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Abstract
Our aging population, diabetes, and obesity have fueled the growth of chronic wounds seen throughout the world. 
Often, wounds are a marker of poor health that leads to increased mortality rates. However, the diagnosis and 
treatment of these wounds are challenging. Incorrectly differentiating between chronic wounds and other complex 
conditions can lead to adverse events. Artificial intelligence (AI) has been shown to offer some early benefits, and 
we hypothesized that it may enhance wound care but also carry some notable risks. We performed a detailed 
search using PubMed, Scopus, Cumulated Index in Nursing and Allied Health Literature, and Web of Science for AI 
applications in wound care. AI was found to be applied to wound diagnosis and characterization, wound monitoring 
for tissue change, daily therapy, and prevention and prognostics. AI made for more efficient and accurate wound 
assessments, less painful assessments of chronic wounds, more personalized treatment, and improved prognostic 
prediction capabilities. AI also allowed for more precise at-home observation and care, facilitating earlier wound 
treatment as needed. Challenges associated with AI included how to best allocate AI-assisted technologies 
equitably, how to safely maintain patient data, and how to diversify datasets for algorithm training. Because the 
algorithms are not transparent, validating findings may be challenging. AI presents a powerful tool in several 
aspects of advanced wound care and has the potential to improve diagnoses, accelerate healing, reduce pain, and 
improve the cost-effectiveness of wound care.  More research needs to be done into how to best incorporate AI 
into daily clinical practice while keeping clinicians aware of the potential risks of using these evolving technologies.
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INTRODUCTION
Wound healing is a rapidly growing multidisciplinary field drawing clinicians from diverse backgrounds 
including nursing, medicine, podiatry, plastic surgery, and physical therapy. The prevalence of chronic 
wounds has increased in association with underlying conditions, such as aging, obesity, and diabetes, which 
contribute to the nonhealing nature of many wounds. From 2014 to 2019, the number of Medicare 
beneficiaries with a wound increased from 8.2 million to 10.5 million, with the largest increase in wound 
prevalence in those less than 65 years of age[1]. Economically, total Medicare spending estimates for all 
wounds spanned $28.1 to $96.8 billion in 2014[2]. However, these numbers do not begin to capture the 
impaired quality of life, lost wages, and lost productivity that is too often experienced by patients and their 
family members. Providers face a new challenge: how to best care for an increasing number of wounds in an 
age of strained resources. The rapid development of artificial intelligence (AI) may be an innovative method 
to help reduce the burden that patients and providers face in the area of wound care.

In this review, we define AI as the ability of computers, machines, and other technology to use algorithms to 
simulate human intelligence and problem-solving. AI’s power lies in its ability to process and interpret large 
amounts of data quickly and improve upon itself without the need for manual input[3,4]. AI can read 
electronic medical records (EMR), process images, and predict clinical outcomes, all of which can be 
applied to wound healing[5].

The following terminology is commonly described in AI-assisted medicine: machine learning, neural 
networks, natural language processing, deep learning, and computer vision[6,7]. Machine learning focuses on 
using computers, data, and algorithms to imitate human learning and adaptation. Neural networks are sets 
of interconnected algorithms that handle multiple inputs and outputs, identifying various data relationships 
and filtering data as needed[7]. Natural language processing comprehends language, translates texts, and 
recognizes speech. Deep learning extracts progressively higher-level features from data through multiple 
layers of processing to provide a single, high-level output. Computer vision enables computers to interpret 
visual input. Morris et al. have previously reviewed these categories in the context of the general field of 
surgery[7]. These AI categories can additionally be applied to various stages of wound care, improving 
wound diagnosis, classification, and measurement.

AI also aids wound management by assessing wounds for infection, necrosis, or healing. Additionally, AI 
has contributed to more personalized care and better prognosis and preventative strategies. However, AI 
brings challenges, including data privacy and equity of care. With appropriate safeguards and a cautiously 
optimistic approach to AI in wound care, we can leverage AI to make significant improvements to the field. 
In this review, we summarize AI advancements during stages of wound care, including diagnosis, 
monitoring, therapy, and prognosis and prevention. We also discuss the challenges and future directions of 
AI in wound care.

METHODS
A literature search was performed using freely accessible online databases, including PubMed, Scopus, 
Cumulated Index in Nursing and Allied Health Literature, and Web of Science, from publication to July 20, 
2024. Keywords included “wound healing”, “hard-to-heal wounds”, “wound care”, “artificial intelligence”, 
“machine learning”, “deep learning”, “neural network”, and “arterial, venous, diabetic, pressure, or chronic 
wounds and ulcers”. Articles were included for their specific discussions on the use of AI in common 
chronic human wound diagnosis, management, prognosis, and prevention.
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RESULTS AND DISCUSSION
AI in wound diagnosis
Wound diagnosis is challenging yet crucial to treatment. Chronic wounds most commonly include diabetic 
foot ulcers, pressure injuries, arterial ulcers, and venous insufficiency ulcers. Other less common disease 
states are often present where diagnoses are not obvious, such as pyoderma gangrenosum and inflammatory 
ulcerations. Treating the wound commonly involves treating the underlying condition, thus making proper 
diagnosis critical and the first step in treatment [Figure 1].

Experienced clinicians who have the training to properly diagnose chronic wounds are limited. For medical 
students and physicians, formal wound care training is sparse. A survey of fifty American medical schools 
reported that the average number of educational hours spent on the physiology of tissue injury and wound 
healing over all four years of medical school was just 4.7 h[8]. More than 47% of surveyed nurses in an 
inpatient setting stated that they “did not accept wound care as a nursing task”, and more than half of the 
nurses failed to provide wound care discharge education[9]. Because of the lack of standardized education on 
wound care, knowledge is often picked up through practitioner experience, creating a varied knowledge 
base. The lack of standardized education has also led to the creation of organizations working to address 
this issue. The Wound, Ostomy, and Continence Nurses Society is one of those organizations that provides 
standardized education to nurses to help fill the need for trained wound providers. AI can similarly help 
standardize and expand that base with an unlimited number of “experiences”, or data. For example, by 
inputting hundreds of images of different wounds into a database, AI can examine a new wound’s image, 
“compare” it to the ones in the database, and report information about the new wound.

Several researchers have utilized AI to differentiate between challenging-to-diagnose wounds [Table 1]. For 
example, pyoderma gangrenosum is easily misdiagnosed as cellulitis, diabetic foot ulcers, abscesses, and 
other processes. The misdiagnosis of pyoderma gangrenosum can expose patients to risks that are 
associated with its treatment and delay care for other causes of ulceration[10]. It can lead to prolonged 
hospitalization, unnecessary procedures, and increased medical costs for the hospital and the patient. 
Birkner et al., however, developed a deep convolutional neural network to differentiate pyoderma 
gangrenosum from conventional leg ulcers with a higher sensitivity than trained dermatologists[11]. This 
technology can help prevent misdiagnosis.

Similarly, Hüsers et al. studied image detection and classification algorithms for venous leg ulcers and 
diabetic foot ulcers, and their algorithms of the YoloV5 (“You-Only-Look-Once”) family resulted in a high 
precision (0.94)[12]. With such high precision, this technology could serve as a tool for double-checking 
physicians, enhancing their confidence that they are accurately diagnosing and treating patients.

Several deep learning tools, involving superpixel segmentation and a convolutional neural network, have 
been created to classify pressure and diabetic wound images with higher accuracy than what had been done 
in the past[13-16]. One model, “Alexnet architecture”, attained about 99% accuracy, 99% sensitivity, and 99% 
specificity[16]. Such high values are necessary for monitoring the progress of healing. Mohammed et al. used 
an AI digital application to capture quality wound images and calculate wound surface area faster than 
clinic staff using a standard digital camera, saving about two minutes on each wound assessment[17].

AI is quick and efficient, facilitating noncontact optical assessment of a patient’s wound, which can 
potentially reduce pain and risk of infection. It also allows non-providers to assess wounds, which is crucial 
as they often require daily assistance from family members, friends, or nonmedical caretakers. For example, 
Lau et al. developed a smartphone application to perform real-time detection and staging classification of 
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Table 1. Summary of AI advancements in wound diagnosis

Study AI framework and/or computational system Outcome

Identification and classification

Birkner et al.[11] Deep convolutional neural network trained with images 
of pyoderma gangrenosum and leg ulcers

Differentiate pyoderma gangrenosum from conventional leg 
ulcer

Hüsers et al.[12] Image detection and classification algorithms of the 
YOLOv5, trained with 885 images of either wound

Identify and classify venous leg ulcers and diabetic foot 
ulcers

Swerdlow et al.[13] and 
Zahia et al.[14]

Convolutional neural network Segmentation and classification of pressure injury images

Chang et al.[15] Deep learning based on superpixel segmentation Pressure ulcer diagnosis

Eldem et al.[16] “Alexnet architecture”, a deep learning tool Classify pressure and diabetic wound images

Lau et al.[18] Smartphone application using a deep learning-based 
object detection system

Detection and stage classification of printed images of 
pressure injury wounds

Sizing

Mohammed et al.[17] “Swift”, a noninvasive digital tool using AI Capture color calibrated images to identify wound 
boundaries, surface area, and depth

Chan et al.[19] Mobile device application using YOLOv4, validated with 
144 photos

Detect length, width, and area of diabetic foot ulcers

Tissue identification

Aldoulah et al.[20] SEEN-B4 deep learning framework Assess erythematous regions compared to an eschar or dry 
crust

Veredas et al.[21] Neural networks and Bayesian classifiers Identify tissue types in wound images

Lien et al.[22] Neural network model trained with three rounds of active 
learning

Detect the growth of granulation tissue in diabetic foot 
ulcers

Liu et al.[23] EfficientNet deep learning model

Viswanathan et al.[24] AI-enabled noninvasive device, Illuminate®, capable of 
autofluorescence imaging

Create color-coded regions to identify ischemia and 
infection based on real patient images of diabetic foot ulcers

AI: Artificial intelligence; SEEN-B4: Swish-ELU EfficientNet-B4.

Figure 1. Schematic of the elements that comprise wound care.

printed images of pressure injuries using a deep learning-based object detection system[18]. It has an 
accuracy of 63%, specificity of above 85%, and sensitivity of 73%[18]. The app itself claims to provide a 
“reasonable pressure injury staging support tool for lay carers”[18]. With a moderately high specificity and 
moderate sensitivity, providers should rely on this tool as a way to confirm suspected diagnosis rather than 
as a diagnostic tool itself. The technology specifically aimed to assist nursing home carers in accurate wound 
assessment and care planning to avoid downstream infection and hospitalization if the wound was 
otherwise not detected[18]. Another mobile device application, described by Chan et al., can detect the length, 
width, and area of diabetic foot ulcers all without touching the ulcer[19].

Aldoulah et al. present a novel Swish-ELU EfficientNet-B4 (SEEN-B4) deep learning framework that 
specializes in the accurate assessment of erythematous regions compared to an eschar or dry crust[20]. 
Similarly, Veredas et al. used neural networks and Bayesian classifiers to design a computational system for 
automatic tissue identification in wound images[21]. Lien et al. used AI to detect the growth of granulation 
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tissue in diabetic foot ulcers[22]. In the same type of wound, Liu et al. and Viswanathan et al. used AI to 
create color-coded regions to identify ischemia and infection based on real patient images[23,24]. These 
advancements in wound identification and assessment naturally lead to their application in wound 
management.

AI in wound management
Many smartphone applications (apps) have been designed to facilitate wound monitoring at home, where 
most wound management happens. These apps assess pictures of wound tissue with automatic color and 
measurement calibration, remove background “noise”, and use a factorization-based segmentation to 
classify and assess chronic wounds accurately[25,26]. One app can also detect subsurface tissue oxygenation of 
wounds[27]. Poor wound oxygenation can delay healing, and catching these complications early on could 
help prevent further deterioration.

Researchers are also aiming to sync data gathered from these apps with patients’ EMRs to offer providers 
up-to-date information for wound healing. Previously, patients had to manually measure their wounds at 
home, take pictures of their wounds without necessarily knowing if they were infected or had changed, and 
send the images to the practice, then wait for a response. Now, AI-assisted apps connected to medical 
records allow patients to input a single photo and receive several outputs, including the wound’s 
dimensions, classification, possible presence of infection or ischemia, and tissue types. This information can 
be synced with the EMR for immediate access by providers to further guide the patient.

One example of this kind of technology is “The Wound Viewer”, developed by Zoppo et al.[28]. The Wound 
Viewer is an AI-powered, portable medical device that leverages sensors and algorithms to remotely collect 
and analyze clinical data, including three-dimensional wound measurements and tissue composition, and 
upload interpretations to the EMR[28]. Guadagnin et al. created an image mining-based system that 
automatically interprets tissue types and colors from pressure ulcers, while making selected relevant visual 
information available to providers in the medical record[29]. Given the rapid deterioration of wounds, daily 
monitoring is crucial to ensure proper healing and timely treatment adjustments.

Daily monitoring can inform adjustments to wound treatment, since chronic wounds are, by definition, 
difficult to treat due to a number of underlying health conditions. Pressure injuries occur due to localized 
damage to the skin and underlying soft tissue, usually over a bony prominence[30]. This damage is often a 
result of prolonged pressure, shear, and/or frictional forces[30]. Patients who have sensory deficits have an 
absent pressure feedback response that results in prolonged pressure over a period of time[30]. The way to 
prevent and heal these types of injuries is to avoid that prolonged pressure. This is especially difficult for 
those who are unable to sense pressure or those with mobility and activity challenges, like patients in 
wheelchairs. These patients also experience more friction/shear when transferring from chairs to other 
surfaces, are more likely to experience nutritional deficiencies, and have more moisture around their 
wounds. Sensory perception, mobility, activity, friction/shear, nutrition, and moisture are factors of the 
Braden Scale, a widely used scale that assesses six physical categories that affect wound healing[31].

Researchers have developed AI that tackles several of the factors included on the Braden Scale, aiming to 
facilitate the wound healing process. To address challenges in mobility, sensory perception, and activity, 
Gabison et al. used data from a noncontact system of load cells placed under a bed[32]. The data were used to 
determine whether a patient was left-side lying, supine, or right-side lying with 94% accuracy[32]. Danilovish 
et al. used an inexpensive “off-the-shelf” camera to classify a patient’s positions into four different postures 
with 95% accuracy[33]. Artificially intelligent load cells and cameras could eventually alert caregivers when a 
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patient needs repositioning, enhancing effective healing.

Several AI-assisted technologies already aim to reposition patients automatically. Ni et al. developed an AI 
mattress that utilized three-dimensional InterSoft technology to detect bony prominences and redistribute 
pressure[34]. They studied this mattress on a 79-year-old male with left-sided hemiplegia, a need for 
positional changes, a sacral ulcer measuring 2.5 × 2 × 3 cm3 at five months of standard treatment, and an 
overall Braden score of 12, indicating a high risk of pressure injuries[34]. The AI mattress had an active 
pressure sensory array that ensured correct positioning and calculated pressure every second[34]. It used 
results from a first-time scan as a baseline to locate areas of bony prominences and employed a color-coded 
scheme to indicate areas at the highest risk for pressure injury[34]. As a result, the mattress redistributed 
pressure off those highest-pressure areas[34]. After four weeks of AI mattress usage, the wound measured 
shrunk in size, the patient reported more comfort, and he had healthier tissue types[34].

Recent advances in AI have also been employed through other methods to facilitate wound healing. One 
example includes the AI bandage. Kalasin et al. created a smart bandage with a flexible sensor and deep 
neural network algorithm[35]. The bandage has MXene, a new class of graphene-like two-dimensional 
transitional metal carbon, which enhances its conductivity and sensory capabilities[35]. It also has a wound 
dressing made of poly(vinyl acrylic) gel combined with polyaniline that can react to the wound’s pH 
level[35]. The wound dressing generates a voltage that responds to changes in pH, indicating different stages 
of healing[35]. The deep learning network processes the voltage to classify the wound’s healing stage with 95% 
accuracy[35]. Healthcare professionals can make informed decisions about wound treatment based on the 
data.

AI in wound prognosis
Chronic wounds are hard-to-heal due to a complex web of contributing factors including 
immunocompromise, poor blood circulation, and chronic inflammation, resulting in often bleak prognoses. 
Accurate prognosis requires comprehensive data collection, and researchers have applied AI to this 
challenge. Topaz et al. developed a natural language processing application that selected detailed wound 
information from free text clinical notes, gathering comprehensive data on wound comorbidities, risk 
factors, and underlying contributors[36]. With a strong ability to extract relevant data, AI can be leveraged to 
predict outcomes and prognoses. Robnik-Sikonja et al. used machine learning to analyze the effects of 
wound, patient, and treatment attributes on wound healing rates[37]. Ngo et al. studied how machine 
learning could use textural features from thermal images of venous leg ulcers to predict delayed healing 
outcomes[38]. They achieved a 79% sensitivity and 60% specificity with a Bayesian neural network[38]. With 
moderate sensitivity but mild specificity, clinicians will still need to rule out false positives to avoid 
unnecessary treatment.

Chen et al. similarly used AI to assess images of pressure ulcers for tissue changes, wound stages, and 
healing conditions[39]. These researchers aimed to provide clinicians with valuable information to guide 
treatment decisions and resource allocation.

With the creation of AI-assisted technologies like mattresses and bandages, appropriate resource allocation 
becomes crucial. Following the ethical principles of justice, resource allocation typically prioritizes those 
with the most dire conditions or those who stand to benefit the most and avoid the worst prognoses. Studies 
have examined wound healing prediction rates, but AI can also predict wound incidence. Alberden et al. 
created a machine-learning model to predict the development of pressure ulcers among surgical critical care 
patients[40]. The predictions are made from data in the patient’s EMR, differentiating it from other models 
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that might require input from clinicians[40]. Similarly, Cai et al. developed a machine-learning model that 
used factors including age, surgical procedure, weight, and disease category to predict a patient’s risk of 
pressure ulcers after cardiovascular surgery[41]. Lee et al. created an algorithm to predict nursing home 
patients at risk for pressure ulcers with 81% accuracy[42]. Lustig et al. developed a machine-learning 
algorithm for early detection of deep tissue injuries in the heel[43]. They trained the model with a database of 
six consecutive daily measurements of sub-epidermal moisture, which is an established biophysical marker 
that can detect pressure ulcer formation[43]. The algorithm resulted in a strong power to predict deep tissue 
injury in the heel the next day, with a sensitivity and specificity of 77% and 80%, respectively[43]. With the 
sensitivity and specificity being moderately high, clinicians may be able to use this tool as a diagnostic guide; 
however, clinical decision making must still be applied. Several studies explored an algorithm to identify 
certain risk factors associated with diabetic foot ulcer development[44-46]. These models can be applied to 
various wound types to predict which patients are most at risk of developing hard-to-heal wounds. 
Healthcare providers can allocate resources accordingly and work to prevent those injuries from happening.

Once those injuries do occur, complications are possible, and AI-assisted technologies can predict outcomes 
based on an array of inputted data. For example, poorly managed diabetic foot ulcers may result in 
amputation. Manual scoring systems help providers determine which ulcers are most at risk, but they do 
not capture as much data as AI can, leading to less accurate predictions. Schäfer et al. used machine learning 
with certain socioeconomic risk factors, such as household income, ethnic background, and changes in 
family status, to predict incidence and amputation risk for diabetic foot ulcers[47]. Xie et al. used 
demographic features, medical and medication history, clinical and laboratory data, and various ulcer 
classifications in a machine-learning model to predict which hospitalized patients with diabetic foot ulcers 
would undergo amputation[48]. The researchers demonstrated a 0.90, 0.85, and 0.86 predictive ability for 
non-amputation, minor amputation, and major amputation outcomes, respectively[48]. These predictions 
can help providers with wound management and resource allocation.

Challenges with AI in wound care
Although AI has the potential to significantly impact wound care, it raises several challenges [Figure 2][49]. 
The World Health Organization outlines six challenging yet crucial regulatory areas for thoughtful 
implementation of AI in health: transparency and documentation, risk management, data validation with 
clear indications of intended use, ensuring unbiased and quality data, safeguarding privacy and data 
security, and fostering collaboration among regulatory bodies to secure safe usage of AI[50].

Transparency regarding how patient data will be used is crucial for building societal trust. Mitigating risk by 
safely integrating AI into clinical practice, training algorithms without bias, and ensuring data quality 
control will contribute to safer and more accurate AI. Integrating AI into clinical practice and syncing 
patients’ EMRs with data gathered from AI-assisted technology demands time, effort, and appropriate 
safeguards to protect patient data. Considering that AI is usually trained with patient data, and AI can better 
achieve its goals if trained with a large quantity of high-quality and diverse data, care must also be taken to 
protect databases of patient information. Compromised data could deter patients from sharing their 
information in the future.

Ensuring that patients feel comfortable sharing data is important for creating diverse databases. Resource-
limited populations are more likely to be excluded from databases, leading to biased outputs. As AI becomes 
more capable of improving wound management, care should be taken to implement it in an equitable 
manner [Figure 3]. AI-assisted technologies may be costly, creating barriers to resource-constrained 
practices. To address these issues, being mindful of regulatory guidelines and collaborating between 



Page 371                                                      Ganesan et al. Art Int Surg 2024;4:364-75 https://dx.doi.org/10.20517/ais.2024.68

Figure 2. Visual diagram of the challenges and advantages of AI in wound care. AI: Artificial intelligence.

Figure 3. Schematic demonstrating the challenges arising from the proliferation of AI. AI: Artificial intelligence.

patients, providers, lawmakers, and ethicists will be vital to ensuring the ethical and safe implementation of 
AI in wound care[7,49,51].



Ganesan et al. Art Int Surg 2024;4:364-75 https://dx.doi.org/10.20517/ais.2024.68                                                      Page 372

As AI aims to improve prognostic prediction, providers should be aware of the challenges associated with 
communicating poor prognosis to patients. Providers might become fatigued when addressing treatment 
options for patients with unfavorable prognoses. Patients may question the validity of AI, and providers 
should be prepared to have such discussions. Although AI is prepared to analyze infinite amounts of data 
and suggest prognoses, providers must be equipped to discuss all those findings comprehensively.

Current gaps and the future of AI in wound care
Thus far, AI has been leveraged to process large amounts of data quickly and accurately, proving useful for 
wound diagnosis and characterization, management, treatment, and prognosis prediction. With 
advancements in AI-assisted technology, considerations for equitable access must be addressed. 
Understanding how this technology will be funded, whether through insurance, individual payers, 
government and public funding, or hybrid models, is crucial for equitable access. Wound management 
itself, even without AI-assisted technology, is expensive, and there are a plethora of available options for 
dressings, antibiotics, and more. Powerful and detailed AI algorithms could be used to help sort which 
methods of management might be most cost-effective given a patient’s insurer. Utilizing the most cost-
effective methods of management from the onset of wound diagnosis could help save on downstream costs.

Additionally, integrating developed smartphone apps into clinical practice, rather than just a trial setting, 
should be studied. Considering the incorporation of AI into digital platforms used by healthcare providers, 
such as EMRs, may allow for real-time wound analysis. If AI technology can be implemented in rural areas, 
providers might be able to guide remote wound care. However, once AI is integrated into these settings, 
identifying who will supervise the data, whether the provider, hospital, or a third-party data analytics group, 
will be paramount to seamlessly incorporating accurate and accessible AI-assisted technology into wound 
care.

Of the current studies on AI advancements in wound care, very few report demographic data. Fewer 
reported AI-assisted technology’s accuracy, sensitivity, and specificity stratified by racial background. This 
is particularly important for image-based detection methods, where an accurate AI-assisted technology 
should be able to adequately diagnose wounds regardless of skin color. Further reporting on demographics 
will improve transparency and reduce bias from AI-assisted technology. Diversifying datasets for AI 
training will also ensure less biased data and improve output accuracy.

Of note, patients from diverse backgrounds may heal in clinically different ways. Keloids are more likely to 
develop after injury in those of African and Asian ancestry[52]. Hypertrophic scarring is more likely to occur 
in those with darker skin colors[53]. Not only will demographically diverse data provide insights into these 
conditions, but AI may be able to predict when these complications might occur. Kim et al. used a neural 
network structure along with multinominal logistic regression to identify that scar severity was positively 
associated with postoperative itching and pain[54]. They found that postoperative adhesion/tightening and 
induration/edema were negatively correlated with scar severity in patients. More research must be done to 
further predict keloid and hypertrophic scarring development in patients.

Additional research can be done into predicting wound healing complications such as sepsis and 
necrotizing fasciitis. Although AI’s prognostic ability for both cases has been studied, they have not been 
studied in the context of wound healing[55-57]. AI can be leveraged in molecular biology as well. So far, most 
of the technologies that analyze wounds have focused on the wound itself. However, wounds are often 
accompanied by a heterogeneous array of exudates, calluses, edema, maceration, and excoriations. Wound 
healing is often impacted by the specific type and amount of bacteria that are in the wound. Research into 
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using AI to analyze wound exudates, periwound areas, and bacteriology could facilitate more accurate 
assessments of healing[58]. Nanotechnology with AI may offer a promising way of identifying bacteria and 
their characteristics in wounds, though the idea has not yet been fully studied. Similarly, research into 
genetic risk factors for certain wounds could pave the way for better prognostics.

CONCLUSION
AI stands to meaningfully impact wound diagnosis, management and therapy, and prognosis. Its ability to 
draw conclusions from relevant data in EMRs, patient images, and entered criteria allows for efficient and 
effective guidance. AI can help guide treatments outside the clinic as well, eventually making for more 
equitable care. While ensuring equitable access, diverse datasets, and data security presents challenges, 
further research can help address these issues and mitigate potential harms.

Being receptive to the improvements AI can offer while also addressing challenges as they arise will be 
crucial to the safe use of new technology in wound care. The field of medicine is constantly evolving, but 
cautious optimism will allow for the deliberate integration of empowering AI usage in wound care.
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