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The knowledge that the body possesses natural defenses to combat cancer existed long before 
the modern period, with multiple anecdotal reports of tumors miraculously disappearing, 
sometimes spontaneously or after a febrile or infectious episode. Spontaneous tumor regression 
of untreated malignant tumors is currently a well-accepted albeit rare phenomenon, and it is 
recognized that immunosuppression is associated with a higher cancer risk. The treatment 
of bladder carcinoma by intravesical administration of live attenuated Bacillus Calmette-
Guérin bacteria was shown to be very effective in 1976 and is now standard treatment. 
Effective immunity against cancer involves complex interactions between the tumor, the 
host, and the environment. Cancer immunotherapy uses various strategies to augment tumor 
immunity and represents a paradigm shift in treating cancer, since attention has become 
more focused on the “biologic passport” of the individual tumor rather than the site of origin 
of the tumor. The different types of cancer immunotherapies discussed here include biologic 
modifiers, such as cytokines and vaccines, adoptive cell therapies, oncolytic viruses, and 
antibodies against immune checkpoint inhibitors, such as the co-inhibitory T-cell receptor 
PD-1 and one of its ligands, programmed death-ligand 1.
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INTRODUCTION

Cancer immunotherapy (CI) is rapidly advancing 
and can now be considered to be the “fifth pillar” of 
cancer therapy, joining the ranks of surgery, cytotoxic 
chemotherapy, radiation, and targeted therapy. The CI 
which has sparked the most interest involves antibodies 
to inhibitory immune checkpoint molecules. Although 
they have produced dramatic results in only a subset of 
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some malignancies to date[1], it is difficult to not be very 
excited about their potential. In a recent meta-analysis of 
ipilimumab, a monoclonal antibody that targets cytotoxic 
T-lymphocyte-associated antigen-4 (CTLA-4), a type of 
immune checkpoint receptor or negative regulator of 
T-cell immune function, more than 20% of patients with 
metastatic melanoma who received a single round of 
treatment were alive 10 years later with no evidence of 
disease[2]. Before this treatment, the 10-year survival 
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rate was less than 10%[3]. Combination therapy 
with another immunotherapeutic agent shows even 
greater promise, as seen when the addition of another 
checkpoint inhibitor antibody, nivolumab, a monoclonal 
antibody (mAb) which targets the PD-1 receptor on 
T-cells, produced a 50% response rate in metastatic 
melanoma[4,5]. CI has also shown effectiveness in other 
types of malignances, and combinations with different 
treatment modalities (“immuno-oncology”) are also 
showing remarkable benefits[6,7].

HISTORY OF OUR KNOWLEDGE OF THE 
IMMUNE SYSTEM’S ROLE IN CANCER

It has been known for many years that the immune 
system plays a major role in neoplastic development 
and control, since patients who are immunosuppressed 
have a higher risk of cancer, and spontaneous regression 
of many types of malignant tumors is a rare but well-
recognized phenomenon-occurring in approximately 1 
in every 60,000 to 100,000 cancer cases[8-10].

Throughout history there are multiple accounts about 
tumorous growths regressing or disappearing after 
an infectious and/or high febrile episode, having been 
reported from ancient Egypt up to the early 18th 
century in Europe, but the scientific basis for attempts 
at modulating the immune system to treat cancer can 
find its modern roots only in the second half of the 18th 
century, when histologic confirmation of a malignancy 
became possible. More than 135 years ago the German 
physicians Busch[11] and Fehleisen[12] independently 
noticed regression of tumors in cancer patients after 
accidental infections by erysipelas. In 1868, Busch 
was the first to intentionally infect a cancer patient with 
erysipelas and he noticed shrinkage of the malignancy. 
Fehleisen[12] repeated this treatment in 1882 and he also 
eventually identified Streptococcus pyogenes as the 
causative agent of erysipelas[12,13]. In 1891, an American 
surgeon, William Coley, of the Bone Tumor Service 
at Memorial Hospital in New York, followed up on his 
own independent observation of a long-term regression 
of a sarcoma after an erysipelas infection by starting 
a 43-year-old project involving the injection of heat-
inactivated bacteria (“Coley’s toxins”) into patients with 
inoperable cancers[14]. He reported a significant number 
of regressions and cures in more than 1,000 patients, 
many or most with sarcomas, and the method started 
gaining wide acceptance and notoriety[15] [Figure 1]. 
His toxins gradually disappeared from use because 
of several factors, including his failure to follow good 
scientific protocols and inability to consistently obtain 
reproducible results. The development of radiation 
therapy and chemotherapy also contributed to the 
loss of interest in using this type of therapy to treat 

cancer. Nonetheless, after no fewer than five marked 
shifts in attitude toward CI since the 1890s[16], Coley’s 
principles have been shown to be correct, and the use of 
bacteria finally found sound justification in 1976 when 
Morales et al.[17] established the effectiveness of 
the bacterium Bacillus Calmette-Guérin (BCG) in 
the treatment of superficial bladder cancer. The 
underpinnings for this clinical trial include a 1959 study 
by Old et al.[18] showing the anti-tumor effects of BCG 
in a mouse model. Besides his work on BCG, Old 
also performed extensive research on other CI-related 
topics, and was a discoverer of tumor necrosis factor 
in 1975[19]. Due to their foundational discoveries and 
lifelong dedication to the field, Coley and Old have each 
been referred to as the “Father of Immunotherapy”, a 
title which is perhaps best shared.

Even viral infections were believed to have a cancer-
suppressive effect as far back as 1904 when George 
Dock at the University of Michigan described a 42-year-old 
woman with acute leukemia who experienced a temporary 
remission after a presumed infection with influenza in 
1896[20]. At the same time, a better understanding of 
the immune system was being developed, including 
discoveries about cellular and humoral immunity [Table 1].

THE IMMUNE SYSTEM’S ROLE IN ELIMINATING 
OR CONTROLLING MALIGNANT CELLS

As a brief background review, the immune system is 

Figure 1: An article in a major U.S. newspaper printed in 1908 
reflects the widespread attention given to Coley’s toxins
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Table 1: Timeline of selected key events in modern cancer immunology, 1868-2017

Year Event
1868 First report of an intentional infection of a cancer patient with erysipelas by Wilhelm Busch, with notable shrinkage of the tumor[11]

1883 Elie Metchnikoff publishes a key paper describing phagocytic cells (macrophages) in frogs[102]; awarded Nobel Prize in 1908
1890 Discovery of antibodies (diphtheria and tetanus) by Emil von Behring and Kitasato Shibasaburō[103]; Nobel Prize awarded to 

von Behring in 1901
1891 William Coley injected his first of many cancer patients with bacteria, reporting tumor regressions in many of them[14]

1895 Discovery of complement, by Jules Bordet[104]; awarded Nobel Prize 1919
1897-1901 Paul Ehrlich “Side-chain” theory of antibody specificity (adaptive immunity, autoimmunity)[105]; awarded Nobel Prize in 1908
1901 Serological discovery of blood groups, by Karl Landsteiner[106]; awarded Nobel Prize in 1930
1901-08 Rejection of transplanted tumors in mice, reported by Carl Jensen & Leo Loeb[107,108]

1914 Genetic basis for the rejection of transplantable tumors, reported by Clarence Little[109]

1909-20 Establishment of inbred strains of mice by Leonell Strong and Clarence Little[110]

1948 First report of histocompatibility antigens being the basis for transplant rejection, by P. Gorer, S. Lyman, & G. Snell[111]. 1908 
Nobel Prize awarded jointly to G. Snell,B. Benacerraf, & J. Dausset in 1980

1955 Natural-Selection Theory of Antibody Formation, first formulated by N. Jerne[112]; awarded Nobel Prize in 1984
1956 Discovery of acquired immunological tolerance by R. Billingham, L. Brent & P.Medawar. Nobel Prize awarded to Medawar & F. 

Burnet in 1960[113,114]

1957 Immune rejection of transplanted syngeneic tumors (i.e., each tumor is antigenically unique)[115]. Reported by Richmond Prehn & 
Joan Main.

1957 Interferon discovered, described as a factor that conferred the property of viral interference[116], reported by Alick Isaacs and 
Jean Lindenmann. Its anti-leukemic effect is reported in 1984.

1959 Immune surveillance of cancer theory by Lewis Thomas & F. Macfarlane Burnet[30-32]

1959 Chemical structure of antibodies, by Gerald Edelmann & Rodney Porter[117-120]; Nobel Prize awarded to both in 1972.
1959 BCG shown to have anti-tumor effects in a mouse model, reported by Lloyd Old, Donald Clark, & Baruj Benacerraf[18]

1973 First description of dendritic cells, by Ralph Steinman & Zanvil Cohn[121]; Steinman awarded Nobel Prize in 2011 for discovery 
of the dendritic cell and its role in adaptive immunity

1974 First reports of the specificity of cell-mediated immunity by Peter Doherty and Rolf Zinkernagel[122,123]; Nobel Prize awarded to 
both in 1996

1975 Monoclonal antibodies manufactured by George Koehler & Caesar Milstein[124,125]; Nobel Prize awarded to Koehler, Milstein & N. 
Jerne (for his theoretical contributions) in 1984

1975 Discovery of tumor necrosis factor, reported by Lloyd Old, with Elizabeth Carswell, Robert Kassel, S. Green, N. Fiore, & B. 
Williamson[19]

1975 First description of NK cells on a functional basis according to their ability to lyse tumor cells in the absence of prior 
stimulation[126]. Reported by Ronald Herberman, Myrthel Nunn, Howard Holden, & David H. Lavrin.

1976 Discovery of the genetic principle for generation of antibody diversity, by Susumu Tonegawa[127,128]; awarded Nobel Prize in 1987.
1982 Discovery of the T-cell receptor in 1982, reported by James Allison, B. McIntyre, & D. Bloch[101]

1984 First report of interferon response in patients with hairy cell leukemia[129]

1991 First report of a human tumor antigen recognized by T-cells, reported by Pierre van der Bruggen, C. Traversari, P. Chomez, et al.[36]

1996 Discovery that CTLA-4 blocking antibodies could treat tumors in animal models, reported by Dana Leach, Matthew Krummel & 
James Allison[72]

1998 Discoveries regarding the activation of innate immunity, by R. Medzhitov, P. Preston-Hurlburt, C. Janeway; & B. Beutler; 
Beutler awarded Nobel Prize in 2011[130,131]

2001 Rag2 -/- immunodeficient mice, with no B or T cells, show increased susceptibility to spontaneous and carcinogen-induced 
tumors, reported by V. Shankaran, with L.J. Old, R. Schreiber, et al.[132]

2005 Memory T-cells in colorectal tumors shown to predict clinical outcome, reported by F. Pagès, A. Berger, M. Camus et al.[133]

2010 First autologous cell-based cancer vaccine (sipuleucel-T) is approved by the FDA for the treatment of metastatic, asymptomatic 
stage IV prostate cancer[43,134]

2010 First successful use of gene-edited T-cells for the treatment of CD19+ hematologic malignancies in humans, reported by W. 
Qasim, H. Zhan, S. Samarasinghe et al.[135]

2011 Anti-CTLA-4 (ipilimumab), is the first inhibitory checkpoint inhibitor (ICI) approved by the FDA for treatment of stage IV 
melanoma[136]

2012 Discovery of the CRISPR/Cas9 system, a simpler and more efficient method of genome editing, reported byJ.A. Doudna & E. 
Charpentier, with M. Jinek, K. Chylinski, I. Fonfara, & M. Hauer[49]

2013 First use of CRISPR/Cas9 technique in eukaryotic cells, reported by F. Zhang, with L. Cong, F. Ran, D. Cox, S. Lin, R. 
Barretto, N. Habib, P. Hsu, X. Wu, W. Jiang, & L. Marraffini[50]

2016 A second class of ICIs, anti-PD-1 (pembrolizumab), is approved for the treatment of melanoma[137]

2016 First characterization of the role of dendritic cell CTLA-4 in Th-1 immunity, reported by M. Halpert, V.Konduri, D. Liang et al.[138]

2016 A third class of ICIs, PD-L1(atezolizumab), is approved for treatment of bladder cancer[139]

2016 First test in humans of CRISPR gene-editing technique for CAR T-cell therapy[51]

2017 Phase I/IIa study of an inhibitor of indoleamine 2,3-dioxygenase (IDO1), a non-membrane-attached enzyme with a checkpoint 
inhibitor function, shows promise[95]

Not all of the events listed are discussed in the text, but all are referenced to the pertinent literature
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classically considered to be comprised of the innate 
and adaptive arms, although this is a simplification 
since these arms have overlapping functions and are 
intimately related. The innate immune system includes 
dendritic cells, natural killer cells (NK), macrophages, 
neutrophils, eosinophils, basophils, and mast cells. 
Innate immune cells do not require prior stimulation 
by antigens and act as a first line of defense against 
foreign antigens. The adaptive immune system includes 
B lymphocytes, CD4+ helper T lymphocytes, and CD8+ 
cytotoxic T lymphocytes (CTLs), and requires formal 
presentation by antigen-presenting cells (APCs) for its 
activation[21]. The adaptive immune system generates 
antigen-specific T- and B-cell lymphocytes. The immune 
system is highly variable between individuals but 
relatively stable over time within a given person[22].

Each cell is estimated to experience over 20,000 DNA 
damaging events each day[23], which are normally 
repaired by specific DNA repair pathways with no 
lasting effects[24]. Cells which are not repaired and 
which acquire malignant or potentially malignant 
changes are then usually recognized and killed by 
the tumor immunosurveillance system. This involves 
predominantly cell-mediated mechanisms that can 
differentiate between self and non-self antigens. Since 
a malignant cell can have more than 11,000 genomic 
mutations, many new tumor-associated antigens 
(TAAs) may be expressed[25]. TAAs include products 
of mutated proto-oncogenes, tumor suppressor genes, 
overexpressed or aberrantly expressed proteins, tumor 
antigens produced by oncogenic viruses, oncofetal 
antigens, altered glycolipids and glycoproteins, and 
cell type-specific differentiation antigens. These new 
TAAs, or fragments thereof, are presented on the cell 
surfaces with their major histocompatibility complex 
(MHC) molecules. However, recognition of an antigen-
MHC complex by a T-cell antigen receptor is insufficient 
for the initial activation of naive T-cells, requiring 
additional costimulatory signals that are provided by the 
engagement of the CD28 receptor on the T-cell surface 
with B7 ligand molecules (two of which are CD80 and 
CD86) on the APCs. This CD28 receptor/B7 ligand 
combination or “immunological synapse” stimulates 
the proliferation and function of the T-cells. Many other 
receptor/ligand combinations are possible between 
activated T-cells and other cells, including tumor cells, 
and some of these interactions are inhibitory, such as 
PD-1/PD-L1 and CTLA-4/B7[26-29], and are discussed 
later in this monograph.

Some malignant cells are able to evade the tumor 
immunosurveillance system by manipulating their 
own characteristics as well as the cells in their 
microenvironment to become “successful” tumors; 

these evasive mechanisms represent the major 
area of interest in current CI research. The concept 
that the immune system is capable of detecting and 
killing nascent “non-self” malignant cells was first 
developed by Burnet[30,31] and Thomas[32] in their cancer 
immunosurveillance hypothesis. The concept was not 
accepted initially but it is now considered a component 
of cancer immunoediting, whereby the surveillance 
system can determine or “shape” the immunogenicity of 
the tumor cells which are not eliminated initially[33]. The 
immunoediting process has been formally divided into 
three main phases: elimination, equilibrium, and escape. 
The elimination phase refers to the initial damage and 
possible destruction of tumor cells by the innate immune 
system, followed by presentation of the tumor antigens 
in the cellular debris to dendritic cells which then present 
them to T-cells and thereby create tumor-specific CD4+ 
and CD8+ T-cells. These help destroy the remaining 
tumor cells if elimination is complete. The equilibrium 
phase occurs when any tumor cells survive the initial 
elimination attempt but are not able to progress, being 
maintained in a state of equilibrium with the immune 
cells. In the escape phase, cancer cells grow and 
metastasize due to loss of control by the immune 
system. The cancer cells which are not eliminated 
and which escape may do this by expressing fewer 
antigens on their surfaces or even by losing their MHC 
class I expression[34]. They may also show the ability 
to protect themselves from T-cell attack by expressing 
immune checkpoint (IC) molecules on their surfaces 
like normal cells; these IC molecules are upregulated 
by cytokines produced by activated T-cells and are part 
of a normal negative feedback loop to control excessive 
tissue damage from inflammation by downregulating or 
suppressing T-cells[35].

The dynamic that exists between the immune system 
and tumor antigens is a phenomenon recognized 
relatively recently, since it was only in 1991 that van der 
Bruggen and colleagues first reported the existence of 
a human tumor antigen recognized by T-cells[36]. They 
were able to clone the melanoma antigen-encoding 
gene (MAGE), which encodes an antigen recognized 
by cytotoxic T-cells. This provided not only proof that the 
immune system was capable of seeking and destroying 
tumor cells but also provided the first identification of a 
molecular target.

The ability of cancer cells to evade immune destruction 
has been proposed as the eighth hallmark of cancer[37]. 
As noted above, a tumor is able to do this not only by 
modulating its own cellular characteristics but also by 
creating its own “tumor microenvironment” by recruiting 
apparently normal immune cells to help shield it from 
attack by the immune system. Through the production 
of various cytokines and chemokines, successful 
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cancers and their metastatic derivatives are able to 
generate an immunosuppressive, protumorogenic, 
and prometastatic microenvironment by recruiting 
and “training” immune cells, including macrophages, 
regulatory T-cells, immature myeloid cells (which 
become “myeloid-derived suppressor cells”), T helper 
17 cells, regulatory B cells, and leukocytes[38]. Even 
before they metastasize, tumors can influence the 
systemic environment by altering hematopoiesis as well 
as the tissue parenchyma of organs at distant sites, 
thereby forming “pre-metastatic niches”[39]. While some 
cancer immunotherapies have had marked successes 
in manipulating these tumor microenvironments, the 
loss of MHC class I expression by a tumor represents a 
major immunotherapy treatment challenge[40].

The intrinsic immunological ability of an individual 
to combat cancer has been called the “cancer–
immune set point”, and is influenced by a complex 
set of factors involving the tumor, the host, and 
environmental factors[41]. Clinical studies are trying 
to better characterize these factors to help predict a 
person’s response to immunotherapy, as discussed in 
the following paragraphs.

BIOLOGIC MODIFIERS: CYTOKINES AND 
VACCINES

The term “immunotherapy” encompasses a wide variety 
of concepts and methods. Older and non-specific 
immunotherapies include immunostimulatory cytokines 
such as interleukin-2 (IL-2) and interferon (IFN). L-MTP 
is a synthetic analogue of a bacterial cell wall that is 
capable of activating monocytes and macrophages 
and has had limited success in cancer treatment as 
reported in other countries; it is not approved by the 
Food and Drug Administration (FDA) of the USA[42]. The 
only vaccine for cancer which has received approval by 
the FDA is sipuleucel-T for metastatic castrate-resistant 
prostate carcinoma. Dendritic cells from the patient are 
exposed to prostatic acid phosphatase and granulocyte-
macrophage colony-stimulating factor (GM-CSF) 
and reinfused into the patient. Treatment results in a 
4-month increase in median survival[43]. Sipuleucel-T is 
a dendritic cell vaccine, while other types of vaccines 
employ killed tumor cells or selected tumor antigens, 
and various vaccines may use microorganisms as 
vectors for delivery. Vaccine trials using multiple 
neoantigens specific to an individual patient’s tumor 
have shown promise in two small early trials[44]. The 
goal of all of these tumor vaccines is try to expose 
patients to those tumor antigens which can provoke 
an antitumor immune response via the generation of 
tumor specific antibodies and/or T-cells. Vaccines are 
one type of biologic response modifier, and BCG was 

the first one to be used in cancer therapy, for treatment 
of bladder carcinoma[45], where it indirectly increases 
the expression of tumor antigens after the tumor cells 
internalize the bacteria. This induces an intense and 
complex coordinated release of multiple cytokines, 
including those from T helper 1 cells (IL-2, IL-12, IFN-γ, 
tumor necrosis factor), as well as those from T helper 
2 cells (IL-4, IL-5, IL-6, IL-10). Macrophages, epithelial 
cells, and fibroblasts contribute IL-8, and T helper 17 
cells release IL-17[46]. This wide array of cytokines 
then induces antitumor activity mediated by cytotoxic 
T lymphocytes, natural killer cells, neutrophils, and 
macrophages.

ONCOLYTIC VIRUSES

Oncolytic viruses are an emerging class of cancer 
therapeutics which lie at the junction of biologic therapy 
and immunotherapy. These viruses are genetically 
modified to lack virulence against normal cells but are 
able to invade and lyse cancer cells which have sacrificed 
many of their normal anti-viral cellular defenses in order 
to amplify their growth potential. Lysis is only one of 
multiple mechanisms involved in the viral-induced 
destruction of cancer cells, which undergo further attack 
by an immune system stimulated by a plethora of tumor 
antigens released by lytic destruction[47]. The oncolytic 
virus which was approved by the FDA in 2015 to treat 
advanced melanoma is a herpes simplex-1 virus (HSV-
1) named “T-VEC”, modified to express GM-CSF which 
further stimulates proliferation of immune cells. T-VEC is 
injected directly into areas of melanoma that a surgeon 
cannot remove. Clinical trials are underway with other 
oncolytic viruses for treatment of different types of 
cancer, with some of these trials combined with other 
types of cancer therapies.

ADOPTIVE CELL THERAPY

Adoptive cell therapy (ACT) is another type of 
immunotherapy which mostly involves the isolation and 
in-vitro expansion of tumor-specific T-cells, followed 
by infusion back into the cancer patient. These efforts 
have also extended to using natural killer cells, since 
they display rapid and potent immunity to solid tumor 
metastasis and hematological cancers[48].

There are many forms of ACT, including those 
using techniques such as culturing tumor-infiltrating 
lymphocytes obtained directly from the tumor; isolating 
and expanding one particular T-cell or clone; or using 
T-cells that have been engineered in vitro to potently 
recognize and attack tumors, which technique is known 
as chimeric antigen receptor T-cell (CAR T-cell) therapy. 
The revolutionary CRISPR/Cas9 (or “CRISPR” for 
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short) technique is a much simpler and more efficient 
method of editing genes than previous methods, and 
was first reported in 2012[49]. The acronym stands for 
“Clustered Regularly Interspaced Short Palindromic 
Repeats”, which refers to a method normally used by 
bacteria and archaea for protection against the invading 
nucleic acids of viruses and plasmids. In 2013, the 
method was adapted for use in eukaryotic cells[50], and 
in late 2016 a group at Szechuan University became 
the first to use CRISPR-edited cells in humans[51]. Other 
similar trials are scheduled to start in 2017 in the United 
States. Prior vaccination with a cancer vaccine can also 
be used, in an attempt to “prime” rare tumor-specific 
T-cells[52]. Although ACT has produced remarkable 
results in clinical trials with melanoma and hematologic 
malignancies as well as with solid cancers, some deaths 
have occurred in the trial phases secondary to marked 
cytokine release (“cytokine storm”, or “cytokine release 
syndrome”) and cerebral edema[53]. Researchers are still 
studying other ways of modifying T-cells to treat cancer. 
Relapsed and refractory B-cell acute lymphoblastic 
leukemia in pediatric and young adult patients is the first 
disease to receive approval from the FDA for CAR T-cell 
therapy, outside of clinical trials[54].

IMMUNE CHECKPOINTS

In order to ensure that an immune inflammatory 
response is not constantly activated once foreign or tumor 
antigens have stimulated a response, multiple controls or 
“checkpoints” are in place or activated. These checkpoints 
are mostly represented by T-cell receptor binding to 
ligands on cells in the surrounding microenvironment, 
forming immunological synapses which then regulate 
the functions of the T-cell, which become specialized, 
or “polarized”, to perform different activities. As 
noted earlier, initial T-cell activation involves antigen 
presentation by the MHC molecules on the antigen-
presenting cells (APCs) to the corresponding T-cell 
receptor (TCR) on naive T-cells. The interaction of the 
costimulatory T-cell receptor CD28 with the B7 ligand 
is required for full activation, which is tightly regulated 
or suppressed by inhibitory checkpoint receptor/ligand 
pairs to avoid collateral damage from autoimmunity[35].

This type of suppression or induced dysfunctionality 
of T-cells is also referred to as “T-cell exhaustion” and 
is different from anergy or senescence. Although it is 
a mostly reversible physiologic protective mechanism 
against autoimmunity, the first observation of it was 
made in mice infected with a chronically persistent strain 
of lymphocytic choriomeningitis virus[55]. This T-cell 
dysfunction was later discovered to exist in multiple 
other conditions involving persistent antigen exposure 
by other viruses such as HIV, hepatitis B, and hepatitis 

C, or by cancer, thereby allowing these agents to avoid 
detection and destruction by immune cells[35,56-59].

More than twenty checkpoint molecule pairs, both co-
stimulatory and co-inhibitory, have been discovered, 
including TIGIT/CD155, LAG-3/MHCII, and TIM3/Gal-
9, which are variably expressed not only by T-cells 
but also by other cells of both myeloid and lymphoid 
derivation[56,60]. Some of these molecules are similar to 
more common or better-known membrane moieties but 
with important differences: for example, lymphocyte-
activated gene-3 (LAG-3) is structurally homologous to 
CD4 but has a higher binding affinity to MHC class II 
antigens than CD4. Since these checkpoint molecules 
are upregulated in suppressed T-cells, they can also 
be used as markers of “T-cell exhaustion”. The two 
pairs of inhibitory receptor/ligands which have received 
the most attention in recent years are cytotoxic T 
lymphocyte-associated antigen-4 (CTLA-4) receptor 
with B7 ligand, and programmed cell death protein 1 
(PD1) receptor with PD1-L1 ligand. The expression 
of CTLA-4 receptors on activated effector T-cells and 
regulatory T-cells was reported in 1987[61]. CTLA-
4 has very high homology to CD28, with a higher 
competitive binding affinity to B7, causing inhibition 
of proliferation and IL-2 secretion by T-cells[62]. PD-1 
was cloned in 1992[63], and its ligands PD-L1 and PD-
L2, which are members of the B7 ligand family, were 
later characterized[64-66]. Unlike CTLA-4, PD-1 does not 
interfere with costimulation, but generates signals that 
prevent phosphorylation of key signaling intermediates 
in the T-cell, which reduces their activation[67]. While B7 
ligands are expressed by professional APCs (includes 
dendritic cells, macrophages and B cells), PD-L1 can 
be expressed on many cell types, including T-cells, 
epithelial cells, endothelial cells, and tumor cells after 
exposure to interferon-gamma, produced later in 
the immune response by activated T cells. PD-L2 is 
primarily expressed on dendritic cells and monocytes, 
but can be induced in a wide variety of other immune 
cells and nonimmune cells[68].

Since the CTLA-4/B7 synapse acts earlier than the 
PD1/PDL-1 synapse in the immune response, CTLA-
4 is considered the “leader” of the immune checkpoint 
inhibitors, because it stops potentially autoreactive 
T-cells at the initial or priming stage of naive T-cell 
activation, occurring chiefly within lymph nodes[62,69]. The 
PD-1/PD-L1 pathway functions during the later effector 
phase in the periphery and protects the cells found there 
from T-cell attack, including tumor cells which express 
PD-L1[70]. The PD1/PD-L1 pathway represents an 
adaptive immune resistance mechanism that is exerted 
by tumor cells in response to endogenous anti-tumor 
activity[71].
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ANTIBODIES TO IMMUNE CHECKPOINT 
MOLECULES

In 1996, Leach, Krummel and Allison reported that 
CTLA-4-blocking monoclonal antibodies (Mabs) 
could treat tumors in animal models[72]. These MAbs 
became known as “immune checkpoint inhibitors” 
(ICIs), although they should really be called “anti-
immune checkpoint inhibitors” if traditional usage 
in nomenclature could be easily changed. They are 
receiving much attention recently because they are 
much less toxic than conventional cancer therapies, 
are easier to prepare and administer than other types of 
cancer immunotherapeutics, and have great potential for 
widespread application.

MAbs that have been approved for clinical use target 
either PD-1, PD-L1, or CTLA-4, which “block the negative 
blocking” of the T-cells, with a consequent boost of 
the immune response against cancer cells. Assays of 
PD-L1 protein expression by immunohistochemistry 
are used to determine which tumors would best 
be treated with an anti-PD-L1 antibody, but it is an 
imperfect measurement practice because there is lack 
of standardization of methods and it can sometimes 
be difficult to differentiate PD-L1-positive tumor cells 
from the other PD-L1-positive cells in the tumor 
microenvironment[73]. Moreover, immunohistochemistry 
has a lower sensitivity compared to studies measuring 
PD-L1 mRNA expression[74].

Anti-PD-1 and anti-PD-L1 antibody treatments are 
currently the most investigated ICIs because they have 
shown less severe toxicity, or high-grade “immune-
related adverse effects” (irAEs), than anti-CTLA-4 
antibody treatments (5-20% compared to 10-40% 
respectively)[75-79]. The wide ranges in the percentages 
of adverse effects reported reflect the variabilities 
associated with single or multiple drug regimens, 
dosage levels, and types of malignancies treated. The 
more common side effects are fatigue (with or without 
associated endocrinopathies), dermatologic and 
mucosal toxicities, diarrhea/colitis, and hepatotoxity. 
Corticosteroids or other immunomodulators can reverse 
nearly all of the toxic manifestations of these drugs[75-78]. 
Pneumonitis is an uncommon but potentially severe 
complication, and rarely deaths have occurred[80]. As 
the authors noted in one comprehensive review article 
about management of immunotherapy toxicities, “This 
new family of dysimmune toxicities remains largely 
unknown to the broad oncology community[77]”.

These drugs have powerful effects, as seen when a 
Phase I trial using an antibody to the CD28 ligand nearly 
cost the lives of all six healthy volunteers in a British 

study when a cytokine storm was provoked, associated 
with multiorgan failure and resuscitation in the intensive 
care unit[81]. Since this reaction occurred after the very 
first infusion of a dose 500 times smaller than that found 
safe in animal studies, this study raised awareness of 
the need to develop better animal models which more 
closely mimic drug behavior in humans. In addition, 
there was increased appreciation of the wisdom of 
restricting the initial testing of a new pharmaceutical to 
only a few human subjects[82].

The less toxic antibodies to checkpoint inhibitors have 
shown a great deal of promise and are now approved 
by the FDA for six malignancies which are in advanced 
stages - melanoma, lung cancer, renal cell carcinoma, 
head and neck cancer, urothelial cancer, and Hodgkin’s 
lymphoma - with many other tumor types being 
investigated in clinical trials[83,84]. Some of these trials are 
using specific antibodies to modulate the function of the 
more recently discovered inhibitory and co-stimulatory 
checkpoint molecules.

The immunotherapy/immuno-oncology field has shown 
such exponential gains in recent times, associated with 
an accumulation of a dizzying array of complex results 
arriving from numerous clinical trials, that mechanistic 
patient studies are necessary to best advance 
understanding. This is essentially “reverse translational 
research”, or the opposite of the usual “bench to 
bedside” philosophy, requiring genetic, phenotypic, 
functional, and immunohistochemical studies of pre-
treatment, on-treatment, and post-treatment tissues. 
These are necessary in order to generate hypotheses 
that can then be tested in animal models and thereby 
provide more precise biologic pathways about tumor 
immunity and rejection[85].

Some of the complexities of interacting with the immune 
system include timing of administration of ICIs to coincide 
with a high inflammatory microenvironment in the tumor 
to ensure the presence of many potential tumor-fighting 
CD8+ T-cells[86,87]. This often correlates with tumor 
necrosis provoked by prior conventional chemotherapy, 
and is also related to the number of mutations present 
in the tumor (“mutational burden”), which is associated 
with higher antigenicity and correlates positively with 
response to ICIs[88]. Lung cancers occurring in smokers 
have a higher mutational burden and have shown more 
responsiveness to ICIs[89]. Microsatellite instability-high 
colorectal cancers, which tend to have a high-mutation/
high-neoantigen load based on owing their genesis to 
a deficiency in DNA  repair, have also been proven to 
respond well to ICIs[90,91]. Even the patient’s intestinal 
bacteria needs to be considered, as noted in two 
recent reports: in one study of patients with metastatic 
melanoma treated with anti-PD-1 antibody, the diversity 
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and composition of the gut microbiome differed in 
responders versus non-responders, with the non-
responders showing less diversity and higher abundance 
of Bacteroidales, while the responders had higher 
diversity and a higher abundance of Clostridiales[92]. 
Another study of patients with metastatic renal cell 
carcinoma showed faster tumor progression in the 
patients who had received broad-spectrum antibiotics 
up to one month before treatment with ICIs[93].

Not all immune checkpoint or immunomodulatory 
molecules take the form of a receptor or ligand. Some 
may be expressed by the cell in a free soluble form, 
such as indoleamine 2,3-dioxygenase (IDO1), an 
enzyme produced by some activated macrophages and 
also overexpressed by many tumors[94]. The enzyme 
depletes tryptophan in the microenvironment, with 
production of the catabolite kynurenine, which harms 
the cytotoxic T-cells. Phase I/IIa studies of one IDO1 
inhibitor show promise[95].

CONCLUSION

With the development of the field of cancer 
immunotherapy, the focus of treatment has shifted from 
treating the disease site to treating the specific tumor 
biologic characteristics and its interaction with the intrinsic 
immunological ability or “cancer immune set-point” of the 
patient to combat the disease. Since the immune system 
has the capacity to remember and the ability to detect and 
destroy tumor variants as they emerge, immunotherapy 
will always possess inherent advantages over other 
therapies that lack these two key attributes. The 
challenges ahead are to discover why immunotherapy 
treatments work so dramatically well in some cancers 
and in some patients while not at all in others, and how 
tumors which were once sensitive to treatment can 
acquire resistance. Specifically, to be effective, cancer 
immunotherapy needs to find ways to manipulate the 
immune system in the (probable majority of) patients 
who show little or no immune response to their tumors, 
even to the point where the tumor microenvironment is 
an “immune desert” with no tumor-infiltrating T-cells[86,87]. 
Breakthrough discoveries will be necessary to be able 
to consistently elevate a patient’s cancer immune set 
point and to recover MHC class I antigens in those 
tumors that downregulate them. One recent study with 
large therapeutic and prognostic implications used the 
new CRISPR technique to reveal multiple mutations 
in the tumor genes of individual patients who failed 
immunotherapy[96]. Some of these identified genes may 
be associated with loss of tumor antigen expression, 
while others may involve disturbances in tumor cytokine 
production or T-cell co-stimulation.   

The pharmacoeconomics of these treatments also 
needs to be considered. The cost of the typical treatment 
using antibodies to ICIs is near $150,000 a year. A 
combination of ipilimumab and nivolumab, approved by 
the FDA for advanced or inoperable melanoma, has a 
cost of $256,000 a year for patients who respond to 
the treatment[97]. Some relief may be obtained by the 
entry of at least some less costly biosimilars, which 
are biological products that must be “highly similar” to 
the original reference product, per FDA regulations. 
Biosimilars are usually made by a different/competing 
company[98].

Immunotherapy drugs are now approved for treatment 
of multiple cancer types either as first-line treatment 
or when standard first-line treatment has failed. The 
FDA has recently approved the anti-PD-1 antibody 
pembrolizumab for the treatment of any unresectable 
or microsatellite instability-high or mismatch repair-
deficient solid tumors that have progressed after prior 
treatment and who have no other satisfactory treatment 
options[99]. This is the first time the agency has approved 
a cancer treatment based on a common biomarker 
rather than the location of the body where the tumor 
originated.

Immunotherapies do not yet represent a panacea 
in cancer therapy since only a minor subset of some 
cancers respond to some of these treatments, and it is 
difficult or impossible to determine precisely who will 
benefit.

Before finishing this brief review, it is proper to recognize 
the work of Dr. James Allison of Houston’s MD Anderson 
Cancer Center in Texas, the winner of the 2015 Lasker 
Award, since he is the one who discovered the T-cell 
receptor in 1982 and went on to develop the field of 
checkpoint blockage, leading to the breakthrough drug 
ipilimumab[100,101].
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