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Abstract
The fast development of modern battery research highly relies on advanced characterisation methods to unveil the 
fundamental mechanisms of their electrochemical processes. The continued development of in situ 
characterisation techniques allows the study of dynamic changes during battery cycling rather than just the initial 
and the final phase. Among these, in situ transmission electron microscopy (TEM) is able to provide direct 
observation of the structural and morphological evolution in batteries at the nanoscale. Using a compact liquid cell 
configuration, which allows a fluid to be safely imaged in the high vacuum of the TEM, permits the study of a wide 
range of candidate liquid electrolytes. In this review, the experimental setup is outlined and the important points for 
reliable operation are summarised, which are critical to the safety and reproducibility of experiments. Furthermore, 
the application of in situ liquid cell TEM in understanding various aspects, including dendrite growth, the solid 
electrolyte interface (SEI) formation, and the electrode structural evolution in different battery systems, is 
systematically presented. Finally, challenges in the current application and perspectives of the future development 
of the in situ liquid cell TEM technique are briefly addressed.
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INTRODUCTION
The energy issue is one of the most concerning challenges facing society. Researchers have paid great efforts 
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to find alternative options to help us move beyond our heavy dependence on fossil fuels[1,2]. Batteries are 
considered a most promising alternative and have been rapidly developed to satisfy the fast-growing 
demands for electric vehicles, portable electrical devices, and other energy storage equipment in daily 
life[3,4]. Among all kinds of battery systems, the lithium (Li)-ion battery is at the forefront and has been 
extensively applied in various fields. More recently, many novel materials and battery systems have started 
to emerge as promising candidates, which may lead to higher capacity, lower cost, and safer operation[5-8].

Despite now achieving outstanding performance after decades of progress, Li-ion batteries are still facing 
significant challenges; one typical problem is that of dendritic growth[9,10], which is closely related to the 
unstable solid electrolyte interface (SEI) layer that forms across the electrodes, and directly leads to the 
degradation of batteries[11,12]. Therefore, it is an integral part of the current development of advanced 
batteries to explore the complicated degradation mechanisms that hinder their improvement.

Diverse characterisation techniques have been developed to understand the complicated reaction 
mechanisms in different battery systems[13-15] from aspects of anodes, cathodes, or their interfaces. Based on 
the different battery conditions during characterisation, these techniques can be broadly divided into two 
categories; ex situ methods that are performed “post-mortem” after cycling and in situ methods that are 
conducted during the cycling of a representative electrochemical cell. Typically, the ex situ methods are 
significantly easier in terms of sample preparation and requirements for equipment, but they can only give 
information about the initial and final states of batteries. However, the strength of in situ techniques is 
providing dynamic information in intermediate states, which brings more convenience to understanding 
the evolution of the electrodes and interfaces within working batteries. Furthermore, the dismantling of a 
cycled battery cell for ex-situ examination can cause misleading changes to the sample, such as due to air 
exposure or physical damage, which are avoided if the characterisation is done in situ.

A range of characterisation techniques has been adapted to testing environments in electrochemical cells, 
such as in situ X-ray diffraction (XRD)[16-20], in situ X-ray photoelectron spectroscopy (XPS)[21-23], in situ 
atomic force microscopy (AFM)[24-26], in situ X-ray computed tomography (CT)[27-30], in situ nuclear 
magnetic resonance (NMR)[31,32], in situ Fourier transform infrared spectroscopy (FTIR)[33,34], in situ Raman 
spectroscopy[35,36], differential electrochemical mass spectrometry (DEMS)[37-39], in situ optical microscopy 
(OM)[40,41], in situ scanning electron microscopy (SEM)[42,43], in situ transmission electron microscopy 
(TEM)[44-46], etc. These advanced in situ characterisation techniques have been independently or jointly 
applied to realise the analysis of the chemical components of SEI layers, the visualisation of electrode 
microstructures, and the exploration of chemical or electrochemical side reactions in electrolytes.

Among the above in situ characterisation methods, in situ TEM is a type of powerful technique that can 
capture the nanoscale morphological evolution and structural properties of electrode materials and the 
interfaces between electrodes and electrolytes. Compared with other in situ characterisation methods, such 
as the in situ OM, in situ CT, in situ AFM, in situ XRD, etc., the advantage of in situ TEM is that it can give 
structural and morphological information on the micro- to nano-level, with both better spatial and 
temporal resolutions than these other techniques. This, for instance, allows the identification of the initial 
nucleation stages of deposition processes, which usually is challenging to be observed by other techniques. 
A further advantage is that the mechanism for image contrast in TEM, which is sensitive to density/atomic 
number, can give compositional information to help with the analysis. In addition, it is also possible to 
conduct other in situ spectroscopic characterisations by using an electron beam.
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There are two categories of in situ TEM, the open cell configuration and the closed cell configuration, as 
shown in Figure 1A and B. The in situ open cell TEM technique was initially used to observe Li dendrite 
formation. However, this open-cell investigation only allows the use of non-volatile electrolytes, either an 
ionic liquid or a solid electrolyte[47-52]. The in situ closed cell TEM, also known as in situ liquid cell TEM, has 
made it possible to monitor electrochemical dynamics and observe the growth of SEI and dendrites with 
more practical electrolytes[37,53-55]. As it is a sealed setup with liquids, gas evolution at the electrode/electrolyte 
interface can be detected by in situ liquid cell TEM experiments as well, which is of vital importance for 
investigating the properties of the SEI layer.

Herein, we present recent research progress in studying rechargeable batteries based on the application of 
in situ liquid cell TEM. First, we give a brief introduction to the experimental setup of the in situ liquid cell 
TEM and clarify several technical points that are worth taking into consideration during operation. 
Furthermore, observations on the growth of dendrites and SEI and other issues during cycling in Li, sodium 
(Na), zinc (Zn), magnesium (Mg), and calcium (Ca) electrolytes under in situ liquid cell TEM have been 
summarised, especially those results of Li batteries from aspects of electrolytes and electrode materials. 
Finally, we shed light on how we can better understand battery mechanisms with this technique in future 
research.

CONFIGURATION FOR IN SITU  LIQUID CELL TEM HOLDER
The in situ liquid cell is prepared as a closed unit, in which silicon (Si) nitride membranes screen the liquid
sample to prevent leakage of liquid electrolyte into the vacuum of the TEM while still allowing the electron
beam to transmit through the cell and thus allow imaging of the sample. In the configuration of a typical
commercial in situ liquid cell TEM holder, as shown in Figure 1C-E, inside the tip of the TEM holder, there
is an electrical biasing Si chip and a sealing Si chip, as well as an O-ring, which helps these two chips to be
aligned and sealed properly. The small Si chip is equipped with spacers of different heights at the edges or
four corners, allowing the flow of liquids through the cell and accommodating electrochemical reactions on
the electrode. Both Si chips have a window embedded in the centre, covered with an ultrathin, electron
transparent layer, which is normally made of Si nitride (SiNx) for most commercialised chips. Normally
three electrodes are pre-patterned on the surface of a large chip, acting as a reference, working, and counter
electrode. The tip of the working electrode, where reactions of interest occur, is patterned on the SiNx

window so it is visible by TEM.

As an aside, there is also another closed cell design named the graphene liquid cell (GLC), which uses
graphene as the covering layer on the window[56]. However, it is not possible to apply biasing in the GLC for
battery research so far, nor is it possible to replenish the limited cell volume by liquid flow, so it is not
included in the scope of this review here.

EXPERIMENTAL SETUP FOR IN SITU  LIQUID CELL TEM
The setup of in situ liquid cell TEM is very fragile, as the thickness of SiNx membranes is normally around 
50 nm. Improper handling during the experiment could result in blocking of the microfluidics or cell 
rupture and leakage, thus possibly causing detrimental or even fatal effects on the TEM column. This 
requires a thorough consideration of various factors when determining testing parameters in order to 
perform experiments safely without compromising too much on the imaging quality and desired 
information.
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Figure 1. Schematics of in situ electrochemical TEM. A comparison of (A) the open cell and (B) the liquid cell approach for in situ
electrochemical TEM experiments. (C) Cross-section view of the cell tip. (D) Typical electrode SiN and (E) sealing chips used to 
form the liquid cell.

Comprehensive studies of factors that determine the resolution of liquid cell TEM and scanning TEM 
(STEM) have been reported previously[57-60]. The resolution of the electron microscope is inversely 
proportional to the thickness of samples and directly proportional to the beam dose rate. This means a 
thinner liquid cell setup and higher dose rate can bring better resolution. However, a delicate balance 
between these factors and the resolution should be carefully monitored during imaging.

The total thickness of the in situ liquid cell setup comes from the sum of the thickness of SiNx membranes 
and the thickness of the liquid. Normally, a thinner liquid layer is desired, although thicker liquid allows 
better diffusion of ions. Additionally, having more space within the cell chamber enables the observation of 
larger particles. However, it is important to note that the liquid thickness is constrained by the height of the 
spacers on the small chip, and it is not even. There will always be membrane bulging due to the pressure 
difference between the interior of the cell and the TEM column. As a result, the liquid is much thicker in the 
centre of the SiNx window than at the edges. Thicker SiNx membranes and smaller window sizes can help to 
eliminate the bulging, while this will compromise the resolution and field of view, respectively.

The beam dose rate is another factor that should be carefully controlled during imaging. Beam dose refers to 
the number of electrons that have irradiated a given area, usually with a unit of e- Å-2, while dose rate is 
defined as the dose in a unit of time, with a unit of e- Å-2 s-1. The accelerated electrons coming from the beam 
can inelastically interact with liquids, resulting in different types of beam damage, such as knock-on effect, 
thermal effect, radiolysis, etc.[57,58,61,62]. Systematic investigations into the impacts of beam damage on 
commonly used Li electrolytes were reported before[61]. Among them, radiolysis is the main concern that 
should be taken into consideration for liquid characterisation, especially for organic solvents, which can be 
less stable. It has been reported that radiolysis can cause the decomposition of liquids, resulting in changes 
in the local chemical environment and gas evolution[63-65]. This might give rise to misleading results of 
chemical properties and hinder the accurate acquisition of structural information. Therefore, it is necessary 
to conduct beam dose tests before performing in situ imaging and establish specific dose limits towards 
different samples experimentally. Related to beam dose control is the selection of an appropriate electron 
beam energy for the experiment. Typical electron beam energies used across TEM/STEM experiments are 
typically within the range of 60 kV to 300 kV, with 200 kV being the most frequently used. More recently, 
lower beam energies, such as 60 and 80 kV, have been used to study beam-sensitive 2D material-like 
graphene, as these are mainly susceptible to elastic (sputtering) damage from the electron beam, which is 
reduced for lower beam energies. However, for in situ liquid cell TEM, we need to ensure that (i) the beam 
transmits through the relatively thick liquid cell and (ii) that we minimise any beam damage. As discussed 
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above, the primary beam damage mechanism is via inelastic scattering for electrolyte studies, leading to 
radiolysis and charging, rather than elastic scattering, and so liquid cell studies are ideally performed with a 
high electron beam energy to ensure good beam transmission and minimise inelastic scattering.

The in situ liquid cell setup allows observation in either a static or a flowing state of solutions. The flow of 
liquids can be achieved by a syringe pump, of which the flowing rate is normally controlled at a μL/min 
level. As the cell and the syringe pump are usually connected by very fine channels, it is necessary to check 
the viscosity of the electrolyte to avoid any clogging. In terms of studies on batteries, a flowing liquid cell has 
several advantages. First, flowing fresh electrolytes into the small liquid cell can replenish the ions 
consumed during cycling, thus maintaining a consistent concentration of the electrolyte. Also, as discussed, 
most electrolytes are not so stable under the electron beam. In this case, a flowing electrolyte can help to 
refresh any potentially decomposed electrolytes induced by the beam, which may, otherwise, confuse the 
results.

Another point that should be taken into consideration is the choice of electrode materials on the chip. 
While the chip system is designed to imitate the target system as closely as possible, the electrode materials 
of chips are still limited. Typically, electrode materials used for chips include gold (Au), platinum (Pt), 
glassy carbon (GC), or titanium (Ti)[66,67]. An inappropriate base electrode material may interact with the 
electrolyte, potentially acting as an unwanted electrocatalyst for side reactions or undergoing alloying with 
electroplated material. Furthermore, the narrow gap and the extremely fragile membrane bring about more 
challenges to attaching desired materials to the chip. So far, several strategies for customising electrodes 
have been developed to accommodate various requirements for battery systems, including drop-
casting[68,69], vacuum deposition[70], sample attachment via focused ion beam (FIB)[71], etc.

APPLICATION OF IN SITU  LIQUID CELL TEM IN LI BATTERY SYSTEMS
To understand the complicated mechanisms occurring in battery systems, a variety of characterisation 
techniques have been developed over the past decades[13,72-75]. The in situ liquid cell TEM provides a powerful 
tool to explore the electrode materials and electrochemical reactions in batteries using liquid electrolytes, 
including the growth of dendrites, the formation of SEI layers, the changes to electrode structures, gas 
evolution, and more.

Li-ion batteries can now be found almost everywhere and are widely used in mobile phones, laptops, and 
electric vehicles, which have revolutionised our lives. Much progress has been made in improving the 
energy density, battery life, rapid charge, and safety of Li batteries in order to catch up with the increased 
demands of portable electronic devices and electric vehicles. Many attempts to develop various novel anode 
and cathode materials and advanced electrolyte systems have been reported to enhance the operating 
performance of Li batteries. However, one of the trickiest parts of addressing the above issues is to figure 
out the underlying causes for the degradation mechanisms of Li batteries during cycling.

In this section, progress on understanding the degradation mechanisms with the help of in situ liquid cell 
TEM in different Li battery systems will be summarised, and related studies targeted at electrolytes and 
electrode materials in Li batteries will be presented individually.

Electrolytes
Metallic Li is inherently thermodynamically unstable due to its chemical properties, and thus it can easily 
react with the majority of chemicals commonly used in liquid electrolyte systems, including salts, solvents, 
and additives[76-80]. The most commonly used salts include lithium hexafluorophosphate (LiPF6), lithium 
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tetrafluoroborate (LiBF4), lithium bis(oxalate)borate (LiBOB), lithium difluoro(oxalato)borate (LiDFOB), 
lithium bis(fluorosulfonyl)imide (LiFSI), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium 
perchlorate (LiClO4), etc., and the main solvents include propylene carbonate (PC), ethylene carbonate 
(EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), dimethoxy sulfoxide (DMSO), and 1,2-
dimethoxyethane (DME). This high activity of Li leads to severe instability of the anode/electrolyte 
interface, thus causing the problems of dendrite growth, SEI overgrowth, and dead Li accumulation. 
Therefore, investigating the interfacial evolution is of great significance as it can provide valuable insights 
and guide the search for possible solutions to improve the stability and cycling performance of Li batteries.

The properties of SEI layers on the electrode/electrolyte interface play a vital role in directing Li 
electrodeposition. There are several different models to describe the formation process of SEI layers, but the 
accurate formation process of complex SEI layers and the interaction between SEI layers and dendrites have 
not been fully revealed[11,12,81-84]. This exploration is partially limited by the characterisation techniques. 
Although various operando characterisation methods have been developed, it is still not feasible for most of 
them to provide direct observation of the electrode/electrolyte interfaces in a real battery working 
environment. For example, the in situ optical microscope can offer a real full-battery configuration but is 
unable to present structures at the micro level[40,41]. The in situ TEM open cell only allows the use of ionic 
liquids or solid electrolytes, and contact between the electrode and the electrolyte is usually limited to one 
spot, which could alter the diffusion of Li-ions, thus affecting the growth mechanisms of dendrites and 
SEI[85]. This illustrates the necessity of using the in situ liquid cell to capture the operando morphological 
evolution processes of Li dendrites and SEI in various electrolytes.

In 2014, the in situ evolution process of the electrode/electrolyte interface was directly captured by 
Zeng et al. using a homemade liquid cell chip with two electrodes and conducting cyclic voltammetry (CV) 
test [Figure 2A][86]. They observed inhomogeneous lithiation, lithium metal dendritic growth, electrolyte 
decomposition, and SEI formation on Au anodes from a commercial electrolyte of LiPF6 in EC/DEC. The Li 
dendrites were found to nucleate and grow rapidly from the substrate. During the dissolution process, the 
stripping of dendrites started from the kink points and tip, leaving a branch-like structure on the substrate. 
Interestingly, bubbles formed due to the decomposition of the electrolyte solvent were also observed during 
the Li plating process. They also observed that the SEI layer was of equivalent thickness as previously 
reported, but they could not resolve the normally accepted two-layer structure, of which the inner layer is 
more compact with inorganic components while the outer layer is more porous.

A study was reported by Sacci et al. using similar CV cycling measurements, where they used a 
commercially available chip with a GC working electrode[87]. In the standard electrolyte of LiPF6 in EC/
DMC, they found that the formation of SEI dendrites began before Li deposition and that Li deposition 
occurred both beneath the SEI and also within the SEI, forming small crystalline particles [Figure 2B]. 
However, unlike normal dendritic morphologies, the Li electrodeposits in their images presented a more 
globular shape, and the secondary electrodeposits were a mixture of globular, faceted, and needle-like 
nucleation morphologies. This could possibly result from the involvement of carbon substrates or higher 
current densities. Mehdi et al. also reported the identification of Li dendrites and SEI on Pt electrodes in the 
electrolyte of LiPF6 in PC[88]. They found Li plating on the Pt electrode was uniform; however, the 
dissolution of Li was not reversible. Li stripping left many dead Li around the electrode/electrolyte interface. 
The structural changes after extended cycling were also observed at the electrode, where a Li deposit formed 
underneath the SEI layer, and the SEI was found to crack due to the stresses of Li diffusion. Mehdi also 
presented a detailed discussion as to the expected contrast of lithium metal when observed in TEM or 
STEM; Li is darker than the background when imaged in dark-field mode, e.g., in the high-angle annular 
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Figure 2. Electroplating and stripping of Li. (A) The evolving electrode-electrolyte interface of an Au electrode cycled in LiPF6 EC/DMC 
electrolyte. Reproduced with permission[86]. Copyright 2014, American Chemical Society. (B) Li dendrite growth from LiPF6 EC/DMC 
electrolyte. Lithium metal is dark contrast (bright field imaging). Scale bars are 1 μm. Reproduced with permission[87]. Copyright 2015, 
American Chemical Society. (C) Li deposition in a liquid cell with an application-relevant cathode material deposited on the counter 
electrode. Reproduced with permission[90]. Copyright 2017, Elsevier.

dark field (HAADF) STEM and brighter than the background in bright-field mode, e.g., conventional TEM. 
This is due to the density of lithium metal being lower than the surrounding electrolyte and the contrast of 
TEM being sensitive to the density.

Later, Li electrodeposition and dissolution on a Ti electrode in the standard electrolyte of LiPF6 in EC/DMC 
was reported by Leenheer et al.[89]. They studied the influences of different cycling current densities in 
directing the morphologies of Li electrodeposits. Li deposits were compared under current densities of 
1 mA/cm2, 10 mA/cm2, and 25 mA/cm2. At the initial low current density, smooth deposition of large grains 
was seen. With the current increasing, needle-like crystals formed. They also reported the effects of electron 
irradiation on the Li morphologies, with faceted crystals and needles formed at 10 mA/cm2 without beam 
exposure, while rounded nodules were found with beam exposure, illustrating the importance of accounting 
for the role of the electron beam in influencing these in situ experiments.

Apart from studying different dendrite and SEI morphologies, further research on exploring the nucleation 
mode and interaction of dendrites with SEI layers was conducted by Kushima[90]. They reported a 
comprehensive observation of lithium metal deposition and dissolution in the electrolyte of LiTFSI in 
DMSO. A customised chip with LiCoO2 (LCO) film deposited on the counter electrode was studied 
[Figure 2C]. Li electrodeposition was first applied to investigate the Li growth mechanism in a liquid 
electrolyte. Electrolyte decomposition initially caused a thin SEI layer to coat the electrode. Then, Li 
nucleated over the electrode surface and grew, all beneath the SEI layer. Li was then observed to 
preferentially grow from existing root sites over the formation of new nucleation sites and was observed to 
also grow away from the root to form kinks in the dendrites due to the continually thickening SEI layer 
impeding ion transfer to the root. These types of complex, dynamically evolving growth dynamics can only 
be identified by direct nanoscale observation and are thus ideally suited to in situ liquid cell TEM.

Beyond these studies into the performance of standard Li electrolytes, other more novel electrolytes have 
been explored more recently, motivated by the desire to understand and improve the SEI. As has been 
shown in many battery studies, the properties of the SEI layers are determined by the electrolyte 
components. Therefore, seeking out proper electrolyte systems to enable SEI layers with high interfacial 
stability is an effective strategy to suppress Li dendrites and improve cycling performance. This is especially 
important for lithium metal batteries, where lithium metal is used as the anode material. Normally, 
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modifications of electrolyte systems are based on the consideration of several aspects, including the choice 
of proper solvents and salts, the concentration of the electrolyte, and the addition of extra additives. It is still 
not fully clear how the SEI layer structure and composition are controlled for these various electrolyte 
systems.

Electrolytes of high concentrations have been reported to be able to improve the properties of SEI layers, as 
there are much fewer free solvent molecules involved in reactions, leading to better cycle performance[91]. 
An electrolyte composed of 4M LiFSI in DME was demonstrated to provide a high coulombic efficiency 
over long-term cycling[92]. In addition, the morphology of Li electrodes cycled in coin cells was shown to be 
very uniform with dense columnar grains. To understand how this low-aspect-ratio structure formed, 
Harrison et al. performed observations of deposition behaviour in this high-concentration electrolyte[93]. 
Surprisingly, the coulombic efficiency was much lower, and the Li deposits did not exhibit the same 
morphologies previously observed in coin cells. In contrast, they found that there was a large amount of Li 
particles, and these particles were gradually consumed via self-discharge. They attributed this discrepancy to 
the compression in coin cells, which is hard to realise in the normal in situ liquid cell. This finding has 
indicated that mechanical cell compression is critical for building up stable SEI layers with dense and 
uniform structures.

Electrolyte additives have proven to be a powerful and feasible tool for modifying the SEI components. It is 
widely accepted that the LiF-rich SEI layers are helpful in suppressing Li dendritic growth and dead Li 
formation[94-97]. A lot of evidence has confirmed the role of LiF in establishing flat and dense SEI structures 
and monitoring Li deposit morphologies. Recently, Gong et al. demonstrated the direct imaging of the real-
time dynamics of Li plating and stripping with the presence of the fluoroethylene carbonate (FEC) additive 
in LiPF6 EC/DMC, as FEC is considered to promote the formation of fluoride-rich interphase[37]. They 
found the fluorinated system showed a denser deposition layer, where Li grains had better connectivity with 
each other than those without FEC. The better connection allowed complete striping as the Li maintained 
electric contact with the working electrode. The dynamic imaging showed it yielded a flatter and denser 
structure, thus also facilitating homogeneous ionic transport across the entire Li surface.

The effects of LiF-rich SEI layers were unveiled by Lee et al. as well via a well-designed in situ imaging 
setup[98]. They applied a poly(diallyldimethylammonium chloride) (PDDA) cationic polymer film on the 
liquid cell TEM electrode surface with the help of Sn@SnO2 nanostructures (Sn nanowires/nanoparticles 
with a thin layer of surface oxide). As shown in Figure 3A, they observed Li nanogranule formation in the 
electrolyte of LiPF6 in PC with the PDDA cationic polymer film, which normally arises from the LiF-rich 
SEI according to previous claims. The components of the LiF-rich SEI were confirmed by other elemental 
analyses. Unlike other strategies that directly supply extra fluorine in the electrolytes, the PDDA cationic 
polymer film was able to trap PF6

− ions itself. The artificial uniformly distributed LiF-rich SEI layers were 
conducive to the nucleation of new Li nanogranules while suppressing further growth of existing Li 
deposits.

The stripping mechanisms of Li deposits were also studied recently, using the same experimental setup by 
this group[99]. It was found that the stripping processes of Li deposits with different morphologies obtained 
in the electrolyte of LiPF6 in PC with and without PDDA coating can be described by one of the following 
three modes: (i) symmetric stripping; (ii) surface-preferred asymmetric stripping; and (iii) interface-
preferred asymmetric stripping. These observations also confirmed that the formation of dead Li arose from 
the interface-preferred asymmetric stripping.
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Figure 3. The influence of fluoride in Li electrochemical cycling. (A) Li plating with and without a fluoride-facilitating PDDA electrode 
coating. Reproduced with permission[98]. Scale bars are 1 μm. Copyright 2020, Royal Society of Chemistry. (B) Formation of a LiF 
nanocrystal from LiPF6 in PC electrolyte. Reproduced with permission[55]. Copyright 2022, Cell Press.

Interestingly, the in situ formation of LiF nanocrystals was reported on positively charged Ti electrodes in 
the electrolyte of LiPF6 in PC by Zhang et al. in their recent work[55]. The nucleation, growth, tilting, and 
dissolution of the LiF nanocrystals with a two-dimensional morphology are clearly shown in Figure 3B. The 
authors claimed that the observed LiF nanosheets on the positively charged Ti electrode could serve as a 
cathode electrolyte interface (CEI), which has not been reported in previous studies.

Electrode materials
In addition to the exploration of the Li dendrites and the SEI layers, in situ liquid cell TEM has also been 
applied to investigate morphological and structural changes of other electrode materials.

For novel anode materials for Li batteries, Si is considered one of the most promising candidates owing to 
its ultrahigh theoretical capacity (4,200 mA h g−1), low working potential, and its high abundance in the 
Earth’s crust[100]. However, Si anodes suffer from severe volume changes during the lithiation and 
delithiation process, which is over 300%[101]. The extreme expansion of Si anodes could lead to the 
pulverisation of active materials, the collapse of SEI layers and loss of electrical contact within the 
battery[102,103].

It has been proven that Si materials with nanostructures, such as nanowires and nanotubes, show the 
capability of easing the negative consequences of volume expansion[101,104]. What is more, appropriate surface 
coating to make it a core-shell structure has also turned out to be effective in strengthening the Si anode 
structure and increasing the electrical conductivity[105-107]. A lot of work has been done to investigate the 
degradation mechanisms of Si anode materials via in situ open cell TEM[108,109].

The lithiation behaviour of Cu-coated Si nanowires in the electrolyte of LiClO4 in EC/DMC was first 
captured by Gu et al.[71]. Compared with previous in situ open cell research on Si anodes, one big advantage 
of the in situ liquid cell setup is to allow the immersion of the whole Si nanowire into the electrolyte instead 
of just a point contact. This helps to measure the volume expansion more accurately. As illustrated in 
Figure 4A, a single Si nanowire was mounted on the Pt electrodes by FIB manipulation and Pt deposition 
welding. The diameter of the Cu-coated Si nanowire was found to increase from 100 nm to 391 nm after 
lithiation, involving the anisotropic Si expansion and the SEI formation. Moreover, the rate of expansion 
was found to slow down with lithiation, which can be attributed to the interface stress limiting the Li 
diffusion into the core, in accordance with previous reports[108].

Later, Leenheer et al. further conducted direct observations of the lithiation mechanisms of amorphous Si, 
crystalline Al and crystalline Au using customised chips in the standard electrolyte of LiPF6 in EC/DMC[110]. 
A homogeneous change in the contrast was observed during the lithiation/delithiation process of the 
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Figure 4. Lithiation of electrode materials. (A) Lithiation of a Si nanowire from LiPF6 EC/DMC electrolyte. Reproduced with 
permission[71]. Copyright 2013, American Chemical Society. (B) Lithiation and delithiation of MoS2 nanosheets on a Ti current collector 
from LiPF6 EC/DEC electrolyte. Reproduced with permission[68]. Copyright 2015, American Chemical Society.

amorphous Si anode, corresponding to the uniform swelling and shrinking. However, there was insufficient 
contrast to visualise the two-stage mechanism, where Si will first turn into amorphous LixSi[109,111].

In addition, Zeng et al. also reported the observation of the lithiation/delithiation process of the layered 
MoS2 nanosheets in an electrolyte of LiPF6 in EC/DEC[68]. The MoS2 nanosheets were successfully loaded on 
the Ti electrode via the simple drop-casting method. The MoS2 nanosheets were found to undergo 
irreversible decomposition and fragmentation into nanoparticles in the voltage range of 1.8-1.2 V, as shown 
in Figure 4B.

Apart from anode materials, researchers have attempted to apply in situ liquid cell TEM to study cathode 
materials; however, this is more difficult than on interfaces and anode materials. There are significant 
structural transformations on the cathode side during the operation of the battery, such as the migration of 
transition metal atoms, the rearrangement of the metal-oxygen polyhedra, and the loss of oxygen in bulk or 
on the surface[112-116]. However, most of these structural changes happen at the unit cell level, which requires 
very high resolution to resolve. This cannot be easily captured with the presence of liquid electrolytes, which 
reduce the imaging resolution. Researchers are seeking out more advanced characterisation methods that 
can alleviate the effects of liquid electrolytes on imaging under the electron beam. Holtz et al. applied a type 
of spectroscopic imaging method that can visualise the microstructure and local electronic structure 
changes in the charging and discharging of electrode materials[117]. They used valence energy-filtered TEM 
(EFTEM) coupled with the electron energy-loss spectroscopy (EELS) and observed the lithiation and 
delithiation behaviour of the LiFePO4 in the 0.5 M Li2SO4 aqueous electrolyte. Later, Karakulina et al. 
demonstrated structural changes of LiFePO4 crystals at the unit cell level, which was achieved via the 
electron diffraction tomography (EDT) technique in the commercial liquid cell[69]. This technique is a viable 
alternative to in situ X-ray and neutron diffraction in terms of its advantage in locally characterising 
electrode crystals.

APPLICATION OF IN SITU  LIQUID CELL TEM IN OTHER BATTERY SYSTEMS
In this section, the research on in situ liquid cell TEM goes beyond Li batteries. This includes investigations 
on Na batteries, Zn batteries, Mg batteries, Ca batteries, and progress on metal-air batteries. A brief 
summary of the findings in these areas will be provided.
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Sodium batteries
As the second member of the alkali metal family, Na has been considered a competitive alternative energy 
storage material due to its similar properties to Li but much lower cost[118]. However, these similar chemical 
properties also induce the analogous uncontrollable dendrite problem. Recent studies have revealed some 
fundamental differences between Li and Na dendrites[119-122], which has drawn great attention to studying the 
in-depth mechanisms of Na dendrite growth. Various strategies have been implemented to suppress Na 
dendrites, among which the modification of the electrode structure is proven to be a highly effective 
method[119,122-125].

There has been some uncertainty in whether a uniform surface is necessary to overcome Na dendrites and 
what the potential consequences resulting from any unevenness will be. Zeng et al. reported their recent 
findings on the effects of electrode roughness on Na electrodeposition behaviour[126]. They patterned Ti 
electrodes with different curvatures on their homemade in situ liquid cell TEM chips, one with a flat surface 
and the other with a sharp tip. The differences in the nucleation and growth processes are shown in 
Figure 5A. On the flat Ti electrode, relatively large Na grains were observed at the edge of the electrode, 
along with gas bubbles emerging. In contrast, Na nodules were much smaller on the sharp Ti electrode 
[Figure 5B], and newly deposited Na was inclined to accumulate at the base of existing grains, indicating a 
“base growth” tendency, thus leading to an “explosive” growth behaviour. By characterising the SEI layers, 
the authors also claimed the thickness of SEI was playing a vital role in directing the growth rate and 
morphology of deposited Na.

Very recently, Gong et al. investigated the mechanisms of how ether-based electrolytes facilitate better 
cycling performance of Na battery anodes[53]. Under the in situ liquid cell TEM and HAADF-STEM imaging 
[Figure 6], severe gas evolution was observed in the carbonate electrolyte, while a similar phenomenon was 
not observed in the ether electrolyte. Further characterisations revealed that the enhanced elasticity of the 
ether-derived SEI played an important role in suppressing gas evolution and promoting uniform Na plating. 
This research also indicated the irreplaceable value of in situ liquid cell TEM in diagnosing battery reaction 
mechanisms.

Zinc batteries
The history of the Zn-based battery is nearly 200 years old, with the invention of Cu/Zn batteries by John 
Frederic Daniell in 1836[127]. Recently, the rechargeable Zn battery, using Zn metal as the anode, has been 
brought back to attention, primarily owing to the merits of high capacity and, in theory, low redox 
potential, low cost, and intrinsic safety, particularly due to the stability of Zn in aqueous solution[128,129]. 
However, similar to other metal anode materials, the metallic Zn also suffers from severe dendrite issues, 
which causes degradation of the battery performance[130-133]. Therefore, it is of vital importance to clarify the 
electrochemical deposition behaviour on the Zn anode.

The first observation of Zn deposition via in situ liquid cell TEM was reported by Park et al. in a ZnAu alloy 
system with Bi additives[134]. Later, the in situ nanoscale observations of pure Zn dendrites from ZnSO4 
aqueous electrolyte were reported by Sasaki et al.[70] and Li et al.[135], separately, in 2021. Li et al. 
demonstrated basic Zn deposition behaviour in the 0.3 M ZnSO4 aqueous solution with the flow of 
electrolyte and compared differences in the dendrite formation at the nucleation stage and the growth stage 
under various applied currents and flow rates[135].

In the meantime, Sasaki et al. studied the Zn electrodeposition behaviour from diluted 0.1 M ZnSO4 
electrolytes in a static state[136]. The concentration of Zn2+ is equivalent to that of the 2.5 M KOH aqueous 
solution saturated with ZnO, which is widely used in rechargeable alkaline Zn batteries. This in situ 
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Figure 5. The influence of electrode roughness on Na electroplating. (A) A schematic illustrating the proposed influence of surface 
roughness on Na electrodeposition. (B) Liquid cell TEM imaging of Na plating on a sharp tip of the Ti current collector electrode. (A and 
B) Reproduced with permission[126]. Copyright 2020, Elsevier.

Figure 6. Gas evolution during Na electrostripping in the carbonate electrolyte. (A) Liquid cell TEM imaging of the Na plating and 
striping process. (B) Liquid cell HADDF-STEM imaging of the Na stripping process and corresponding cartoon illustrations. (A and B) 
Reproduced with permission[53]. Copyright 2023, Royal Society of Chemistry.

electrochemical experiment was conducted in a static electrolyte condition under a high current of 4 and 
5 μA, equivalent to around 160 mA/cm2 and 200 mA/cm2 calculated from the active electrode surface area. 
What is more, to avoid gas generation at the counter electrode, they also coated a layer of Zn on the Pt 
counter electrode via vacuum deposition beforehand. Similar work was reported by this group later using 
the same experimental setup at lower current densities of 20 mA/cm2 and 40 mA/cm2 but with a modified 
potentiostat system that completely isolated the electrodes from the potential of the TEM column, achieving 
more reliable electrochemical data[136].

The evolution of Zn dendrites is shown in Figure 7A. Clear hexagonal Zn facets formed on the tip of the Pt 
electrode right after the electrochemical deposition started. With prolonged plating, needle-like Zn deposits 
were found to precipitate at the edge of the former facets, forming branch-like or seaweed-like structures at 
the end. A mechanism of such Zn dendrite formation was proposed by the authors, as given in Figure 7B. 
As Zn nuclei form and grow into larger hexagonal planar crystals, Zn-ions are consumed, and their 
concentration decreases from the centre of nucleation, resulting in a concentration gradient of Zn-ions 
surrounding the Zn deposits. This gradient favours nucleation and growth from the tips, which produces 
the branched Zn dendrites.
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Figure 7. Zn dendrite formation. (A) Zn electrodeposition to a Pt working electrode from aqueous ZnSO4 electrolyte. (B) Schematic 
illustrating the changing morphology as Zn deposition advanced. (A and B) Reproduced with permission[70]. Copyright 2021, Elsevier. 
(C) Electrostripping of deposited Zn dendrites, leaving behind isolated dead Zn. Reproduced with permission[137]. Copyright 2022, 
Elsevier.

Recently, Huang et al. further investigated the Zn plating/stripping and dendrite growth mechanisms in 
modified electrolyte systems[137]. They first presented a typical formation process of Zn dendrite and dead 
Zn in a wildly used 2 M ZnSO4 mild aqueous electrolyte. The dendrite issue was verified, and a significant 
amount of dead Zn was observed left on the Pt electrode [Figure 7C].

MnSO4 additive and the Zn(CF3SO3)2 electrolyte have both been previously reported to be effective in 
optimising Zn ion batteries, of which the effects are generally considered to act on the cathode side[138-141]. To 
explore their effects on the Zn metal anode, dynamic Zn plating/stripping behaviours in the above two 
electrolytes were also studied. With Mn-ions in the electrolyte, nearly no dendrite-like Zn deposits were 
visible. Interestingly, some spherical particles were found to form and disintegrate around the Pt electrode 
during cycling. These particles were identified as insoluble Mn-based compounds triggered by the change in 
the pH value due to hydrogen (H2) evolution. It was claimed by the authors that these spherical particles 
mechanically regulated the flow of ions and thus inhibited dendrite growth. As to the observation in the 
Zn(CF3SO3)2 electrolyte, the Zn deposition was much more uniform and homogenous, and no obvious H2 
evolution happened, consistent with its superior performance in the coin cell test.

Magnesium batteries
Mg-ion batteries have gained wider research interest recently as one of the candidates for next-generation 
batteries[142-145]. This is primarily attributed to their ultrahigh theoretical volumetric capacity, as the Mg metal 
anode is of a volumetric capacity of 3,833 mAh cm-3 due to the divalent charge of the Mg-ion. Furthermore, 
Mg is also a non-toxic and earth-abundant element, which endows it with huge potential in future 
applications. Unlike Li batteries, Mg batteries are usually predicted to offer dendrite-free phases due to the 
higher potential to move Mg active species from the electrolyte bulk salt to the metal surface[146]. This 
prediction was verified by Wu et al. on both Ti and Au electrodes in the Magnesium Aluminium Chloride 
Complex (MACC) electrolyte, where MgCl2 and AlCl3 salts were dissolved in tetraethylene glycol dimethyl 
ether (TEGDME)[147]. From the in situ imaging evidence of Mg deposition [Figure 8A], it was found that a 
uniform Mg film was deposited on the electrode. This result has confirmed the intrinsic tendency of non-
dendritic growth of Mg batteries, while this has turned out not to apply to all conditions in later 
studies[148-150].

Later, Singh et al. reported an observation of stable deposition and dissolution behaviour of Mg-ions in an 
electrolyte of Mg monocarborane (MMC) in tetraglyme (G4)[151]. Unlike previous TEM results, an SEI layer 
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Figure 8. Mg and Ca electrodeposition. (A) Non-dendritic Mg electroplating. Reproduced with permission[147]. Copyright 2017, Springer 
Nature. (B) Ca dendrite formation from Ca(BH4)2 in THF electrolyte under high current density. Reproduced with permission[54]. 
Copyright 2020, American Chemical Society.

and unique Mg morphologies were discovered in the operando STEM analysis, which enabled continuous 
cycling without internal shorting. This stable SEI structure was claimed to be promising in the further 
practical application of metallic Mg anodes.

Calcium batteries
Ca batteries are also among the more promising future battery systems, with a relatively high theoretical 
capacity (2073 mAh cm-3) and rich abundance on the Earth[152-154]. Recent progress in Ca electrolyte design 
has demonstrated the potential for Ca batteries to perform continuous cycling under mild conditions[155-157]. 
However, research on Ca batteries is still at a very initial stage, and the plating and stripping behaviour of 
Ca is still unclear. Recently, Pu et al. systematically studied the influence of the current density on the Ca 
plating/stripping processes in an electrolyte of 1M Ca(BH4)2 dissolved in tetrahydrofuran (THF)[54]. The 
morphologies of Ca deposits showed a high current-density dependence, as shown in Figure 8B, 
transforming from globular to dendritic shapes when the current was increased from 1 to 100 mA/cm2. 
Interestingly, the sharp tips of Ca dendrites were found to expand into globular structures, as indicated in 
the yellow box. This “dendrite tip blunting” phenomenon potentially indicated a decrease in the local 
current density at the tips, which was suggested to be a consequence of the substantial increase in the 
plating surface area and the uneven charge distribution.

Metal-air batteries
Compared to the aforementioned metal-ion batteries, of which the energy storage is generated by the redox 
reaction of active transition metal oxides at the cathode, the metal-air batteries possess exceptionally high 
theoretical energy density, as they instead rely on cathode oxygen reduction with air harvested from the 
atmosphere[158-161]. This also endows them with ideal features, such as low cost and safety[162]. A series of 
metal-air battery systems have been developed, including Li[163,164], Na[165,166], K[167], Mg[168], Al[169], Zn[170,171], 
Fe[172], etc.

Li-O2 batteries have been intensively studied over the past decades, which offer a theoretical energy density 
of 3,458 Wh/kg, based on the weight of the discharge product Li2O2

[163,164]. However, the Li-O2 batteries have 
suffered from a number of technical problems, such as limited practical energy efficiency[173], poor cycle 
life[174,175], low rate capability[176], and the noteworthy asymmetry between charging and discharging 
processes[164,177]. Various attempts have been made to diagnose the chemical mechanisms during discharging 
(the oxygen reduction reaction, ORR), charging (the oxygen evolution reaction, OER), and the origins of 
the severe parasitic reactions that occur[178-181].
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Kushima et al. first reported the observation of the asymmetry in the morphological evolution of Li2O2 
between charging and discharging in the electrolyte of LiTFSI in DMSO with the help of the in situ liquid 
cell TEM[182]. As shown in Figure 9A, the Li2O2 dendrites grew at the Li2O2/electrolyte interface in 
discharging while they decomposed from the root at the Li2O2/current collector interface. This tendency 
weakened the adhesion of Li2O2 to the current collector and reduced the contact area, contributing to the 
observed large overpotential. The detached insoluble Li2O2 fragments were also seen to be swept into the 
electrolyte upon minute flow agitations during cycling, which would be impossible to capture via traditional 
ex situ characterisation methods.

The problem of low practical capacity of the Li-O2 batteries is closely related to the premature passivation of 
the air electrode caused by the formation of an insulating layer at the electrode, consisting of Li2O2 and 
other side reaction products[183,184]. Redox mediators are exploited to mitigate this problem, which can 
generate stable and soluble intermediate products, thus inducing the discharge process in the solution phase 
instead of on the electrode surface[185,186]. Several in situ qualitative and quantitative characterisation methods 
have been applied to reveal the roles of various redox mediators[179,187,188]. The effect of the redox mediator 
tetrathiafulvalene (TTF) in the electrolyte of 1 M LiClO4 dissolved in DMSO was investigated via in situ 
liquid cell STEM by Yang et al.[189]. It was found that the TTF did not alleviate the formation of a solid Li2O2 
phase during discharging, but it did function as an effective charge-transfer agent to promote the 
decomposition of the Li2O2 on charging. Later, Lee et al. reported the formation process of Li2O2 particles in 
the presence of 2,5-di-tert-butyl-1,4-benzoquinone (DBBQ) as the redox mediator[190]. It was directly 
observed that the Li2O2 particles formed in the solution phase via a two-step pathway. The particles first 
followed the lateral growth into a disclike shape and then grew vertically along the peripheral region, 
forming a toroidal morphology.

As mentioned above, the Li-O2 system has intrinsic limitations in terms of efficiency due to parasitic 
reactions on the interfaces between the discharge product Li2O2 and both the electrode and the 
electrolyte[177,183]. Na-O2 batteries are considered as a promising alternative due to better energy efficiency 
and presumably more limited side reactions, as the discharge product is normally Na superoxide (NaO2), 
which is more stable[191,192]. Recently, Lutz et al. investigated the real-time nucleation and growth of NaO2 in 
glyme-ether electrolytes for the first time[193]. As shown in Figure 9B, a solution-mediated nucleation process 
of the NaO2 cubes was observed during reduction and the following oxidation process. It was identified that 
the growth process consisted of an initial incubation period (at 5 s), during which a cathodic current 
corresponding to the electrochemical formation of soluble NaO2 was measured, but no product was seen on 
the electrode. This observation provided conclusive evidence that the NaO2 did not follow the surface-
directed growth. It was also found that a parasitic thick shell formed on the cube surface, isolating the NaO2 
cubes and passivating the electrode. This partially explained the reasons for the low efficiency during charge 
and the poor cyclability. It is worth mentioning here that the authors distinguished the thickness evolution 
of the parasitic shell via contrast filtering, which implied an efficient method to better analyse data obtained 
from in situ liquid cell TEM experiments.

CONCLUSION AND OUTLOOK
In situ liquid cell TEM occupies a unique role in allowing researchers to directly visualise nanoscale 
dynamic battery mechanisms that occur when cycling electrodes in liquid electrolytes, allowing for high 
spatial resolution, real-time imaging, high sensitivity contrast toward sample density, and the ability to 
study a wide range of candidate electrolytes. This combination of advantages is not currently achievable 
with any other technique. It has allowed for new perspectives into battery degradation behaviours, 
particularly in terms of our understanding of dendrite growth, SEI layer formation, and other 
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Figure 9. Understanding oxide formation for Li-O2 and Na-O2 batteries. (A) Li2O2 deposits forming and dissolving during cycling. 
Reproduced with permission[182]. Copyright 2015, American Chemical Society. (B) NaO2 particle growth and nanocube formation. 
Reproduced with permission[193]. Copyright 2018, American Chemical Society.

electrochemical properties. Its ability to capture morphological and structural evolution endows researchers 
with a direct and straightforward tool to gain knowledge of the battery behaviours during cycling.

A practical challenge with liquid cell TEM experiments for studying battery materials is the difficulty in 
preparing suitable samples. The introduction of desired electrode materials on the chip is hindered by the 
fragile membranes and the technical difficulty in using compatible pre-deposition techniques. There are 
several approaches for preparing suitable chips, including controlled deposition via a nano-pipette from a 
scanning electrochemical cell microscope (SECCM), electrophoretic deposition from a suitable solution, or 
by functionalisation of the SiN window to make it "sticky" toward the target sample material[194,195]. 
Lithographic patterning and masking is another approach for ensuring that the target material only coats 
the working electrode and thus avoids the risks of short circuiting.

In addition to the challenges from the fabrication of the cell chips for in situ liquid cell TEM, there are also 
intrinsic limitations of liquid cell experiments. The correlation between the observed processes in the in situ 
TEM and the bulk battery performance is often difficult, as the electrochemical behaviours and mass 
transport are not equivalent due to very limited space within the liquid cell setup and thin-cell 
geometry[196,197]. As a result, the open circuit potential can be less stable than in conventional electrochemical 
cells, and the ionic concentration gradients may not be comparable either. The influence of the electron 
beam can also cause issues in collecting accurate electrochemistry, with the beam electrons undergoing 
elastic and inelastic interactions with the sample, with the latter scattering events generating low-energy 
secondary electrons that can go on to cause radiolysis, heating, and charging of the specimen. Therefore, 
electrochemical conditions within the liquid cell setup can be difficult to keep stable and reproducible for 
each reaction cycle, which makes obtained results less comparable to "lab bench" experiments. The high-
energy electron beam can markedly alter the electrochemical behaviour and reaction kinetics of samples. 
For example, a recently published work systematically studied the effect of the electron beam on solid 
electrolytes by in situ open cell TEM, where delithiation of solid electrolytes was activated by a charging 
effect from the electron beam[198]. The issue of the confined sample volume and the influence of the beam 
make it challenging for the in situ liquid cell TEM technique to fully imitate the working conditions of real 
batteries.
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Figure 10. Current challenges and outlook of the future application of in situ liquid cell TEM. Reproduced with permission[69,199]. 
Copyright 2014, American Chemical Society.

Looking to the future, improving the imaging resolution of liquid-cell TEM is still of primary importance. 
One practical way is to reduce the thickness of the liquid cell and thereby reduce the scattering of the beam 
either by decreasing liquid layer thickness, reducing window thickness, or alleviating window bulging 
(Figure 10 - "Resolution"). For example, graphene-windowed environmental cells have been successfully 
designed, which could provide an atomic resolution if paired with a sufficiently thin liquid[199,200]. The use of 
low-dose imaging and/or controlled dose[201] and other advanced electron microscopy techniques, such as 
aberration correction TEM, pixelated detectors (“4D STEM”), or sub-sampling, can help to reduce the 
radiation damage and improve the image resolution and contrast. Beyond improving the spatial resolution, 
the future direction of in situ liquid cell TEM should aim to be more comprehensive, multifunctional, and 
cross-correlative. As discussed in the prior paragraph, new techniques for controllably mounting relevant 
electrode materials need to be devised to meet the demands of battery research of interest and devising ways 
of modifying the windows and/or electrode to facilitate higher resolution experiments (Figure 10 - 
“Fabrication”)[194,195]. In situ liquid cell TEM should be integrated and correlated with other powerful 
complementary techniques, such as electron diffraction[69], X-ray spectroscopy[202,203], etc., either using the 
same liquid cell setup or by other ex situ means (Figure 10 - “Combination with other techniques”). 
Advances in computational modelling and data analysis techniques will enable more efficient and effective 
analysis of the vast amounts of data generated by in situ TEM experiments (Figure 10 - “Data analysis”)[204]. 
A significant problem across in situ characterisation is how to contend with the vast datasets that these 
techniques produce. Application of artificial intelligence (AI) tools to scour the collected data for 
correlations and features of interest would bypass the typical manual interpretation stage of experimental 
flow, which can be time-consuming and subjective, and would allow us to better handle these large datasets.

Based on continuing improvements in experimental and technical capabilities, in spite of these challenges, 
we believe the in situ liquid cell TEM will continue to play an important role in future battery research by 
providing insights into the dynamic behaviour of batteries under realistic operating conditions.
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