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Abstract
Plastic pollution in aquatic ecosystems has been identified as a growing global water pollution threat that is 
negatively impacting water quality and, as a result, affecting the health of humans, aquatic animals, and wildlife. 
Therefore, it presents a global environmental catastrophe that requires immediate attention. Plastics in water (in 
their different forms, macro-, meso-, micro-, and nanoplastics) are contaminants of emerging concerns that have 
since evolved to be a global environmental threat. Despite increasing levels of pollution in aquatic ecosystems, 
there are insufficient monitoring data to evaluate the extent of the catastrophe. Traditional methods of monitoring 
plastics in water are constrained by high sampling costs, intensive labor, and limited temporal and spatial coverage, 
which results in limited monitoring data. Thus, insufficient monitoring data limit our understanding of the true 
quantities and persistence of plastic particles in aquatic ecosystems, as well as the extent to which they impact the 
aquatic environment. There is increasing availability of free big geospatial data (amounting to petabytes/day) from 
satellite sensors for potentially monitoring plastics. This provides a possible solution to these challenges by 
minimizing the fieldwork required and therefore reducing the costs and sampling time. The study purpose of this 
review is to analyze advances in emerging technology such as the use of satellite sensors to monitor the 
occurrence of macro- and microplastics in freshwater, ultimately aimed at creating new operational monitoring 
solutions. This review: (1) examines the literature to identify trends, accomplishments, and limitations of using 
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satellite data to monitor plastics in water; (2) identifies and compares traditional, and machine and deep learning 
satellite image classification methods for monitoring plastics in water; and (3) identifies research gaps and 
summarizes future perspectives and recommendations to improve monitoring methods.

Keywords: Plastic contaminants, satellite, machine learning, deep learning, classification, aquatic ecosystems

INTRODUCTION
Several studies demonstrate the ubiquitous occurrence of plastic debris as a worldwide contaminant or 
pollutant in water ecosystems[1-6]. The United Nations Environment Program 2017 (UNEP 2017) estimated 
that plastic waste constitutes approximately 80% of the total waste deposited in the oceans; this translates to 
80 million tons per annum[7-9]. The negative global economic impact of plastic pollution on downstream 
industries such as aquaculture, tourism, wildlife, and the cost of cleanup has been calculated to be 6-16 
billion USD annually[1,7,8]. Aquatic species get trapped and entangled in plastic webs, which hinders their 
mobility, and all forms of plastics in seafood and drinking water are ingested by wildlife[7,10]. Additionally, 
most plastic products, including those certified as bisphenol A-free plastics that find their way into the 
aquatic bodies, pose potential risks. The effects of leaching chemical components of plastic can have 
estrogenic activity (EA)[11]. Therefore, plastic pollution in water is a source of endocrine-disrupting activity 
chemicals that are hazardous to human health[12,13]. Most researchers have highlighted plastic pollution in 
water as a twenty-first-century problem of contaminants of emerging concerns (CECs) in the coastal zones, 
terrestrial, riverine, and oceanic ecosystems[14-17].

Plastic waste emissions into aquatic ecosystems are predicted to increase three-fold by 2040 if there are no 
significant interventions put in place[18]. Despite these increasing trends of plastic pollution in water, water 
quality monitoring data on plastic pollution are insufficient[19,20]. Most aquatic plastic pollution monitoring 
data are obtained through numerical modeling and in situ sampling laboratory-based methods (e.g., micro 
Fourier transform infrared (μ-FTIR) spectroscopy, attenuated total reflection-Fourier transform infrared 
(ATR-FTIR) spectroscopy, μ-Raman imaging microscope, microscope, energy-dispersive X-ray 
spectroscopy (EDS), and scanning electron microscope (SEM))[21,22]. Numerical modeling[23] has the 
advantage of high spatial coverage, although its drawbacks include low sampling frequency and design faults 
that may result in under- or overestimation of the true values of plastic concentrations[24]. Traditional 
laboratory approaches are precise and accurate; however, they are constrained by manual sampling, which 
is laborious, time-consuming, and costly[25]. Additionally, sampling only provides discrete units of 
information with limited coverage of the space-time continuum, which is not ideal for monitoring 
quantities such as microplastics with highly dynamic concentration distributions; geolocations in close 
proximity can have concentration variances of greater than three orders of magnitude within a short period 
of time[26]. The highlighted weaknesses of these methods due to the effects of complex plastic transport 
mechanisms create a fundamental knowledge gap, which renders these methods inadequate to resolve 
global plastic pollution in aquatic systems[26-28]. Satellite remote sensing for the detection of plastic litter in 
water is still at the research and development stage, albeit there is huge promising potential to offset the 
drawbacks highlighted for the other methods[29].

Satellite sensors, including optical, synthetic aperture radar (SAR), hyperspectral, and thermal infrared 
(TIR) sensors, can either monitor plastics directly or simulate plastic concentrations based on proxy 
measurements[24]. Satellite observations provide high spatial resolution and long time series data that fill in 
missing values in all pixels, thus bridging data gaps between sparse sampling points and providing a 
uniform survey[30-32]. Furthermore, satellites acquire images over physically inaccessible sampling sites due to 
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physical barriers, and sampling is not interrupted by hazardous or extreme weather conditions such as 
typhoons[30-32]. Due to their design, satellite sensors generate large volumes of complex and high-
dimensional spectral data because of long time series and high spatial/spectral/radiometric/temporal 
resolutions tailor-made for their application[33,34]. As a result, it is challenging or impossible for human 
brains and traditional statistical methods to perform pattern analysis on satellite data in order to establish 
relationships between variables of interest. Accordingly, machine and deep learning (ML/DL) techniques 
have found useful applications in monitoring plastic pollution in aquatic systems[35-43]. Artificial intelligence 
(AI)-processed satellites are transforming the manner in which experts study plastic pollution in global 
aquatic ecosystems, and they are proving to be a new powerful tool in the fight to protect water systems 
from pollution.

THE SCOPE OF THE STUDY
This review article adopts the traditional critical literature review approach to analyze theories and 
hypotheses through critical evaluation of results obtained from different methodologies for research 
conducted in different studies[44]. In addition to the traditional approach, a bibliometric approach that 
statistically analyzes the performance of the selected journal articles using different citation metrics is also 
applied[45]. No previous studies using bibliometric analysis to explore research activity and trends of plastic 
pollution monitoring in aquatic ecosystems using satellites have been published. Micro- and nanoplastics 
are considered contaminants of emerging concern (CECs)[46]. Mechanical abrasion and solar ultraviolet 
radiation (UV) frequently act on the surface of large plastic particles floating in water, causing deterioration 
and the release of micro- and nanoplastics into the environment[47,48]. Therefore, plastics in water exist in 
different shapes and sizes and are made of different polymeric compositions[49]. It is critical to monitor all 
plastics in their various shapes and sizes because they are byproducts of macro- and mesoplastic 
degradation. There is a real possibility that satellite sensors can identify all forms of plastics in their 
aggregated forms, even though their sizes are not distinguishable using the same method. As a result, the 
scope and focus of this study are to review the literature on using satellites to monitor macro-, meso-, 
micro-, and nanoplastics in water. Furthermore, hyperspectral, thermal imaging, and multispectral sensors 
have been successfully applied to monitoring macroplastic debris[15,16,29,35-42], and researchers recently 
discovered that SAR can be used for monitoring microplastics, a research domain still in its infancy[24]. The 
significance of monitoring global plastic regardless of size, occurrence, source, and location is emphasized 
by many researchers[42,50].

CONTRIBUTIONS AND PREVIOUS REVIEWS OF RELATED WORK
The purpose of this review is to develop and test hypotheses that answer the following abstract questions:

-What factors affect the performance of ML/DL classifiers applied to identify plastics in water using satellite 
data by evaluating the different methodologies used to achieve certain results? This particular question is 
formulated to close the evidence gap arising from contradictory evidence-results highlighting model 
performance inconsistencies in different studies. Hypothesized factors in this review include satellite type 
and classifier model. Notwithstanding the fact that image prepossessing such as geometric, radiometric, and 
atmospheric correction methods also improve and affect the accuracy of predictions, it is difficult to 
establish how they contribute to model performance because they are not consistently reported in literature. 
Therefore, this review does not consider the analysis of pre-processing methods towards model 
performances.

-Given the fact that this research territory is still in its infancy, how impactful has it been within the 
scientific research community? Bibliometric measures such as journal impact factor (IF), citation index, and 
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research funding attraction are used to measure the quality of scholarship in this field.

-A broader and general research question is also posed. Since this is an emerging and novel field, what social 
impact is the research having in different communities?

Comparable reviews were published in this field by Maxemenko et al. (2019)[29], Martinez-Vicente et al. 
(2020)[51], Farré (2020)[52], Mace (2012)[53], and Topouzelis (2021)[54]. Maxemenko et al. (2019)[29] reviewed an 
integration of various remote sensing and in situ observations with the objective of optimizing and 
designing integrated marine debris observing system (IMDOS). Martinez-Vicente et al. (2020)[51] evaluated 
theories and methodologies to develop a generic protocol useful in observations and formulation of design 
specifications for satellite sensors of the same observation requirements. Farré et al. (2020)[52] compared 
different remote and in situ devices (biosensors, sampling and laboratory analysis, sensors, satellite, and 
aerial observations) for monitoring CECs. Mace (2012)[53] reviewed technologies, processes, issues, and 
options in marine debris monitoring with a specific interest in multistage modeling, particularly the 
improvement of the Ghost Net procedures. The scope and orientation of all these reviews followed a similar 
traditional way of literature reviewing for analyzing multi-source remote sensing techniques and aimed to 
achieve a similar objective of improving data quality through multi-sensor data fusion. Although the review 
by Topouzelis et al. (2021)[54] follows a similar approach to the other studies, its scope was confined to 
optical remote sensors only. Our research used a detailed PRISMA-compliant literature review and a 
bibliometric approach focusing on spaceborne sensors for monitoring plastic pollution in diverse water 
ecosystems. Such a deep evaluation allows more deductions to be made with some degree of statistical 
measure, and this marks the uniqueness of our research from the previous reviews.

METHODOLOGY
Data source
A comprehensive literature search was performed online in three different databases: Scopus, Web of 
Science (WOS), and Knovel. The key search terms were “satellite remote sensing”, “plastic pollution in 
water”, and “satellite data for water quality classification”. A detailed search strategy is presented in Figure 1. 
The search conducted was not time filtered to allow an optimized retrieval of all the literature available in 
the specific databases. A one-day search was performed on each database to avoid bias due to daily database 
updates. Only original research, review, conference and credible scientific report articles which were 
published in peer-reviewed journals were considered for selection.

Systematic literature review-based process search strategy
A systematic search for peer-reviewed literature published in English for journals and conference 
proceedings indexed in Scopus (http://www.scopus.com/ accessed May 2022), web of science (WOS) 
(https://www.webofscience.com/wos/alldb/basic-search accessed May 2022), and Knovel (Knovel, guest 
accessed May 2022) was performed. The selection process was based on the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA)[22] guiding principle method that details the eligibility for 
the selection of literature and is laid out and explained in Figure 1. The following Boolean string search 
query was used: TITLE-ABS-KEY (Plastics) AND TITLE-ABS-KEY (Microplastic) AND TITLE-ABS-KEY 
(Satellite) OR TITLE-ABS-KEY (Water pollutants) OR TITLE-ABS-KEY (Machine learning) or TITLE-
ABS-KEY (Water quality).

RESULTS
An unfiltered preliminary search based on the Boolean string search query yielding 3249 peer-reviewed 
publications was conducted, which showed that no significant literature was published before 2009. 

http://www.scopus.com/
https://www.webofscience.com/wos/alldb/basic-search
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Figure 1. Detailed step-wise process for illustrating the implementation of PRISMA as conducted in this study[22].

Afterwards, there was a moderate increase in the number of published articles across all three databases. In 
total, 3249 articles were retrieved from all three databases; Scopus, WOS, and Knovel contributed 1709, 1247 
and 293 articles, respectively [Figure 2]. The results visualized by the stacked bar charts illustrate a gentle 
increase in the research trends, with a significant number of publications being noted since 2010. The 
increasing trend can be attributed to a solid supporting policy framework being offered to researchers 
through the launch of Sustainable Development Goals (SDG) by the United Nations (UN) Conference in 
Rio De Genero, Brazil, in 2012[55]. Additionally, the increasing availability of geospatial big data from sensors 
stored and accessible in free open access portals provides a cheap and convenient way to conduct 
research[56].

To complement the initial stage of literature search, a word cloud image visualization for texts used in the 
35 important references was generated, in which the individual word size indicates the frequency of its 
appearance in the selected references. The following words appeared frequently and were visualized in 
various colors and bigger font sizes (in no specific order): marine plastic debris, plastic polymers, Sentinel-2, 
World View (WV), machine learning, and deep learning [Figure 3]. The word cloud technique was applied 
for quick identification of research themes in different papers and made the literature selection process 
simple for the reviewing process.

The geospatial distribution of study locations
After the final selection of literature in Stage 4 [Figure 1], the geospatial distribution [Figure 4] pattern of 
the various study areas in the selected published peer-reviewed journals is displayed to visualize how 
frequently satellite data have been used to monitor plastic pollution in different parts of the world. Through 
a bibliometric analysis of author affiliation and research study area, a biased geospatial distribution of 
research is observed, showing that much of the research is being conducted around the European Union 
(EU) relative to other regions. Such a bias may result in knowledge gaps and inconsistencies; the causes of 
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Figure 2. Stacked column charts showing the trends of publications retrieved from the three citation and abstract databases.

Figure 3. Word-cloud visualization presentation of research keywords that appear in 35 scientific papers relevant to the review topic.

Figure 4. Map of study locations and estimated accumulation of the five major plastic gyres encircled in red- and yellow-colored 
circles[59] and the geospatial distribution of the number of publications involving satellites and artificial intelligence.
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this might be because of funding deficiencies and/or technological gaps in areas with limited reporting. This 
finding is corroborated by research carried out by Evans and Ruf (2021), who highlighted the fact that there 
is plastic under-sampling in the global south[24]. The global distribution pattern of plastic accumulation 
shows higher levels deposited in the North Pacific and the South Atlantic Gyres, as well as the 
Mediterranean Seas[57-59].

LEACHING AND SORPTION OF SECONDARY POLLUTANTS BETWEEN PLASTICS AND 
WATER 
Plastic litter is a product of polymers mixed with additives; these are chemicals added to improve quality in 
terms of their performance, functionality, and durability. The term additives refer to antioxidants, anti-static 
agents, colorants, coupling agents, curing agents, flame retardants, foaming/blowing agents, heat stabilizers, 
impact modifiers, lubricants, nucleating agents, plasticizers, preservatives, processing aids, and UV 
stabilizers[60]. The process of thermo-oxidative degradation of plastic debris in water significantly contributes 
to high levels of dissolved organic carbon (DOC) in water systems[61], along with plastic additive 
contaminants. On the one hand, plastics resident in water can represent a solid-liquid leaching system[62] of 
plastic additives such as phthalates (PAEs), organophosphate esters (OPEs), and Bisphenols (BPs)[63]. The 
bulk of these plastic additives leached into water systems are endocrine disruptors with potential 
carcinogenic effects in human beings[63,64].

On the other hand, plastic debris in different zones of the water column enables a solid-phase extraction 
(SPE), resulting in the sorption of contaminants out of the water column and concentration of them onto 
the plastics surface. For example, pollutants in water from diffuse and point source pollution, such as 
polychlorinated biphenyls (PCBs), organochlorine pesticides, and polycyclic aromatic hydrocarbons 
(PAHs), were detected in plastic samples collected from the North Pacific Gyre[65]. The contaminants 
concentrated on the surface of plastics (i.e., PCBs, PAHs, organochlorine pesticides, and nonylphenol) are 
classified as persistent organic pollutants (POPs) and hydrophobic organic compounds (HOCs)[66,67]. These 
are molecules with higher hydrophobicity; therefore, their affinity for hydrophobic plastic is greater relative 
to their affinity for sediments and water. This favors their diffusion from the water column onto the plastic 
surface, stimulating the sorption of HOCs and POPs by plastics[66,67]. After the sorption process, the solid 
phase plastic sorbent is likely to float on the water surface and will be easily mistaken for food by aquatic 
species. This means that the subsequent links in the food web ultimately expose humans to similar 
hazardous HOCs when they consume seafood. Therefore, the two ways in which plastics in aquatic systems 
can transport pollutants are leaching and sorption of contaminants.

OVERVIEW OF MONITORING METHODS FOR PLASTICS IN THE WATER 
TRANSPORTATION PATHWAY
Research on plastic pollution in water systems is expeditiously developing, as are the methods used in 
monitoring this type of pollution. The methods to characterize and quantify plastics in the aquatic 
environment include visual inspection[68-72], harmonized sampling and analytical laboratory 
techniques[22,73,74], modeling[75-78], and remote sensing[35-43,79]. Laboratory methods cover a wide range of 
techniques that include simple and rapid procedures such as the use of physical characteristics, i.e. specific 
density and color[70]. More complex analyses include imaging spectroscopy from optical microscopy, 
scanning electron microscopy, and fluorescence microscopy[80-82]. Spectral analyses are additional complex 
analytical techniques that include Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, 
pyrolysis gas chromatography-mass spectrometry, laser-induced breakdown spectroscopy (LIBS), and 
energy dispersive X-ray spectroscopy[68,83,84]. Numerical modeling is one of the quantitative methods for the 
evaluation of fluxes and concentrations of microplastics based on field data. Fluid mechanics/sediment 
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transport/process-based dynamic models include the INCA microplastics model[85-87], Delft3D-FLOW[85-87], 
and Full Multi[85-87]. Remote sensing approaches include hyperspectral cameras[88,89], hyperspectral 
radiometry[90,91], thermal infrared imaging (TIR) imaging[92], aerial and underwater vehicles[52,93], video 
imaging[94,95], and satellites[36,39,51,54,96-98].

Satellites application for monitoring aquatic macroplastic debris 
The major component of plastic debris in water is a mixture of multiple polymer sources that include 
polyethylene (PE), polypropylene (PP), polystyrene (PS), polyesters (PEST), polyamide (PA), acrylics, 
polyvinyl alcohol (PVA), polyvinyl chloride (PVC), polyethylene terephthalates (PET), synthetic rubber 
(SR), and polyacrylonitrile (PAN)[98-101]. These polymers have unique spectroscopic features defined by their 
chemical composition. Generally, hydrocarbon-based plastic polymers exhibit high absorption 
characteristics in the infrared channel as a result of the hydrogen-carbon bonds (C-H) of specific overtone 
vibrational frequency observable in the IR region[101]. Therefore, researchers have taken advantage of plastic 
polymers’ optical activity in the IR region to map and quantify plastic litter using NIR[102], SWIR[103], and 
TIR[92] bands from satellite images. These spectral characteristics are distinct from the spectral features of 
other debris components such as vegetation, sediments, and metals, making it possible to discriminate 
plastic particles from other debris; for example, researchers have recently been able to identify plastics 
entangled in hyacinth plants[78]. Pre-processing methods such as atmospheric correction (AC) and sun glint 
removal play an important role in improving the quality of reflectance data for plastic signals and therefore 
help return higher identification accuracy[104,105]. ACOLITE and Sen2Cor[105,106] AC methods are commonly 
applied in the pre-processing of most Sentinel-2 MSI water surface reflectance products in various studies. 
In aquatic plastic waste monitoring, Sentinel-2 and WV are the most commonly used satellites, and the 
most applied pre-processing algorithms are those that are tailor-made for these two satellites[35,36,38,40,41,107-115]. 
Although applied in rare cases, the neural network (NN)-based Case 2 Regional Coast Color processor 
(C2RCC) was applied to pre-process Sentinel-2 MSI for the detection of plastic debris[35]. Some studies used 
analysis ready data (ARD) products pre-processed at Levels 1, 2, and 3[23,42,116,117]. Themistocleous et al. 
(2020)[96] declared not to have used any pre-processed data, while other studies did not disclose their image 
pre-processing methodologies[37,43,93,104,118-120]. There is evidence that AC pre-processing of images improves 
the quality of water surface reflectance products[118]; given this background of inconsistent application of AC 
in image preprocessing, it is difficult to compare how the different AC processing algorithms applied in the 
various studies affect the retrieval of plastic debris in aquatic ecosystems.

Sentinel-2 MSI is the most frequently used satellite sensor for monitoring plastic debris in 
water[35-38,40,41,43,96,103,104,107-114,118,119,121], followed by WV[39,42,43,114,115,120,122,123] and SAR[24,107,116,118,121,124] used in 20, 9, and 
6 studies, respectively [Figure 5]. Landsat-8 OLI is in fourth place, tied with PRecursore IperSpettrale della 
Missione Applicativa (PRISMA), which have both been used twice[41,116,125,126], while the remaining satellites 
were only used once[41,94,121,123,124]. Multispectral imager (MSI) sensors on board the Sentinel-2 satellite 
platform (ESA Copernicus), a constellation of twin satellites (S2A and S2B), provides high spatial and 
temporary resolution products, with a significant number of cloud-free satellite images per year. 
Researchers prefer Sentinel-2 because of its 13 bands [ultra-violet (UV) to near-infrared (NIR)] with 
different band-dependent spatial resolution (10-60 m)[118,119]. Very high resolution (VHR) WorldView-2 and 
-3 satellites sensors with four new spectral channels [coastal blue, yellow, red edge (RE), and NIR-2] are 
proving to be effective in aquatic plastic waste monitoring[39,42,43,114,120,121,123]. Some studies used different sensor 
combinations: Kikaki et al.[41], Tasseron et al.[43], Topouzelis et al.[107], Atwood et al.[125], Mathews et al.[121], and 
Davaasuren et al.[124] used a combination of more than two satellite sensors. Kremezi et al.[116] applied 13 
pansharpening techniques to fuse PRISMA hyperspectral band with PRISMA panchromatic band for 
spectral discrimination of plastics from water[116]. In addition, some researchers, including Topouzelis 
et al.[109] and Aoyama et al.[123], combined unmanned aerial vehicles and satellite sensors to monitor plastic 
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Figure 5. Bar charts representing the frequency of references that utilized (A) different classifiers and (B) sensors on different satellite 
platforms used for identifying plastics. Boxplots comparing performances of (C) the different ML/DL classifiers and (D) sensors on 
various satellite platforms used in different studies.

debris in water. Sensor combination/data fusion was applied in several studies to improve satellites image 
quality through optimization of the different sensor characteristics, i.e. spectral, radiometric, spatial, and 
temporal resolutions. With the exception of the listed sensor combinations, the rest of the studies applied 
single sensors. A comparison of sensor performance based on the commonly applied predictive accuracy 
evaluation metric called overall accuracy (OA) shows a comparable median OA performance of both 
Sentinel-2 and WV of around 90% OA, albeit with higher variability in the classification accuracy for 
Sentinel-2 images.

The source of ML/DL model performance variation is influenced by several factors: study area complexity, 
the type of remote sensing data, quality of training samples, input features, classifier, and hyperparameter 
optimization[127]. Several performance evaluation metric approaches such as overall accuracy[35-40,109,119], F1 
score[35,37,38,42,108], Kappa coefficient (k)[35,39,42], intersection over union (IoU)[40], recall[35,37], precision[35,37], 
McNemer p-value[35,108], similarity measure (SS)[116], and correlation coefficient (r)[116] were normally used for 
evaluating the performances of plastic debris classifiers. The OA measure is a good measure for the 
purposes of cross comparison of ML/DL performance for algorithms applied in the same research, in 
different studies of similar research areas, or in different study areas because it is the commonly applied 
evaluation metric in most classification problems.

ML/DL classifiers are gaining popularity over traditional methods such as spectral unmixing and pixel 
matching. Learning approaches based on conventional ML algorithms, including support vector machine 
(SVM)[35-39], random forest and tree-based[35,37,39,42,108], Naïve Bayes (NB)[36,116], K-means[38,126], principal 
component analysis (PCA)[116], linear discriminant analysis (LDA)[39,43], and light gradient boosting model 
(LGBM)[126] have found useful applications in monitoring plastic debris in aquatic ecosystems. In addition to 
the conventional ML methods, simple and deep-neural architectures (NN)[37,40,108,116,119,120] were the 
dominantly applied classifiers. SVM, RF, and NN outperform other plastic debris classifiers based on 
assessing the OA performance evaluation metric [Figure 5]. NN research continues to advance, particularly 
deep NN (DNN), which comprises the common classifiers in the identification of marine plastic debris 
[Figure 5]. Despite all the gains achieved by neural networks (NN) in the field of remote sensing 
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classification, aquatic plastic debris monitoring in water is a novel research area, and researchers have 
reported a common drawback of limited training data for building acceptable models[35-43,96,102,103,106-113,116,118-127]. 
Since SVM and RF are superior classifiers under the conditions of limited data[127-130], in most cases, they 
outperform other classifiers [Figure 5]. Additionally, RF classifiers are well suited for remote sensing image 
classification because of their ability to manipulate high-dimensional tabular datasets[127-131]; this is beneficial 
for hyperspectral data[130,131] and object-oriented methods[132]. On the contrary, NN performance is 
constrained by data limitations due to overfitting problems on smaller training datasets[133,134]. However, it is 
important to highlight that their performance is scalable. In the case of insufficient labeled data, semi-
supervised classification, data augmentation, and synthetic training data are potential solutions[129,135]. The 
OA of K-means, NB, and LDA models were typically less than those of SVM, RF, and NN classifiers.

REMOTE SENSING (R ) FLOATING PLASTIC DEBRIS SPECTRAL INDICES
In plastic detection, multispectral- or hyperspectral-band (as single bands, different band combinations, or
all-band combination/spectral signature) derived band ratios and indices are utilized as classifier input
features. The indices can be categorized into vegetation, water, soil, and floating object indices. Indices input
features tend to increase the plastic selectivity (ability to discriminate the plastic class from other classes
including water, foam, metal, and wooden debris) so that the plastic debris can be determined in simple or
complex mixtures or matrices under a set of given conditions without the matrix effect impacting on
classification accuracy[136,137]. Therefore, spectral indices play a huge role in improving classifier performance
for the identification of plastic debris. This section outlines the theories of different indices used and their
formulae:

i. Vegetation feature spectral indices: Vegetation indices are based on the red and near-infrared reflections
of electromagnetic light, and, theoretically, they are correlated to green vegetation color pigmentation[138-140].
Therefore, normalized difference vegetation index (NDVI) is often applied to monitor blue-green algae and
aquatic weeds floating on the upper layer of the water surface[140,141]. Besides vegetation monitoring, NDVI
combined with other indices such as floating debris index (FDI) has been applied to distinguish marine
plastic litter that possibly consists of accumulated macroalgae (e.g., cyanobacteria and floating invasive
macrophyte species)[16,36]. In aggregation, microplastics promote the growth of algae and later allow them to
aggregate and co-precipitate through adsorption and adhesion processes[141]. This makes NDVI an
important spectral feature in distinguishing aquatic plastic from vegetative debris material, and it is
calculated by measuring the difference between infrared- and red-light reflectance and normalizing it[142], as
shown in Equation 1:

Sannigrahi et al.[35] introduced a novel kernel-normalized difference index (k-NDVI) to eliminate problems 
related to the presumption of linearity in NDVI computations. This is a radial basis function (RBF) 
nonlinear kernel (k)[143,144] for mapping linear NDVI spectral band features into nonlinear ones through 
Hilbert spaces to a high-dimensional feature map[143,144]. The k-NDVI is calculated as follows:

where n, Rrs, NIR, and RrsRED refer to the remote sensing reflectance in NIR and red channels, respectively. 
k is the kernel function that measures the similarity between the two bands, i.e. NIR and red in the case of 

rs
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NDVI. The kernel function k is calculated using the RBF kernel as follows:

where a and b are the two bands in the case of NDVI and σ parameter determines the distance between NIR 
and Red bands. The kernelization is further simplified as:

The fixing of σ parameter is done as follows: σ = 0.15(Rrs, NIR, RrsRED). The σ parameter fixing further 
simplifies the kernelization as follows[35]:

A modified NDVI formulated by reciprocally exchanging Sentinel-2 NIR with the red band remote sensing 
values in the original NDVI formula, termed reversed normalized difference vegetation index (RNDVI), 
was also applied to identify plastic litter in water, and its performance was compared to a customized Plastic 
Index (PI)[96]. The formula for RNDVI is:

Floating algae index (FAI) is an ocean color index based on subtracting a linear base line reflectance 
interpolation of red (645 nm) and SWIR (1240 or 1640 nm) from the reflectance observed at 859 nm 
(vegetation RE)[144]. Researchers have reported the strengths of FAI over the traditional NDVI or EVI 
(enhanced vegetation index) because of its lower sensitivity to changes in observation conditions related to 
atmospheric and geometric properties. This can be calculated using Equation 7:

R’rc, NIR is the baseline reflectance of NIR.

ii. Water feature extraction spectral indices: The applicability of different water feature extraction indices 
derived from satellites in plastic identification is based on the fact that clear water absorbs and reflects light 
in the NIR and green channels of the electromagnetic spectrum, respectively[36,145]. Clear and colored plastic 
matter displays contrasting spectral characteristics to clear water. For example, clear and white plastic 
matter displays higher light reflectance in the NIR region of the electromagnetic spectrum while often 
reflecting flat signals in the RGB channels[54,92,94,106,107,109]. These differing spectral characteristics make plastic 
discernable from clear water using water features extraction indices such as normalized difference water 
index (NDWI)[146], modified NDWI (MNDWI)[147], normalized difference moisture index (NDMI)[148], water 
ratio index (WRI)[149], and automated water extraction index (AWEI)[150], which were investigated for the 
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extraction of surface water from Landsat data. The respective equations are reported as Equations 9-13:

In Sentinel-2 imagery, green = Band 3, red = Band 4, NIR (near-infrared) = Band 8, MIR (middle-infrared) 
= Band 12, and SWIR (shortwave-infrared) = Band 11.

iii. Plastic debris designed spectral indices: Sentinel-2 MSI-based floating debris index (FDI) algorithm was 
designed to identify floating matter on water surface[35]. The basic principle of operation for the FDI 
algorithm leverages the numerical difference existing between NIR and the baseline reflectance of NIR at a 
subpixel level; the baseline is a linear interpolation fitted to NIR-flanking MSI Red Edge 2 (RE2) and SWIR1 
bands. FDI is a modification of the floating algae index (FAI) based on Landsat, Medium Resolution 
Imaging Spectrometer (MERIS), and Moderate Resolution Imaging Spectroradiometer (MODIS)[144,151,152]. In 
the FDI algorithm, the chlorophyll sensitive red band is replaced by the MSI red edge (RE) band positioned 
around 740 nm. This novel index has proved efficient at identifying floating objects relative to NDVI, PI, 
and single band approach[35,36,114]:

where FDI is the floating debris index, R’rc, NIR is the baseline reflectance of NIR, and Rrs, RE2 and Rrs, SWIR1 are the 
remote sensing reflectance of NIR, Red Edge 2, and SWIR 1 bands, respectively.

The plastic index (PI) is another debris identification tailored index applied to model and classify floating 
plastic debris in water[35,96]. PI is a plastic feature extraction input established on the basis of the Rrs in the red 
and NIR spectral regions, which can be calculated as follows:

NIR and red refer to the pixel’s reflectance in the NIR and red spectrum.
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Kremezi et al.[116] proposed three new plastic litter indices centered on the radiance differences between the 
maximum peak height (MPH) of the spectrum and troughs in the VNIR region.

Ri ϵ [749.8, 781, 866, 988.4, 1088.6] nm are the plastic spectra MPHs and RJ ϵ [951].

iv. Hydrocarbon designed spectral indices: These are indices based on user-friendly algorithms for the 
detection of hydrocarbons centered on their noticeable absorption features at 1730 and 2310 nm[153]. Plastics 
are largely hydrocarbons; therefore, hydrocarbon indices in combination with others have been successfully 
applied for the detection of plastic litter in water using hyperspectral images[42]. The following formula can 
be used to calculate the hydrocarbon index (HI)[153]:

Zhou et al.[42] formulated a normalized hydrocarbon index (NHI) on the basis of the HI proposed by 
Kühn et al.[153]. The NHI tends to provide a pronounced curvature at the point λB. Equation 21 shows how 
the NHI is calculated:

RA and λA, RB and λB, and RC and λC are radiance/wavelength pairs for each “index point”, respectively.

All the indices described in this section are tabulated in Table 1, indicating how they were applied in 
different studies.

APPLICATION OF SATELLITES FOR MONITORING AQUATIC MICROPLASTIC 
CONTAMINANTS
Cutting-edge research on global monitoring of microplastic concentration in marine and riverine systems 
was first reported by Davaasuren et al.[124], followed by another groundbreaking research co-authored by 
Evans and Ruf (2022)[24]. Both studies used SAR data to measure surface water fluid mechanics properties 
such as changes in viscosity (μ), surface tension (T), and sea surface roughness (SSR). SAR is an active 
satellite remote sensing system for environmental monitoring, and recently, a few studies confirmed the 
benefit of using SAR for the estimation of water surface parameters, such as surface roughness[24,118,121,124]. 
Many sensor design configurations regarding wavelength, polarization, and incidence angle facilitate the 
discrimination of various water characteristics, e.g. surface roughness, water dielectric constant, and plastic 
waste in water systems[24,118,124]. The manipulation of X-, L-, or C-band for surface water roughness retrieval 
was reported in four studies: from X-band[24,118,121,124] to C-band[24,120,121,124] and L-band[24,118,124]. Plastic debris in 
water experiences microbial disintegration and degradation processes which discharge metabolic 
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Table 1. Studies focusing on the identification of plastic debris in water bodies based on the classification of satellite imagery

Research title Satellite sensor or 
platform Classifying features Classifier(s) AC method(s) Cite 

score
Journal 
IF

Development of automated 
marine floating plastic 
detection system using 
Sentinel-2 imagery and 
machine learning models[35]

MSI FDI, NDVI, PI, k-NDVI SVM and RF ACOLITE and 
Case 2 Regional 
Coast Color 
(C2RCC)

- 7.001

Finding plastic patches in 
coastal waters using optical 
satellite data[36]

MSI NDVI, FDI Naïve Bayes DSF, POLYMER 
and Sen2Cor

59 4.996

Detection of floating 
plastics from satellite and 
unmanned aerial systems 
(Plastic Litter Project  
2018)[106]

MSI & SAR R/G/B/NIR Spectral unmixing Sen2Cor and 
ACOLITE

76 7.672

Remote sensing of sea 
surface artificial floating 
plastic targets with Sentinel-
2 and unmanned aerial 
systems (Plastic Litter 
Project 2019)[107]

MSI Single band Spectral unmixing 
and matched 
filtering

ACOLITE (DSF) 20 5.349

A cloud-based framework 
for large-scale monitoring of 
ocean plastics using multi-
spectral satellite imagery 
and generative adversarial 
network[37]

MSI B, G, R, RE-2, NIR, SWIR1, 
NDVI & FDI

RF, SVM & GAN-RF - 1 3.530

Development of novel 
classification algorithms for 
detection of floating plastic 
debris in coastal 
waterbodies using 
multispectral Sentinel-2 
remote sensing imagery[38]

MSI B, G, R, RE2, NIR, SWIR1, 
FDI & NDVI

K-means, fuzzy c-
means (FCM), 
SFCM & SVR

ACOLITE (DSF) 4 5.349

Investigating detection of 
floating plastic litter from 
space using Sentinel-2 
imagery[96]

MSI NDWI, WRI, NDVI, AWEI, 
MNDWI, NDMI, SR, PI & 
RNDVI

N/A 28 5.349

Remotely sensing the 
source and transport of 
marine plastic debris in bay 
islands of honduras 
(Caribbean Sea)[41]

MSI, OLI, Planet Spectral signature, pixel 
tiles

Pixel matching, 
weighted 
calculations

ACOLITE 22 5.349

Anthropogenic marine 
debris over beaches: 
Spectral characterization for 
remote sensing 
applications[39]

World View-3 Spectral signature Polynomial, linear 
and radial SVM, RF 
and LDA

Atmospheric 
Compensation 
algorithm from 
DigitalGlobe 
(AComp)

 
45

13.85

Coastal accumulation of 
microplastic particles 
emitted from the Po River, 
Northern Italy: Comparing 
remote sensing and 
hydrodynamic modelling 
with in situ sample 
collections[125]

MSI, OLI Spectral signature Dekker’s SPM 
calibrated algorithm

hierarchical 
object-based 
image analysis 
(OBIA)

63 7.001

Applicability of SAR to 
marine debris surveillance 
after the great east Japan 
earthquake[118]

SAR X- and L-bands 
total, diffusive 
disappearance rate; vector 
velocity; local damage 
assessment

Two-dimensional 
constant false alarm 
rate (2D-CFAR)

- 14 4.715

A learning approach for 
river debris detection[40]

MSI FDI, NDVI, NDWI U-Net, U-Net3DE, 
DeeplabV3+

Sen2Cor 1 7.672

Remote sensing data in 
mapping plastics at surface 
water bodies[120]

World View-2 NDWI, NDVI, NIR/R, 
NIR/G, NIR/B, R/G, R/B

ANN - 5
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MARIDA: A benchmark for 
Marine Debris detection 
from Sentinel-2 remote 
sensing data[108]

MSI Spectral signature, NDVI, 
NDWI, FAI, FDI, shadow 
index (SI), normalized 
difference moisture index 
(NDMI), bare soil index 
(BSI) and NRD, gray-level 
co-occurrence matrix 
(GLCM)

RF, U-Net ACOLITE Dark 
Spectrum Fitting 
(DSF)

3 3.752

Detecting floating plastic 
marine debris using 
Sentinel-2 Data via modified 
infrared NDVI[102]

MSI NDVI N/A

Plastic Litter Project 2019: 
Exploring the detection of 
floating plastic litter using 
drones and Sentinel 2 
satellite images[109]

MSI-UAV R/G/B/NIR Reversed linear 
spectral unmixing

ACOLITE 1 N/A

Marine litter survey at the 
major sea turtle nesting 
islands in the Arabian Gulf 
using in-situ and remote 
sensing methods[121]

MSI FDI, PI - N/A N/A

Big plastic masses detection 
using Sentinel 2 images[119]

MSI Spectral signature, NDVI, 
FDI

MPL - N/A

Can we quantify the aquatic 
environmental plastic load 
from aquaculture?[123]

World View-2 and GF-2 
satellite and UAV

Supervised classifier 
in ENVI 5.3

2 13.4 

Marine plastic litter 
detection offshore Hawai’i 
by Sentinel-2[110]

MSI NDVI and FDI - ACOLITE Dark 
Spectrum Fitting 
(DSF) algorithm

2 7.001

Spectral reflectance of 
marine macroplastics in the 
VNIR and SWIR measured 
in a controlled 
environment[103]

Analytical Spectral 
Devices (ASD) FieldSpec 
resampled to Sentinel-2 
MSI

NDVI, FDI - - 17 4.996

On thermal infrared remote 
sensing of plastic pollution 
in natural waters[92]

ECMWF reanalysis v5 
(ERA5)

TIR - - 14 5.349

A knowledge-based, 
validated classifier for the 
identification of aliphatic 
and aromatic plastics by 
WorldView-3 satellite 
data[42]

WV-3 NHI, spectral signature 
and SWIR bands

Decision tree style, 
knowledge-based 
classifier

L2 level, 
radiometrically 
and 
atmospherically 
corrected

2 13.85

Advancing floating 
macroplastic detection from 
space using experimental 
hyperspectral imagery[43]

MSI and WV-3 NDVI and FDI Linear discriminant 
analyses (LDA)

- 7 5.349

Toward the detection and 
imaging of ocean 
microplastics with a 
spaceborne radar[24]

Delay doppler mapping 
instrument on board the 
cyclone global 
navigation satellite 
system 
(CYGNSS/DDMI)

Wind speed (m/s) and 
mean square slope (MSS), 
L-Band MSS

Global ocean 
CYGNSS model

L2 level, corrected 
products

6 8.125

GhostNet marine debris 
survey in the Gulf of Alaska 
- Satellite guidance and 
aircraft observations[115]

Multistage 
oceanographic data

Multivariate inputs Manual 
identification and 
tracking of eddies 
through altimeter, 
chlorophyll and SST 
satellite products

N/A, analysis 
ready data (ARD)

41 7.001

Extraction of marine debris 
in the Sea of Japan using 
high-spatial-resolution 
satellite images[123]

WV-2, WV-3 Spectral angle 
mapper (SAM)

Spectrally 
anomalous pixels

9 N/A

CleanAtlantic - tackling 
marine litter in the atlantic 
area[111]

MSI B8-B12 band difference Sen2Cor AC - -

Optical methods for marine Sen2Cor, MSI and UAV FAI, NDVI and NDHI - N/A N/A
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litter detection (OPTIMAL) 
- final report. zenodo[112]

generation of 
spectral signatures

Pansharpening PRISMA 
data for marine plastic litter 
detection using plastic 
indexes[116]

PRISMA HI, Sentinel-2 based index, 
FDI, three novel indices

CS, MRA, hybrid, 
Bayesian, and DL 
methods

Fine co-
registration of data 
(L1 and L2D 
products)

4 3.476

Report on detailed 
processing model, EO 
tracking of marine debris in 
the mediterranean sea from 
public satellites project[113]

MSI Contrast enhancement, 
red band values, indices 
(NDVI, NSI, FAI)

- Sen2Cor AC, cloud 
and shadow 
masking, glint 
correction

N/A N/A

Dynamics and early post-
tsunami evolution of floating 
marine debris near 
Fukushima Daiichi[122]

WV-2, ASTER, and SAR Single bands - - 20 16.908

Finding riverine plastics in 
floating plant patches using 
WorldView-3 satellite 
imagery[114]

VW-3 ACOLITE N/A N/A

Detecting Microplastics 
pollution in world oceans 
using SAR remote 
sensing[12]

Sentinel-1A and 
COSMO-SkyMed

L-, C-, and X- band VV-polarized 8 N/A

A combination of machine 
learning algorithms for 
marine plastic litter 
detection exploiting 
hyperspectral PRISMA 
data[126]

PRISMA Spectral bands LGBM, K-Means L1 products image 
fusion and PCA 
pan-sharpening

- 5.349

byproducts during energy synthesis. The byproducts of the disintegration and degradation chemical 
reactions include simple chains and more complex organic molecules called surfactants. The presence of 
these surfactants reduces the responsiveness of water surface morphology or roughness to surface wind 
velocity. In view of this hypothesis, surfactants can therefore act as microplastic tracers. SAR is capable of 
measuring water surface roughness and surface wind speed; these parameters are then used to estimate the 
concentration of microplastics. The studies showed seasonal dynamics in the garbage patches in all the 
plastic gyres due to changing vertical mixing at lower temperatures. Evans and Ruf (2020)[24] also analyzed 
time series visualization of major world rivers and spotted huge concentrations of microplastics in the 
Yangtze and Ganges Rivers. This is an innovative methodology with huge potential to offset the drawbacks 
of physical sampling and laboratory analyses.

BIBLIOMETRIC ANALYSIS
Bibliometric studies help to illustrate the significance of the problems posed by plastic waste in water on a 
global scale and highlight significant gaps with respect to monitoring and standardizing new satellite 
monitoring methods[154]. A basic Interquartile Range (IQR) visualization tool is developed to easily analyze 
two important bibliometric measures, citation score and journal impact factor (IF), for the 35 research 
articles (all listed in Table 1) that strictly satisfied the following criteria: the study used satellite sensors to 
monitor any form of plastics presence in any aquatic ecosystem. The IQR for citation score and IF are 18 
and 2.78, respectively [Figure 6]. Articles and journals that have extremely high scores are visualized as 
outliers. Citation hierarchy, as highlighted by citation score (in brackets), showed that the studies by 
Topouzelis et al.[106] (76), Atwood et al.[125] (63), Biermann et al.[36] (59), and Acuña-Ruz et al.[39] (45) were the 
highest cited papers in descending order. Out of the 35 publications, three articles were published in 
journals with IF much greater than the normal IF, those by Matthews et al.[121] (Nature Geoscience, IF = 
16.908), Acuña-Ruz et al.[39] (Remote Sensing of The Environment, IF = 13.85), and Zhou et al.[42] (Remote 
Sensing of The Environment, IF = 13.85).
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Figure 6. Boxplots for visualizing IQR measures for citation score and journal impact factor.

PRINCIPAL FINDINGS, PROSPECTS, AND CONCLUSIONS
Many researchers who have conducted studies on monitoring aquatic plastics using satellites mainly 
focused on macroplastics compared to microplastics. Most of these scientists have reported a lack of 
training data as a major limitation in achieving higher accuracy and consistent results[126]. The lack of 
training data also limits the extent of spatial coverage and constrains the choice of classifiers to be used, i.e. 
some classifiers perform poorly when trained with inadequate data. This review identifies the need for a 
comprehensive strategy to have a wider research area coverage to harness more training data. More 
knowledge can be gained by studying how EU researchers are conducting their work because they are 
leading in this research. Alternatively, the SAR satellites approach, which relies on in situ sampling data and 
therefore does not require manual preparation of training datasets, provides a possible solution to augment 
monitoring methods[155]. The major advantage of SAR is its ability to apply a model that monitors plastics at 
a global level, including simultaneously covering inland and ocean areas. Given that it is the only method 
thus far that has shown potential to monitor plastics at a microscopic level, it presents researchers with an 
added advantage. Although the SAR method has only been applied to microplastics, the principle behind it 
can potentially monitor plastics at all size levels (macro- to nanoplastics).

Many different kinds of spectral indices have been used as input features to help classifiers discriminate 
plastic from other debris. However, no single research has applied turbidity indices such as normalized 
difference turbidity index (NDTI)[156] as an input feature for classifying plastics. This is important to 
highlight because NDTI can be a useful feature for discriminating plastic matter in highly turbid water. 
Furthermore, there is evidence for the physiochemical interactions of plastics and sediments in water 
systems, which can help to establish a numerical relationship between plastics and sediments in terms of 
concentration[157]. Plastics and sediment concentration is normally high during the rainy season due to 
transportation by erosion surface run-off, and at the same time, turbidity is also high. Therefore, it is 
important to understand the effects of sediment-driven turbidity on plastic identification using optical 
satellites. We, therefore, note that turbidity should be a useful input feature for discriminating plastic waste 
submerged in highly turbid water.

We note that technologies essential for leveraging geospatial big data such as satellites and artificial 
intelligence (AI) for application in the domain of monitoring CECs are still developing, although some 
significant progress can be noted, especially using the branch of AI called machine learning and its deep 
learning subset, but all these studies have focused on only one type of AI computer vision (CV) referred to 
as image classification CV. Additional CV-based AI methods for image processing could add more to 
progress in this domain. Some of the CV-based AI techniques applicable to satellite images include object 
detection (OD) (one of the most popular OD models is you only look once (YOLOv5), semantic 
segmentation, instance segmentation, and panoptic segmentation. The advantages of these methods include 
their ability to execute pixel-level classification and the ability to separate different instances of classes.

Using satellites to monitor plastic pollution in water is an emerging research area, and the results from our 
preliminary studies indicate a bias in the geospatial distribution of plastic waste monitoring which is 

a
图章
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concentrated around the European Union (EU) area, which is confirmed in similar research[155,158]. However, 
while our results indicate this bias, there is a need to collect more evidence as peer-reviewed research is 
conducted to further validate this hypothesis. For instance, the global south suffers greater pollution but is 
the least sampled and monitored. The fact that there are fewer studies conducted thus far in this area was a 
limitation because we had to rely on a relatively smaller number of papers to make our findings.

In conclusion, this research acknowledges the developments that have been made in the domain of plastic 
monitoring using multispectral, hyperspectral, and radar satellites despite the fact that the initial research 
was published recently in 2014[118]. This review leads to the following deductions: (1) The top three 
commonly applied classifiers are SVM, RF, and NN, and they generally tend to outperform the other 
classifiers. (2) This research is proving to be highly impactful because reputable highly cited researchers are 
publishing high-quality work in high impact factor journals, and their research is being highly cited, 
demonstrating that this type of research is having a significant impact on the scientific community. (3) This 
research has a high potential to benefit society and contribute to creating plastic-free water ecosystems. The 
median scores for citation index and IF are 7 and 5.349, respectively. Although little research has focused on 
satellite thermal imaging despite its potential, thermal imaging is used in monitoring other water-related 
parameters such as global sea surface temperature (SST) coverage products which can potentially be useful 
for plastic monitoring. New spectral indices designed for plastics have been developed, but still more could 
be achieved with respect to turbidity indices for plastic monitoring-tailored input features.
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