 𝑇) −

𝐻Δ

𝜌𝐶𝜌
𝑘0𝑒

−𝐸
𝑅𝑇 𝐶𝐴 +

𝑊

𝑉𝜌𝐶𝜌
(𝑇𝑐 − 𝑇)

(33)

where 𝐶𝐴 is the concentration of 𝐴 in the reactor, 𝑇 is the temperature in the reactor, and 𝑇𝑐 is the coolant
temperature.

In this process, 𝑢 = 𝑇𝑐 is a control input, whereas 𝐶𝐴 and 𝑇 are measurable process variables. The considered
model parameters and process constraints are reported in Table 1.

6.2. qLPV Embedding
Considering 𝑥 = (𝐶𝐴 , 𝑇) as state variables, we obtain the following qLPV realization of the CSTR system from
Eq. (33):

¤𝑥 = 𝐴(𝜌)𝑥 + 𝐵𝑢 , (34)

where 𝜌 = 𝑓 (𝑥) denotes two scheduling variables, given as linear functions of each state, i.e. 𝜌1 = 𝑓1(𝑥1) and
𝜌2 = 𝑓2(𝑥2). This continuous-time model is Euler-discretized using a sampling period of 𝑇𝑠 = 30 ms.

6.3. Control goal and tuning
Considering an arbitrary initial condition 𝑥0 given within the state admissibility setX, the proposed controller
is set to steer the state trajectories to a known state reference 𝑥𝑟 . For such, we use identity weights in the MPC
cost 𝐽 (𝑥, 𝑢, 𝑘). Complementary, we use a prediction horizon of 𝑁𝑝 = 8 steps. This prediction horizon was
chosen in accordance with prior literature using the same nonlinear CSTR benchmark [39].

The MHE scheme, which is used to estimate the future scheduling behaviour 𝑃𝑘 at each sampling instant
𝑘 , is set to operate with a threshold loop barrier of 3 loops, which is a verified sufficient bound to induce
convergence (refer to the discussion in Section Convergence Property).
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Figure 2. MHE: scheduling trajectory estimates.

6.4 Simulation results
Considering a realistic nonlinear CSTR model, we obtain simulation results to demonstrate the effectiveness
of the proposed control scheme. The following results were obtained in a 2.4 GHz, 8 GB RAM Macintosh
computer, using Matlab, yalmip and Gurobi solver.

First, we show how the MHE operation is able to accurately predict the behaviour of the scheduling trajectory,
as depicts Figure 2. At each instant 𝑘 , theMHE provides estimation for 𝑃𝑘 , which is composed of the following
𝑁𝑝 entries of the scheduling variables. In this Figure, we observe the real scheduling variables 𝜌1 and 𝜌2 (dot-
dash black line) and the estimates 𝑃𝑘 provided at different samples (coloured 𝑥-marked lines). Within some
samples, we can see that the predicted trajectory converges to the real one, which confirms the effectiveness of
the MHE operation.

Based on the scheduling behaviours predicted by the MHE loop, the predictive controller determines the
control input (Figure 4) in order to drive the system states from 𝑥0 to the reference goal 𝑥𝑟 . The corresponding
state trajectories are depicted in Figure 3, which also shows the state admissibility set X and the terminal set
constraint X 𝑓 (a parameter-dependent ellipsoid generated via Theorem 2). As one can see, the behaviour of
the process variables is a smooth trajectory towards 𝑥𝑟 .

Finally, we demonstrate the dissipating properties of the proposed control scheme. In Figure 5, we show the
evolution of MPC stage cost 𝐽 over time. As expected, 𝐽 decays and converges to the origin, which verifies the
dissipation properties required by Theorem 1.

7. CONCLUSIONS
In this paper, a new method for the fast, real-time implementation of Nonlinear Model Predictive Control
is proposed. The method provides a near-optimal, approximated solution, which is found through the on-
line operation of sequential Quadratic Programming Problems. The main necessary argument to develop the
method is that the nonlinear process should be described by quasi-Linear Parameter Varying model, for which
the embedding is ensured through a scheduling proxy. Then, the online operations resides in the consecutive
operation of the MPC program together with a Moving-Horizon Estimation scheme, which is used to match
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Figure 3. State trajectories, state admissibility set, terminal set.
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Figure 4. MPC: control input.

the future values of the scheduling proxy along the prediction horizon, which are unknown. Input-to-state
stability and recursive feasibility properties of the algorithm are ensured by parameter-dependent terminal in-
gredients, which are computed offline. Using a benchmark example, the method is tested. We highlight that
it proves itself more effective for stronger nonlinearities in the qLPV scheduling proxy, for which the MHE
scheme operates faster than the application of the scheduling proxy upon each entry of the future state variables,
as inmany other techniques. For future works, the Authors plan on assessing the issue of periodically-changing
(possibly unreachable) output reference signals.
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PROOF OF THEOREM 1
Consider an initial state condition 𝑥(𝑘0) with a scheduling parameter 𝜌(𝑘0) (transition map). Assume that
this initial condition generates a feasible optimal control sequence

𝑈★𝑘0
=

[
𝑢★(𝑘0 |𝑘0) 𝑢★(𝑘0 + 1|𝑘0) . . . 𝑢★(𝑘0 + 𝑁𝑝 − 1|𝑘0)

]𝑇 .

The next feasible sequence, which might be possibly sub-optimal, at instant 𝑘0 + 1, is denoted:

𝑈★𝑘0+1 =
[
𝑢★(𝑘0 + 1|𝑘0 + 1) . . . 𝑢★(𝑘0 + 𝑁𝑝 |𝑘0 + 1)

]𝑇 .

Notice that the last entry of this second sequence 𝑢(𝑘0 + 𝑁𝑝 |𝑘0 + 1) is equal to the feedback of the terminal
state from the first sequence, this is:

𝑢★(𝑘0 + 𝑁𝑝 |𝑘0 + 1) = 𝐾n(𝜌)𝑥(𝑘0 + 𝑁𝑝 |𝑘0 + 1) .

Then, let us4 evaluate the evolution the MPC cost function 𝐽 (·) and its decay between time instants 𝑘0 and
𝑘0 + 1:

𝐽 (𝑘0) =
𝑁𝑝∑
𝑖=1

(
‖𝑥(𝑘0 + 𝑖)𝑇𝑄𝑥(𝑘0 + 𝑖)

)
+

𝑁𝑝−1∑
𝑖=0

(
‖𝑢(𝑘0)𝑇𝑅𝑢(𝑘0)

)
+𝑉 (𝑥(𝑘0 + 𝑁𝑝)) ,

𝐽 (𝑘0 + 1) =
𝑁𝑝∑
𝑖=1

(
‖𝑥(𝑘0 + 1 + 𝑖)𝑇𝑄𝑥(𝑘0 + 1 + 𝑖

)
+

𝑁𝑝−1∑
𝑖=0

(
‖𝑢(𝑘0 + 1)𝑇𝑅𝑢(𝑘0 + 1)

)
+ 𝑉 (𝑥(𝑘0 + 1 + 𝑁𝑝)) .

Assuming that 𝑢★(𝑘0 |𝑘0) was applied to the plant at instant 𝑘0 (this input is the first entry of the optimal
solution𝑈★𝑘0

at time 𝑘0), it follows that:

Δ𝐽 (𝑘0) = 𝐽 (𝑘0 + 1) − 𝐽 (𝑘0) (35)
= −𝑥(𝑘0 + 1)𝑇𝑄𝑥(𝑘0 + 1)
− (𝑢(𝑘0)★)𝑇𝑅𝑢★(𝑘0) +𝑉 (𝑥(𝑘0 + 1 + 𝑁𝑝)
+ 𝑥(𝑘0 + 1 + 𝑁𝑝)𝑇𝑄𝑥(𝑘0 + 1 + 𝑁𝑝)
+ 𝑥(𝑘0 + 1 + 𝑁𝑝)𝐾n(𝜌)𝑇𝑅𝐾n(𝜌)𝑥(𝑘0 + 1 + 𝑁𝑝)
− 𝑉 (𝑥(𝑘0 + 𝑁𝑝)) .

From (C3), we can pursue with the negativeness of the following term:

0 ≥ 𝑉 (𝑥(𝑘0 + 𝑁𝑝 + 1)) −𝑉 (𝑥(𝑘0 + 𝑁𝑝)) (36)

+ 𝑥(𝑘0 + 𝑁𝑝)𝑇
(
𝑄 + (𝐾n(𝜌))𝑇𝑅𝐾n(𝜌)

)
𝑥(𝑘0 + 𝑁𝑝) .

4We use compact notation for brevity. Herein, we use 𝜌 := 𝜌(𝑘0 + 1).
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Thus, substituting this inequality into Eq. (35) yields:

Δ𝐽 (𝑘0) ≤ −𝑥(𝑘0 + 1)𝑇𝑄𝑥(𝑘0 + 1) (37)
− (𝑢(𝑘0)★)𝑇𝑅𝑢★(𝑘0) .

Since 𝑄 and 𝑅 are positive defined matrices by construction (they are the MPC tuning weights) and 𝑢★(𝑘0)
and 𝑥(𝑘0 + 1) are known5, it follows that:

Δ𝐽 (𝑘0) ≤ 0 , (38)

which means that the MPC cost function decays along 𝑘 .

From the optimality of the solution 𝑈★𝑘+1, it follows that the cost constructed with this sequence (𝐽★(𝑘0 + 1))
holds as a lower-bound with respect to 𝐽 (𝑘0 + 1), this is 𝐽★(𝑘0 + 1) ≤ 𝐽 (𝑘0 + 1). Then, using this argument
on Δ𝐽 (𝑘0), we arrive at:

𝐽 (𝑘0 + 1) − 𝐽 (𝑘0) ≤ 0 , (39)
𝐽★(𝑘0 + 1) ≤ 𝐽 (𝑘0 + 1) ≤ 𝐽 (𝑘0) ,

which proves that 𝐽★ is a Lyapunov function and 𝑥 will converge to the origin (due to (C1)), as long as the
initial condition provides, in fact, a feasible starting point. We note that (C2) is necessary to map a feasible
𝑥(𝑘0 + 1|𝑘0). Conditions (C4) and (C5) are necessary to ensure admissible trajectories regarding 𝑥 and 𝑢.

5Note that 𝑥(𝑘0 + 1) = 𝐴(𝜌(𝑘0))𝑥(𝑘0) + 𝐵(𝜌(𝑘0))𝑢★(𝑘0).
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