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Abstract
Analyzing the evolution trend of rail corrugation using signal processing and deep learning is critical for railway safety,
as current traditionalmethods struggle to capture the complex evolution of corrugation. This present study addresses
the challenge of accurately capturing this trend, which relies significantly on expert judgment, by proposing an intel-
ligent prediction method based on self-attention (SA), a bidirectional temporal convolutional network (TCN), and a
bidirectional gated recurrent unit (GRU). First, multidomain feature extraction and adaptive feature screening were
used to obtain the optimal feature set. These features were then combined with principal component analysis (PCA)
and the Mahalanobis distance (MD) method to construct a comprehensive health indicator (CHI) that reflects the
evolution of rail corrugation. A bidirectional fusion model architecture was employed to capture the temporal cor-
relations between forward and backward information during corrugation evolution, with SA embedded in the model
to enhance the focus on key information. The outcome was a rail corrugation trend prediction network that com-
bined a bidirectional TCN, bidirectional GRU, and SA. Subsequently, a multi-strategy improved crested porcupine
optimizer (CPO) algorithm was constructed to automatically obtain the optimal network hyperparameters. The pro-
posed method was validated with on-site rail corrugation data, demonstrating superior predictive performance com-
pared to other advanced methods. In summary, the proposed method can accurately predict the evolution trend of
rail corrugation, offering a valuable tool for on-site railway maintenance.

Keywords: Mahalanobis distance, rail corrugation, evolution trend prediction, improved crested porcupine optimizer,
hybrid time series network
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1. INTRODUCTION
Long-term wheel-rail contact on railway lines can cause various types of damage, particularly in sections with
small curvature radius, where corrugation damage is more prevalent [1–3]. Rail corrugation primarily affects
the inner surface of the rail in a curved section, resulting in periodic wavy wear. If left undetected and un-
repaired, corrugation can cause train vibrations, significantly reducing its operating stability. In severe cases,
rail breakage and major accidents, such as train derailments, can also occur [4,5]. Therefore, in railway health
management, in-depth research on the evolution of rail corrugation is critical [6] to ensuring the safe operation
of rail transit [7].

Over the past years, scholars have conducted in-depth research on the generation and evolution process of
rail corrugation, mainly using two methods: mechanismmodeling and data-driven prediction. In mechanism
modeling, the wheel-rail transient dynamics method is used to establish a model that reflects the evolution
process of corrugation. Additionally, by using mechanical simulation software, scholars have constructed
wheel-rail coupling finite element models and rail elastic-plastic analysis models to further explore the gener-
ation and evolution [8,9] of corrugation. For example, Wang et al. established a vehicle-track space coupling
model using multibody dynamics software and conducted a dynamic analysis of the corrugation section [1].
Cui et al. established a finite element model of the wheel-rail system and a wear model for corrugation using
typical rail corrugation on a curve with a small radius as the research object; they then elucidated the devel-
opment mechanism of corrugation by studying the dynamic response of the wheel-rail on the rail surface [2].
However, these methods rely on prior knowledge of factors, such as the damage mechanism, and are highly
theoretical. Furthermore, achieving an optimal damage evolution process using these methods in a complex
train operating environment is challenging.

In data-driven research, scholars typically use experimental or on-site data to extract damage degradation
features. Machine and deep learning methods are employed for damage diagnosis or prediction tasks without
requiring an in-depth understanding of the internal damage mechanisms, as these methods can indirectly
consider various influencing factors [10–13]. For example, Xiao et al. used machine learning to detect and assess
corrugation damage in heavy haul railways; their approach, which was based on support vector machines
and other technologies, could effectively detect rail corrugation damage [14]. Deep network models such as
gated recurrent units (GRUs), temporal convolutional networks (TCNs), and attention mechanisms are widely
used in industrial equipment for damage diagnosis and degradation trend prediction [15–20] because of their
exceptional feature extraction and nonlinearmapping abilities. For example, Zhang et al. introduced a squeeze-
excitation channel attention mechanism into a combined model of a convolutional neural network (CNN)
and bidirectional GRU (BiGRU); this integration demonstrated that the addition of an attention mechanism
improved the capability of the network to focus on excellent features [21]. Liu et al. used a dynamic multiscale
gated causal convolution method combined with a GRU to effectively predict the actual degradation trend of
rail corrugation and address poor generalization caused by small data samples [22]. Additionally, in the general
damage evolution prediction task, degradation is a continuous change process with a front-back relationship
over time [23]. Currently, most scholars do not consider the relationship between the time series before and after
the damage signal. In a complex time-series prediction task, a single model often has limitations in terms of
generalization, robustness, and adaptability. The current hybrid temporal prediction networks typically rely on
extensive experiments and parameter-tuning processes, thereby increasing the computational cost andmaking
the optimality of the selected hyperparameters difficult.

To address the aforementioned shortcomings, this study constructed a self-attention (SA) bidirectional TCN
and GRU (SA-BiTCN-BiGRU) hybrid network and used a newmulti-strategy improved crested porcupine op-
timizer (MICPO) algorithm for automatic hyperparameter optimization. The proposed model integrated the
advantages of each module, exhibiting robust time-series modeling capabilities, perceiving dynamic changes
in a time series, and assigning more weight to important time-series features. Thus, the prediction accuracy
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Figure 1. Frame diagram of rail corrugation trend prediction.

of the evolution trend of rail corrugation improved. The MICPO algorithm could automatically determine
the optimal network hyperparameters for the proposed network using the four improvement strategies and its
superior global search ability, thereby enhancing the network’s prediction accuracy and reducing the need for
blind manual adjustment of hyperparameters. Finally, the efficacy and superiority of the proposed methodol-
ogy were verified through experiments and compared with other advanced methods.

The remainder of this study is organized as follows. Section 2 introduces the construction method of the
rail corrugation’s comprehensive health indicator (CHI), corrugation evolution trend prediction model, and
model hyperparameter optimization algorithm. Section 3 describes the experimental setup and preprocessing
of the rail corrugation dataset, and subsequently analyzes the experimental results in detail. Section 4 pro-
vides a comprehensive summary of the research content and proposes current limitations and future research
directions. Finally, Section 5 concludes the study.

2. METHODS
Based on the current research background, this section provides a detailed description of the process for pre-
dicting the evolutionary trend of rail corrugation. A corrugation CHI was established using the collected
on-site dataset. A SA-BiTCN-BiGRU hybrid network was used to predict the evolution trend of rail corruga-
tion, and the MICPO algorithm was constructed to adaptively adjust the hyperparameters of the network. The
overall framework is illustrated in Figure 1.

As can be seen from Figure 1, first, by observing the damage changes in the corrugation image, the three
vibration sensors were installed at the front wheel, rear wheel, and center position of the bogie on the track
inspection car to collect corrugation vibration data in the vertical direction. After preprocessing the collected
data, the rail corrugation vibration signal was obtained. Subsequently, multidomain feature extraction, feature
screening, feature dimensionality reduction, and the Mahalanobis distance (MD) measurement methods were
applied to this corrugation vibration signal, resulting in a CHI that effectively characterized the evolution
trend of rail corrugation. The CHI was then input into the SA-BiTCN-BiGRU hybrid network to predict
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the evolution trend of rail corrugation. The network integrated the advantages of BiTCN, BiGRU, and SA to
address the limitations of existing models. Finally, the MICPO algorithm was used to accurately select the
optimal network model hyperparameters, thereby effectively improving the prediction accuracy of the model.

2.1 Collection of rail corrugation signal and construction of corrugation CHI
In this study, three vibration sensors installed on the track inspection car were used to obtain vibration data
of corrugation damage from different positions in the same direction. Compared with the data of a single
sensor, the multi-channel data contains richer feature information and can more comprehensively reflect the
changing characteristics of corrugation damage [24]. Therefore, to fully explore the vibration information of
the three channels, we first normalized the data of each channel to reduce the impact of the difference in signal
distribution between different channels. Themulti-channel signal fusionmethod based on kurtosis weight was
then used to calculate the fusionweight of the three channels, and the signals from each channel were subjected
to weighted fusion. The kurtosis value can effectively reflect the severity of rail corrugation damage. The
channel with a higher kurtosis value is considered to be more sensitive to the reflection of corrugation damage,
so a higher weight is assigned to ensure that more representative vibration signals have a more significant
impact on the overall analysis results during the fusion process, so that the merged vibration signals can reflect
the changing trend of rail corrugation damage more comprehensively and reliably [25,26].

The CHI is an indicator used to evaluate and quantify the evolution trend of rail corrugation. The construction
of a CHI is a preprocessing step for predicting the evolution of corrugation, which influences the effectiveness
of subsequent prediction tasks [27]. However, in a complex environment, various adverse factors may lead
to significant deviations in the extracted rail corrugation vibration data, resulting in a lack of reliability in
the constructed CHI. Therefore, this study used a custom range box line method to identify outliers in the
corrugation vibration data and performed a mean correction on these outliers, thereby improving data quality.
To accurately construct the CHI of corrugation and overcome the problem of relying on manual experience
selection for single physical and fusion indicators, this study establishes a CHI that reflects the evolution of
corrugation. The process steps are described as follows.

First, the vibration data of rail corrugation collected from the field contain numerous degradation features
reflecting the evolution process of corrugation. The amplitude of these features usually deviates from the nor-
mal range with time, indicating that the corrugation damage is intensifying [28]. Therefore, this study extracted
time-domain, frequency-domain, and time-frequency domain feature indicators from the data, such as the
maximum value, root mean square (RMS), standard deviation, and pulse index. These feature indicators ef-
fectively reflect corrugation degradation through the concretization of abstract real data.

Subsequently, three evaluation indicators, monotonicity (𝑀), Spearman’s correlation coefficient (𝑆), and ro-
bustness (𝑅), were used to quantify the damage features of rail corrugation [29]. Concurrently, to conduct com-
prehensive evaluation of each rail’s corrugation features, this study used normalization processing to quantify
the three evaluation indicators to the same scale, eliminating the impact of dimension, and obtained compre-
hensive evaluation indicator (𝐶) [30,31] through linear weighted combination of the three evaluation indicators,
using it to calculate the comprehensive score of each feature, and adaptively screen out the features sensitive
to the change of rail’s corrugation state, forming an optimal feature subset. The definitions of 𝑀 , 𝑆, 𝑅, and 𝐶
are
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respectively, where 𝑇 indicates the length of the degradation feature sequence, 𝑓𝑡 is the extracted value of the
feature at time 𝑡, 𝑋 (·) denotes the number of positive derivatives in the degradation feature sequence, 𝑌 (·)
denotes the number of negative derivatives in the degradation feature sequence, Σ denotes the summation
symbol, 𝑑𝑡 is the difference between the degradation feature index sequence and time series, exp(·) represents
an exponential function based on the natural constant 𝑒, and 𝑓𝑡 is the value of the feature at time 𝑡 after sliding
average.

Principal component analysis (PCA) was then used to reduce the dimensionality of the optimal feature subset,
and the principal components were weighted according to their contribution degrees to generate a multidi-
mensional principal component vector that retains the important information of the original optimal feature
subset.

Finally, the MD [32] was used to calculate the difference between the initial and subsequent samples in the
generated multidimensional principal component vector. The obtained results were then smoothed using the
exponential weighted moving average, yielding the CHI, which reflected the evolution of corrugation. The
MD is calculated as follows:

𝐷𝑀 (𝑚, 𝑛) =
√
(𝑚 − 𝑛)𝑇 K−1 (𝑚 − 𝑛) (5)

where𝑚 and 𝑛 are the sample vectors; 𝐾 represents the covariance matrix of the corrugation evolution features.

2.2 Establishment of trend prediction model for rail corrugation
To accurately predict the evolution trend of rail corrugation, we constructed a SA-BiTCN-BiGRUmodel. Using
the initial corrugation data in the established CHI as the input, the subsequent CHI values were predicted.

The structure of the model is illustrated in Figure 2. First, the bidirectional local features of the initial cor-
rugation data were effectively extracted using a three-layer BiTCN to improve the receptive field and feature
extraction capability of the model. Subsequently, based on the local features extracted by BiTCN, BiGRU
was used for time-series prediction, and the output results were passed through the Leaky rectified linear unit
(ReLU) nonlinear activation function and dropout regularization technology. The attention weight provided
by the SA was then used to enhance the interpretability of the network. Finally, the multilayer perceptron
(MLP) network output continuous prediction results and the error between them and the actual value was
calculated to evaluate the prediction effect of the model.

2.2.1 BiTCN
In this study, the constructed corrugation CHI is a continuous process that changes over time, and the data are
closely related. To capture the features of the corrugation CHI over a wider range, a BiTCN was constructed
to comprehensively consider the historical and forthcoming temporal information of the corrugation CHI.
Additionally, multiple dilated causal convolution layers were stacked to improve the receptive field, effectively
observe the change patterns in the rail corrugation data, and enhance the model’s capacity to acquire key
information. The structure of the BiTCN is shown in Figure 3.
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Figure 2. Architecture of prediction model for rail corrugation trend.

Figure 3. Schematic of BiTCN structure. BiTCN: Bidirectional temporal convolutional network.

As shown in Figure 3, BiTCN consists of a forward and a reverse TCN residual block linked together. The
model’s output was the combined training result of the two blocks. Each residual block contained two layers
of dilated causal convolution, which enlarged the receptive field of the network. The input sequence data were
derived from the one-dimensional rail corrugation CHI, and the feature information at different scales was
captured using the dilated convolution operation. A batch normalization layer was employed to stabilize the
model training process. The Leaky ReLU activation function enabled the BiTCN module to train a deeper
network while addressing dead neurons and vanishing gradient. Additionally, dropout regularization tech-
nology was added to reduce overfitting. To accommodate possible differences in the number of input and
output channels in the model, a 1 × 1 convolution layer was added in each training direction for the residual
connection, and the number of feature channels was adjusted to suit the feature representations of different
levels.
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Figure 4. Visualization of dilated causal convolution.

The core concept of the dilated causal convolution involves the insertion of zero elements into the convolution
kernel, which modifies the structure of the kernel and effectively expands the receptive field of the model.
This enables each convolution output to encompass a broader range of time information, effectively mitigating
vanishing gradient caused by numerous layers in the common convolution and enabling the model to extract
more information on corrugation evolution [33]. The internal structure of the dilated causal convolution is
shown in Figure 4 and defined below:

𝑦 =
𝐾−1∑
𝑘=0

𝜔
[
𝑘
]
· 𝑥

[
𝐿 − 𝑑 · 𝑘

]
(6)

where 𝑦 is the output of the dilated causal convolution layer, 𝜔[𝑘] denotes the weight of the convolution kernel
𝑘 , 𝑥 [𝐿 − 𝑑 · 𝑘] denotes the value of the input sequence element, 𝐿 is the length of the input sequence, and 𝑑
represents the expansion rate.

2.2.2 BiGRU
TheGRU is a temporal prediction network proposed to alleviate the vanishing gradient problem of a recurrent
neural network (RNN) [34]. The evolution of corrugation is closely related to information from past and future
data, and unidirectional GRUmay fail to capture this bidirectional information transmission mode. Therefore,
this study constructed a BiGRU to infer the relationship between past and future corrugation characteristics
and the current corrugation amplitude to improve the model’s sensitivity and predictive capability regarding
dynamic changes in the time series of corrugation characteristics. The BiGRU is calculated using
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(7)

where 𝐺𝑅𝑈 (·) denotes the gated cycle unit, 𝑥𝑛 is the input,
−→
ℎ𝑛 and

←−
ℎ𝑛 represent the output status of the for-

ward and reverse hidden layers, respectively, 𝛼𝑛 and 𝛽𝑛 are the corresponding output weights, and 𝑏𝑛 is the
corresponding bias. The structure of the BiGRU is shown in Figure 5.
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Figure 5. Schematic of BiTCN structure. BiTCN: Bidirectional temporal convolutional network.

Figure 6. Illustration of SA mechanism. SA: Self-attention.

The entire network is composed of an input layer, two layers of GRUs in opposite directions, and an output
layer. The input is the value after BiTCN feature extraction, and the output is determined based on the cycling
training results of the BiGRU unit.

2.2.3 SA mechanism
As a variant of the attentionmechanism, SA [35] is mainly used to process serial data such as the rail corrugation
time-series data used in this study. The network can calculate the attention weights of various positions at dif-
ferent time steps to improve its ability to obtain key information and integrate the content of all time steps. This
study introduced and applied the SAmechanism to the process of model trend prediction, which was designed
to improve the model’s dependence on different locations in the input ripple CHI sequence. This allowed the
model to better understand the internal correlations between the corrugation data at each moment, signifi-
cantly improving its predictive performance. This technology can provide reliable decision-making support
for the maintenance and management of railway systems. Figure 6 shows the structure of the SA.

As depicted in Figure 6, the structure initially computes and packages the query, key, and value vectors of all
input matrices as matrices. The query and key vectors were used to perform a nonlinear transformation. The
dot product and masking operations standardized the query and key vectors, masked invalid information, and
generated an attention score. Themapping matrix of the attention score was then obtained after normalization
using the softmax operation and multiplied by the value vector after identity mapping to acquire the weight
output.
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2.3 Model hyperparameter optimization based on MICPO algorithm
Certain hyperparameters significantly affected the predictive performance of the proposed model. For exam-
ple, the convolution kernel size determined the capability of themodel to capture corrugation characteristics in
the time dimension. The number of BiGRU hidden layer units determines the complexity and learning ability
of the network. To prevent the adverse effects of manual intervention in the selection of model hyperparame-
ters, optimization algorithms are necessary to adaptively identify the most suitable model hyperparameters.

Consequently, model hyperparameter optimization was performed using the crested porcupine optimizer
(CPO) [36] algorithm. This algorithm simulates four different defense strategies when a crested porcupine
(CP) engages in defense against predators. The first two strategies, sight and sound, represent the exploration
phase of the algorithm; the last two strategies, odor and physical-attack, represent the exploitation phase of the
algorithm. Different defense strategies have distinct optimization effects on various hyperparameters, guiding
the algorithm to identify the optimal hyperparameters for the model. However, the original algorithm has cer-
tain limitations, such as decreasing population diversity and the tendency to get trapped in local optimality in
the later stages of a search, leading to an inaccurate selection of hyperparameters. Therefore, a multi-strategy
improvement method was constructed to optimize the initialization mode and defense strategy of the CPO
algorithm to acquire better model hyperparameters and enhance the prediction accuracy of the model on the
evolution trend of rail corrugation. The detailed improvement strategies for the CPO algorithm are discussed
in the following subsections.

2.3.1 Improved tent chaos map
In the algorithm initialization stage, an improved tent map was employed to generate chaotic sequences and
address issues related to the reduction of the CP population and its tendency to converge into the local opti-
mal solution when the CPO algorithm approached the global optimum [37]. This method introduced random
variables into a traditional tent-chaos map. Thus, the diversity of the CP individuals was increased, and the
chaotic sequence was prevented from falling into unstable periodic points during the iterative process defined
as follows:

𝑋𝑖, 𝑗+1 =


𝑋𝑖, 𝑗
𝑡𝑒𝑛𝑡 + 𝑟𝑎𝑛𝑑 (0, 1) , 0 ≤ 𝑋𝑖, 𝑗 ≤ 𝑡𝑒𝑛𝑡

1−𝑋𝑖, 𝑗
1−𝑡𝑒𝑛𝑡 + 𝑟𝑎𝑛𝑑 (0, 1) , 𝑡𝑒𝑛𝑡 < 𝑋𝑖, 𝑗 ≤ 1

(8)

where 𝑖 and 𝑗 represent the CP population number and current dimension, respectively; 𝑡𝑒𝑛𝑡 denotes the chaos
coefficient, and 𝑟𝑎𝑛𝑑

(
0, 1

)
represents a random number between 0 and 1.

2.3.2 Golden sine strategy
In this study, the golden sine strategy [38] was incorporated into the CPO algorithm to enlarge its search space
and address the lack of information exchange between CP individuals in the original algorithm, thereby im-
proving the algorithm’s ability for global optimization defined as follows:

𝑋 𝑡+1𝑖, 𝑗 = 𝑋 𝑡𝑖, 𝑗 × |sin (𝐷1) | + 𝐷2 × sin (𝐷1) ×
���𝑥1 × 𝑋 𝑡𝑖, 𝑗 − 𝑥2 × 𝑋 𝑡𝑖, 𝑗

��� (9)

where 𝑡 denotes the number of iterations. After using this formula to improve the position update strategy
of the algorithm, all CP individuals exchanged information with the optimal individuals in each exploration
phase. Simultaneously, the golden section coefficient gradually reduced the search space of the CP individuals.
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By controlling the moving distance and direction of the CP individuals, the CPO algorithm was optimized,
further coordinating the algorithm’s global exploration and local exploitation abilities.

2.3.3 Adaptive weight strategy
When executing the third defense strategy, the search step of the CP individual was not set in the original algo-
rithm, resulting in excessive freedom while running the algorithm. The adaptive weight strategy can dynami-
cally adjust the optimal position [39], thereby effectively enhancing the convergence effect and local exploitation
ability of the CPO algorithm. This adjustment ensures that individuals with CP maintain a relatively safe dis-
tance from predators while executing the third defense strategy. Therefore, this study constructed an adaptive
strategy that adjusted the weight coefficient 𝜔 based on the iteration count, allowing CP individuals to utilize
different weights for optimal search lengths at different stages. The 𝜔 is obtained as

𝜔 = 1 − cosh ((exp(𝑡/𝑇max)) /exp(1) − 1)2 (10)

where cosh() denotes the hyperbolic cosine function, and 𝑇max denotes the maximum number of iterations.

2.3.4 Variable spiral search strategy
Inspired by the whale optimization algorithm (WOA) [40], the variable spiral search strategy adjusts the origi-
nal spiral parameters to become variable parameters that change with each iteration. This adjustment allows
the algorithm to perform extensive searches in the early phase and an elaborate exploration of a small area in
the late stage [41], enhancing its local exploitation ability in the fourth defense strategy. In this study, by con-
structing a variable spiral search strategy, CP individuals continued to search nearby after reaching the local
optimal solution. This approach compensates for the unclear convergence effect of the original CPO during
local exploration, which prevents deviations in the prediction accuracy of the model in the late stages of rail
corrugation development. This strategy is established as

𝑍 = 𝑋𝑏𝑒𝑠𝑡
(
𝑡
)
×

(
exp

(
𝑧𝑙

)
× cos

(
2𝜋𝑙

))
+ 𝑋𝑏𝑒𝑠𝑡

(
𝑡
)

(11)

𝑧 = exp
(
𝑘 cos

(
𝜋𝑡/𝑇max

) )
(12)

where 𝑋𝑏𝑒𝑠𝑡 denotes the best fitness value, 𝑙 represents a random number between -1 and 1, and 𝑘 represents
a variable parameter that should be set according to the specific strategy.

Based on the above analysis, a flowchart of the MICPO algorithm is constructed [Figure 7], where 𝑁 and
𝑇𝑚𝑎𝑥 represent the population size and maximum number of function evaluations, respectively. 𝑇 𝑓 indicates
a constant between 0 and 1, 𝑡 denotes the number of current iterations, and 𝑖 is the current 𝑖 𝑡ℎ individual.
In the first iteration, all CP individuals passed through the position of the initialization solution and adopted
a defense strategy to obtain the current optimal candidate solution. Subsequently, the algorithm entered the
next iteration. First, the defense factor and the population number 𝑁 were updated. Then, the CP individuals
continue to search for the best candidate solution of the model according to the selected defense strategy. This
process was repeated until the iterations were complete. Consequently, the optimal solution, which represents
the best parameter of the model, was obtained and substituted into the SA-BiTCN-BiGRU hybrid network to
optimize the prediction performance of the model.

2.4 Algorithm validation
In this study, six benchmark functions were used to conduct the optimization experiments. The MICPO
algorithm was compared with the CPO [36], WOA [40], rime optimization algorithm (RIME) [42], grey wolf opti-
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Figure 7. Flowchart of MICPO algorithm. MICPO: Multi-strategy improved crested porcupine optimizer.

mizer (GWO) [43], and dung-beetle optimizer (DBO) [44] algorithm to observe their optimal fitness values and
convergence speed within a specified number of iterations, and verify the improvement effect of MICPO on
the original CPO. Table 1 provides a detailed definition of the benchmark functions. F1-F3 are single-peak
functions used to evaluate the local search capability of the algorithm. F4 is a multipeak function with multi-
ple local optimal values and requires a higher convergence performance of the algorithm. This function has
important reference significance in the evaluation algorithm. F5 and F6 are the combined benchmark func-
tions used to evaluate the global exploitation capacity of an algorithm. In this study, the population size of the
experimental algorithm was set to 30, and each algorithm was optimized 100 times.

As shown in Figure 8, the convergence performance of the MICPO algorithm is effectively proven.

From the convergence curve presented in Figure 8, the CPO algorithm exhibits poor convergence performance
and easily falls into the local optima, indicating that improvements in the CPO algorithm are necessary. In the
unimodal function test shown in Figure 8A-C, the RIME,WOA, and the other optimization algorithms fell into
local optima and slowly converged, indicating that the MICPO algorithm has certain competitive advantages
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Table 1. Detailed information on benchmark function

ID Benchmark function
Domain and
dimensions

Optimal value

F1 𝑓1 (𝑥 ) =
𝑛∑
𝑖=1

𝑥2
𝑖

[
−100, 100

]30
0

F2 𝑓1 (𝑥 ) =
𝑛∑
𝑖=1

𝑥2
𝑖

[
−100, 100

]30
0

F3 𝑓3 (𝑥 ) =
𝑛∑
𝑖=1

𝑖𝑥4
𝑖 + random[0, 1)

[
−1.28, 1.28

]30
0

F4 𝑓4 (𝑥 ) = −20 exp
(
−0.2

√
1
𝑛

𝑛∑
𝑖=1

𝑥2
𝑖

)
− exp

(
1
𝑛

𝑛∑
𝑖=1

cos(2𝜋𝑥𝑖 )
)
+ 20 + 𝑒

[
−32, 32

]30
0

F5 𝑓5 (𝑥 ) =
𝑛∑
𝑖=1

[
𝑎𝑖 −

𝑥1 (𝑏2
𝑖 +𝑏1𝑥2 )

𝑏2
𝑖 +𝑏1𝑥3+𝑥4

] [
−5, 5

]4
3.075 × 10−4

F6 𝑓6 (𝑥 ) = −
10∑
𝑖=1

[
(𝑥 − 𝑎𝑖 ) (𝑥 − 𝑎𝑖 )𝑇 + 𝑐𝑖

]−1
[
0, 10

]4
-10

Figure 8. Convergence curves of different algorithms under different benchmark functions. (A-F) correspond to benchmark functions F1-F6,
respectively.

over other optimization algorithms in solving unimodal high-dimensional functions. In the multipeak test
function F4, theMICPO algorithm [Figure 8D], demonstrates an advantage by being the closest to the optimal
solution within the specified number of iterations, which validates its effectiveness in improving the CPO
algorithm, as well as its superiority in search accuracy and convergence speed. In the combined function test
shown in Figure 8E and F, the MICPO and CPO algorithms demonstrate superior convergence performance
compared to the RIME algorithm and other optimization algorithms, indicating their advancement in global
optimization.

3. RESULTS
3.1 Experimental setup and rail corrugation dataset preprocessing
First, the code was written and debugged on a PyCharm platform, and the running environment consisted of
a processor (Intel i7-12700H), 16 GB of random-access memory (RAM), a graphics card (RTX 3060), and a
software environment with TensorFlow 2.13.0 and Python 3.9.18. The experimental data in this study were
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Table 2. Evaluation results of health indicators

Indicator M S R C

RMS 0.1134 0.8336 0.9043 0.6171

PCA 0.1546 0.8706 0.9021 0.6424

LLE 0.1753 0.8983 0.9098 0.6611

Proposed indicator 0.2165 0.9322 0.928 0.6922

RMS: Root mean square; PCA: principal component analysis; LLE: linear embedding.

actual measurement data from a railway section in China. A track inspection car was used to collect vibration
signals from a typical steel rail segment with corrugation, covering damage from slight to severe stages. These
signals demonstrate the progression of corrugation damage [21]. We collected 98 vibration samples on-site at
the same time interval throughout the entire lifecycle of the rail after several months of continuous periodic
testing, with each vibration sample containing 3,000 sample points; therefore, the original sample contained 98
× 3,000 data points. These data points represent the initial corrugation on the rail surface to the rail scrap. The
overall vibration amplitude gradually increased with collection times, indicating that the deterioration degree
of corrugation damage was worsening, reflecting the evolution of rail corrugation damage from budding to
deterioration.

First, each collected sample was subjected tomultidomain feature extraction to obtain 26 feature indicators that
reflected the evolution of corrugation. The dimensions of the samples were 98 × 26. Subsequently, the 𝑀 , 𝑆,
and 𝑅 of each feature index were calculated; 𝐶 was used to adaptively screen out the eight features with higher
scores, and the corrugation optimal feature subset with a sample dimension of 98 × 8 was obtained. PCA was
used to fuse the optimal feature subset, resulting in a two-dimensional principal component vector with a total
contribution rate of 97%. The sample dimensions of the corrugation data were 98 × 2. Finally, the MD was
used to calculate the difference between the first column of the sample data and the subsequent 97 columns of
sample data, resulting in 98 × 1 one-dimensional data. The corrugation CHI was obtained after smoothing to
minimize the negative impact of outliers on the prediction of the evolution trend of rail corrugation.

3.2 Validation of the CHI construction method
To demonstrate the effectiveness and advantages of themethod proposed for constructing the corrugationCHI,
several commonly used methods for constructing health indicators were selected for comparison, including
the RMS, PCA, and locally linear embedding (LLE) fusion indicators. Two fusion indicators were constructed
using the optimal feature subset described in Section 3.1. The rail corrugation health indicator constructed
using these four methods after smoothing is shown in Figure 9.

Figure 9 shows that these indicators are relatively sensitive to changes in the initial corrugation damage. How-
ever, the RMS indicator exhibits a larger overall fluctuation range, with the index value declining in the later
stages of the corrugation evolution and deviating from the actual situation. The amplitude of the PCA indica-
tor fluctuates significantly between the middle and late stages. The LLE indicator oscillates excessively in the
early stages and becomes more stable in the middle and late stages, which is different from the actual situation.
However, the CHI constructed in this study showed a better overall trend with fewer fluctuations. The indica-
tor shows a sudden increase when the corrugation damage approached a qualitative change in the later stage,
which aligns with the actual evolution law of on-site rail corrugation damage. The corrugation health indica-
tor constructed by CHI is more consistent with the changing trend of the real-world data on rail corrugation
vibration signals.

Furthermore, the 𝑀 , 𝑆, 𝑅, and 𝐶 [established by Equations (1)-(4)] were used to evaluate the HIs constructed
using the four different methods. The results are listed in Table 2.
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Figure 9. Health indicators of rail corrugation constructed by different methods. (A-D) correspond to RMS, PCA, LLE and CHI methods,
respectively. RMS: Root mean square; PCA: principal component analysis; LLE: locally linear embedding; CHI: comprehensive health indi-
cator.

Through the comparison of various indicators in Table 2, the constructed CHI achieved optimal performance
in all cases, with the highest comprehensive evaluation function 𝐶. Therefore, this indicator is considered
suitable for reflecting the evolution trend of rail corrugation.

3.3 Performance evaluation indicators
The root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) were used
to evaluate the performance of the model. These indices reflect the prediction effect by calculating the error
between the predicted and true CHI values. Simultaneously, to address inconsistencies among the different
indicator dimensions, 𝑅2 was added as an evaluation criterion. The indices are estimated using

𝑅𝑀𝑆𝐸 =

√
1
𝑁

∑𝑁

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2 (13)

𝑀𝑆𝐸 =

∑N
i=1 (𝑥𝑖 − 𝑦𝑖)

2

𝑁
(14)

𝑀𝐴𝐸 =

∑𝑁
𝑖=1 |𝑥𝑖 − 𝑦𝑖 |

𝑁
(15)

𝑅2 = 1 −
∑𝑁
𝑖=1(𝑥𝑖 − 𝑦𝑖)2∑𝑁
𝑖=1(𝑥𝑖 − 𝑥𝑖)2

(16)
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Table 3. Main parameter settings of proposed network

Parameter Value

Epochs 1000

Batch_size 128

Optimizer Adam

Leaky rate 0.01

Learning rate [1 × 10−4 , 1 × 10−2 ]

Dropout rate [1 × 10−3 , 1 × 10−2 ]

Kernel size [2, 7]

Number of filters [8, 128]

Number of BiGRU hidden unit [8, 128]

BiGRU: Bidirectional gated recurrent unit.

Table 4. Ablation experiment prediction errors

Prediction model RMSE MSE MAE R2

TCN 0.415 0.172 0.309 0.82

TCN-GRU 0.341 0.117 0.227 0.878

BiTCN-BiGRU 0.315 0.099 0.194 0.896

SA-BiTCN-BiGRU 0.239 0.057 0.13 0.94

CPO-SA-BiTCN-BiGRU 0.171 0.029 0.119 0.969

Proposed model 0.119 0.014 0.095 0.985

RMSE: Root mean square error; MSE: mean square error; MAE: mean absolute error; TCN: tem-
poral convolutional network; GRU: gated recurrent unit; BiTCN: bidirectional temporal convolu-
tional network; BiGRU: bidirectional gated recurrent unit; SA: self-attention; CPO: crested por-
cupine optimizer.

where 𝑥𝑖 represents the true corrugation CHI value, 𝑦𝑖 represents the predicted value by the model, 𝑁 is the
data length of the corrugation CHI, and 𝑥𝑖 denotes the average of the true value.

3.4 Predictive experimental analysis of rail corrugation
After obtaining the CHI of the corrugation damage according to Section 3.1, the corrugation CHI data with a
length of 98 can be expressed as {𝑥1, 𝑥2, · · · , 𝑥98}. Our study used 75% of the data as the training set and the
remainder as the test set; thus, the training set was {𝑥1, 𝑥2, · · · , 𝑥𝑛} and the test set was {𝑥𝑛+1, 𝑥𝑛+2, · · · , 𝑥98}.
The SA-BiTCN-BiGRU model was trained using the training set, whereas the test set was used to verify the
effect of the model in predicting the evolution trend of rail corrugation. Subsequently, according to the input
step length 𝑡 of the prediction model, the single-step sliding window approach was used for forecasting, using
the corrugation initial data from the CHI to predict the subsequent evolution of the corrugation. For example,
the input of the first sample was

{
𝑥1, 𝑥2, · · · , 𝑥𝑡

}
, yielding the prediction result of 𝑦𝑡+1. Then, the prediction was

gradually conducted to obtain the prediction result 𝑦98 of the last sample. The error between the predicted value
of the model and the input CHI was calculated to evaluate the prediction performance of the model. Other
variables that may have affected the experimental results were controlled to ensure that the observed changes
were caused by the proposed method. Table 3 presents the network model parameters used for predicting the
evolution trend of the rail corrugation.

3.4.1 Ablation experiment
A comprehensive quantitative analysis of the structure and function of the proposed network was conducted to
highlight the effects of each module on the MICPO-SA-BiTCN-BiGRU network. The results are summarized
in Table 4.
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Figure 10. Model ablation experiment: prediction results of evolution trend of rail corrugation.

FromTable 4, the RMSE,MSE, andMAE decreased by 17.8%, 32%, and 26.5%, respectively, fromTCN to TCN-
GRU, whereas 𝑅2 increased by 7.1%. If a bidirectional network structure (BiTCN-BiGRU model) was added,
the RMSE, MSE and MAE further decreased by 7.6%, 15.4%, and 14.5%, respectively, whereas 𝑅2 increased by
2.1%. This indicates that the structure further improved its prediction by considering the information on the
forward and backward evolution of rail corrugation. When SA was introduced into the BiTCN-BiGRUmodel,
the RMSE, MSE, and MAE decreased by 24.1%, 42.4%, and 33%, respectively, and 𝑅2 increased by 4.91%. This
indicates that the introduction of SA improved the feature expression capability of the network and reduced
its dependence on irrelevant information. To reduce the impact of the artificial selection of network hyperpa-
rameters on the prediction results, the CPO algorithm was added for model optimization. Consequently, the
RMSE, MSE, and MAE decreased by 28.5%, 49.1%, and 8.5%, respectively, and 𝑅2 increased by 3.1%. Subse-
quently, the search strategy of the original CPO algorithm was improved to effectively alleviate the problem of
local convergence. Consequently, the RMSE, MSE, and MAE decreased by 30.4%, 51.7%, and 20.2%, respec-
tively, and 𝑅2 increased by 1.7%, indicating that the optimization algorithm and its improved strategy were
effective for model prediction.

The visualization results of the model ablation experiment presented in Figure 10 show that the proposed
method (brown line) closely matches the true value (green line), particularly during the model testing phase,
thus effectively predicting the evolution process of corrugation in the later stages of development. Additionally,
the proposed method shows a higher local prediction accuracy compared to the other models.

3.4.2 Comparison experiment
To verify the timeliness of the MICPO-SA-BiTCN-BiGRU network model in predicting the evolution trend of
rail corrugation, we used the network models from recently published studies to predict the evolution trend
of rail corrugation and quantitatively analyze and compare the predicted results with those of the proposed
model. The results are listed in Table 5.
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Table 5. Comparison experiment prediction errors

Prediction model RMSE MSE MAE R2

TCN-GRU-attention [20] 0.351 0.123 0.223 0.872

CNN-BiGRU-attention [23] 0.36 0.13 0.276 0.864

CNN-GRU [45] 0.448 0.201 0.351 0.79

CNN-LSTM-attention [46] 0.377 0.142 0.29 0.852

SA-TCN-LSTM [47] 0.295 0.087 0.196 0.909

Proposed model 0.119 0.014 0.095 0.985

RMSE: Root mean square error; MSE: mean square error; MAE: mean absolute error; TCN: tem-
poral convolutional network; GRU: gated recurrent unit; CNN: convolutional neural network; Bi-
GRU: bidirectional gated recurrent unit; LSTM: long short-term memory; SA: self-attention.

Figure 11. Model comparison experiment: prediction results of evolution trend of rail corrugation.

From Table 5, the proposed model has a lower prediction error than the other models. Consequently, the
RMSE decreased by 66.1% to 73.4%, the MSE by 88.6% to 93%, and the MAE by 57.4% to 72.9%. Conversely,
the 𝑅2 increased by 8.36% to 24.7%. This indicates that the MICPO-SA-BiTCN-BiGRU model has a suitable
architecture and accurately predicts the evolutionary trend of corrugation.

To discover the evolutionary trend of corrugation more intuitively, a visualization from the comparative ex-
periment is shown in Figure 11.

Figure 11 shows that the development of corrugation damage on the measured road section exists in relatively
evident stages. Therefore, we divided the data collected from measurements 1 to 40 into the early stage of
rail corrugation evolution, during which the CHI value increased by approximately 3.4, indicating rapid de-
velopment. The data from measurements 41 to 85 were categorized as the middle stage of rail corrugation
development. During this period, the CHI value increased by approximately 0.6, with the development of
corrugation leveling off and fluctuations rising slowly. This indicates that the damage caused by corrugation
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to the rail began to intensify, and the rail was approaching a critical state. The data from measurements 86 to
98, categorized as the late stage of corrugation development, showed that the CHI value increased by approx-
imately 1.6. During this period, the degree of corrugation damage deterioration showed a sudden increase,
indicating a sharp decline in the health of the rail within a short period, thus necessitating prompt measures
to curb its development.

Overall, the prediction trends of the models were similar; however, the proposed model was the most accurate
for local prediction. In particular, during the early and late phases of corrugation damage, themodel effectively
captured the evolution trend of rail corrugation damage, with its predicted value closely aligned with the real
value.

4. DISCUSSION
Predicting the evolutionary trend of rail corrugation is critical for the safe operation and maintenance of rail-
ways. To address the difficulties involved in accurately evaluating the evolution state of corrugation, a method
was proposed to predict the evolution trend of corrugation. By analyzing the existing on-site data on rail cor-
rugation, the CHI and SA-BiTCN-BiGRU hybrid network models were constructed to predict the evolution
process of corrugation in the time dimension. The results were better than those of existing studies.

However, constructing the corrugated CHI partly relies on manual experience, which is highly subjective and
results in limited accuracy and standardization. In future studies, we will attempt to combine multi-source
data such as on-site rail corrugation images, vibrations, and profile data to predict the evolution trend of rail
corrugation. The proposed method improves the generality and reliability of our study by combining more
comprehensive corrugation damage information, ensuring the safe operation of the corresponding railway
line.

Further, we recognize the importance of predicting the location and duration of rail corrugations. Yet, the
proposed method was not effective in predicting the location of rail corrugation, and the collected dataset
made the prediction of duration challenging. In fault prediction and health management, most existing re-
search focuses on predicting the development and evolution of rail corrugation, with significantly few studies
addressing its location. Nevertheless, numerous scholars have studied the detection of rail corrugation posi-
tions. For instance, Yang et al. proposed an intelligent real-time detection method for rail corrugation using
machine vision and CNN; Li et al. proposed an intelligent detection method for rail corrugation using signal
decomposition and the entropy theory [48,49]. In our future work, we will aim to combine spatial data to predict
the location of rail corrugation and detect rail damage promptly. Additionally, we collected annotated data
on the timing and duration of rail corrugation, which can assist in predicting its duration. These efforts will
significantly improve the depth of our research and represent an important direction for future studies.

5. CONCLUSIONS
In this study, we proposed an intelligent predictionmethod for the evolutionary trend of rail corrugation based
on SA, BiTCN, and BiGRU.

First, a health indicator reflecting the evolution state of the corrugation was obtained using the definedmethod
for constructing corrugation CHI.The experimental results validated the effectiveness of the CHI. Second, we
effectively demonstrated the interpretability and predictive ability of the proposed bidirectional hybrid net-
work, SA-BiTCN-BiGRU, through an ablation experiment. Third, by using theMICPO algorithm, the optimal
values of the key hyperparameters of the SA-BiTCN-BiGRU model were determined, thereby improving the
prediction accuracy of the corrugation evolution trend. The findings demonstrated the high convergence ca-
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pabilities of the MICPO algorithm compared to other swarm intelligent optimization algorithms. The ablation
experiment strongly verified the positive role of the MICPO algorithm in improving model prediction results.
Finally, the results of the model comparison confirmed that the MICPO-SA-BiTCN-BiGRUmodel is efficient.
The proposed method is significant for railway maintenance, as it effectively predicts the future development
trend of rail corrugation and provides a scientific basis for railway maintenance decisions.
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