Original Article

Open Access

Check for updates

Evaluating the performance of post-quantum secure algorithms in the TLS protocol

Iraklis Tzinos¹, Konstantinos Limniotis^{1,2,3}, Nicholas Kolokotronis⁴

¹School of Pure and Applied Sciences, Open University of Cyprus, Latsia, Nicosia 2220, Cyprus. ²Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens 15784, Greece. ³Department of Informatics and Computer Engineering, University of West Attica, Athens 12243, Greece. ⁴Department of Informatics and Telecommunications, University of the Peloponnese, Tripolis 22100, Greece.

Correspondence to: Dr. Konstantinos Limniotis, School of Pure and Applied Sciences, Open University of Cyprus, Latsia, Nicosia 2220, Cyprus. E-mail: konstantinos.limniotis@ouc.ac.cy; ORCID: 0000-0002-7663-7169

How to cite this article: Tzinos I, Limniotis K, Kolokotronis N. Evaluating the performance of post-quantum secure algorithms in the TLS protocol. J Surveill Secur Saf 2022;3:101-27. http://dx.doi.org/10.20517/jsss.2022.15

Received: 3 May 2022 First Decision: 5 Aug 2022 Revised: 26 Aug 2022 Accepted: 19 Sep 2022 Published: 29 Sep 2022

Academic Editor: Rongmao Chen Copy Editor: Jia-Xin Zhang Production Editor: Jia-Xin Zhang

Abstract

Aim: The imminent advent of large-scale quantum computers within the next years is expected to highly affect the security of several cryptosystems that are now considered secure; this mainly holds for classical, long-established, public key cryptographic algorithms such as RSA and elliptic curve cryptography. Apparently, any security protocol that relies on such ciphers, including the transport layer security (TLS) protocol which constitutes a somewhat de facto standard for the security on the web, will not be considered secure in the post-quantum era. To alleviate the security risks stemming from quantum computing, several proposals have been submitted to the relevant procedure initiated by NIST towards evaluating and standardizing one or more quantum-resistant public-key cryptographic algorithms. This paper focuses on embedding post-quantum secure cryptographic algorithms into the TLS protocol to analyze its performance. More precisely, the paper aims to analyze whether this transition to post-quantum secure algorithms will have a significant impact on the user experience due to the possible increase of client-server communication times.

Methods: Having as the starting point several important works in the field, several experiments were carried out, using combinations of cloud and local virtual machines per case and considering all the post-quantum cryptographic algorithm finalists for key exchange from the third round of the ongoing NIST process, for various cryptographic as well as network parameters.

 \odot (cc

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Results: Our results exhibit that, for key exchange in TLS, the best performance among the post-quantum secure ciphers is achieved by the Saber and CRYSTAL-Kyber variants for all security levels, regardless of the underlying computing power. The performance is comparable to that of the corresponding one achieved by a classical elliptic curve algorithm for key exchange for both RTT and packet loss ratio — i.e., the network parameters seem to have the same effect on post-quantum secure algorithms as in the case of a conventional elliptic curve algorithm. However, the effect of the network parameters on the performance is more crucial than the effect of the underlying chosen ciphers.

Conclusion: According to the experiments, we conclude that there exist very promising algorithms that could be utilized in TLS in the near future, which may behave even better than the conventional elliptic curve algorithms for key exchange. It should also be pointed out that NIST announced on 5 July 2022 (i.e., after the completion of our research experiments) that, for general encryption used when we access secure websites, the CRYSTALS-Kyber algorithm has been selected, having as one of its advantages the speed of operation. Hence, the results of our paper are fully in line with the progress of the NIST process. Taking into account that the NIST process is still ongoing (now in its fourth round) with the aim to select more algorithms, as well as that some algorithms may be standardized outside NIST, it becomes evident that our results provide very useful insights on performance aspects of the post-quantum secure algorithms.

Keywords: Performance, post-quantum cryptography, public-key cryptography, transport layer security protocol

1. INTRODUCTION

Cryptography is a main information security mechanism, providing services to achieve several security goals such as confidentiality, data and entity authentication, and non-repudiation; however, it actually goes far beyond these goals and is able to provide solutions in terms of fulfilling legal requirements with respect to personal data protection and privacy^[1]. To this end, cryptographic algorithms constitute core elements in network security protocols, including the prominent transport layer security (TLS) protocol^[2], which constitutes a somewhat de facto standard for web security^[3]. Indeed, TLS ensures: (i) entity authentication through digital certificates that are digitally signed (via a public key digital signature algorithm) by trusted certification authorities; (ii) confidentiality through encrypting (via the use of symmetric ciphers) the content of the communications, while the symmetric key for encryption/decryption is being securely exchanged via public key (i.e., asymmetric) cryptographic techniques; and (iii) data integrity, via ensuring that the encryption is authenticated (via message authentication codes or suitable modes of operations allowing for authenticated encryption). Any weakness in cryptographic algorithms affects the overall security of the protocol (see, e.g., ^[4] for a survey on such cryptographic threats for TLS).

The imminent advent of quantum computers will highly change the situation with regard to which cryptographic algorithms should be considered secure. Indeed, having large-scale quantum computers will allow executing algorithms that can efficiently solve difficult problems that cannot be solved today by contemporary conventional computing systems. More precisely, due to a quantum algorithm proposed by Peter Shor in 1994^[5], all commonly used public-key systems (including RSA, elliptic curve cryptography, and the Diffie– Hellman algorithm that is being used in the TLS protocol) will no longer be secure. Symmetric cryptography is also affected, but not to the same extent: there is a known quantum algorithm developed by Grover in 1996^[6] that suffices to decrease the security level of symmetric algorithms by up to half, which means that contemporary symmetric cryptographic primitives may still provide security to the post-quantum era by doubling, if needed, the key sizes (for symmetric ciphers) or the sizes of the message digests (for cryptographic hash functions).

Post-quantum cryptography refers to cryptographic algorithms which are secure under the assumption that

the attacker has a quantum computer. Although the quantum computers that (are known to) exist currently are not large enough to violate the security of contemporary cryptography, it is essential to start considering the implementation of post-quantum cryptographic algorithms. The basic idea is to develop public-key algorithms whose security relies on a difficult mathematical problem that will remain difficult even if large-scale quantum computers become a reality. Hence, the US National Institute of Standards and Technology (NIST) launched in 2017 a process to standardize one or more quantum-resistant public-key cryptographic algorithms by collecting and evaluating submissions from the cryptographic community around the world^[7]. This evaluation process is still ongoing, being in its third round of evaluation when the present research was conducted (and since July 2022, during the review phase of this paper, a fourth round has been initiated). The NIST process aims to find post-quantum secure public key algorithms that can be used either for digital signatures or to provide confidentiality, which in turn also incorporate secure key exchange (KEX) techniques as well as key encapsulation mechanisms (KEMs).

NIST evaluates the security strength of post-quantum secure algorithms on the basis of five categories which are characterized in terms of the equivalent strength of a symmetric primitive. In particular, according to NIST, a separate category for each of the following security requirements is defined (from the lowest strength to the highest strength):

- Level 1 (L1): Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for key search on a block cipher with a 128-bit key (e.g., AES128).
- Level 2 (L2): Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for collision search on a 256-bit hash function (e.g., SHA256/SHA3-256).
- Level 3 (L3): Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for key search on a block cipher with a 192-bit key (e.g., AES192).
- Level 4 (L4): Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for collision search on a 384-bit hash function (e.g., SHA384/SHA3-384).
- Level 5 (L5): Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for key search on a block cipher with a 256-bit key (e.g., AES 256).

Currently, the NIST competition is in the fourth round, as subsequently described.

During these years, the research community has also started exploring whether known public-key post-quantum secure cryptographic algorithms can be implemented in contemporary systems to enrich current security protocols by post-quantum secure ciphers. The actual motivation is that it is essential to start deploying quantum-safe solutions even before large-scale quantum computers become available. This is nicely explained by the famous Mosca equation (see, e.g., ^[8]): if *x* denotes how long we need our cryptographic keys to be to remain secure, *y* denotes how long it will take to deploy a set of tools that are quantum computer, or some other method, that will break the currently deployed public-key cryptographic algorithms, then we have a serious problem if x + y > z. Moreover, with respect to the time *z*, Mosca estimated since 2015^[8] that there is a 1/7 chance of breaking RSA-2048 by 2026 and a 1/2 chance by 2031. Therefore, incorporating post-quantum ciphers in the TLS protocol is currently a significant research field (see, e.g., ^[9-14]).

This paper focuses on the embedding of post-quantum secure cryptographic algorithms into the TLS protocol. More precisely, in this study, we performed a comprehensive set of experiments towards examining all possible post-quantum cryptographic algorithms for key exchange that are being analyzed by NIST, in terms of how efficiently they can be implemented into the TLS 1.3 protocol. More precisely, we studied all the finalists of the third round of the NIST competition, which was ongoing when this research was conducted. For our experiments, we used combinations of cloud and local virtual machines per case. The implementations of the algorithms were based on the Open Quantum Safe project^[15] and our experiments constituted a more extended set of experiments with respect to those presented in^[10], which formed the main basis for our research. Our ultimate goal was to derive conclusions on whether the transition to post-quantum secure algorithms will have a significant impact on the user experience due to the possible increase of client–server handshake communication times, for various network types that are being investigated — and this for each possible post-quantum secure cipher. Our results confirm that, in terms of performance, there are some very promising algorithms that could be utilized in the near future.

The paper is organized as follows. The basic background, with respect to both post-quantum cryptography and the TLS protocol, is given in Section 2. A presentation of relative previous work in the field is given in Section 3. The description of how the experimental environment was set up, based on previous relevant works, is given in Section 4, along with a discussion on the motivation for these experiments and their added value compared to previous works, whereas the results of our experiments are presented in Section 5. A discussion on the results, stating the main conclusions derived, is given in Section 6. Finally, concluding remarks and suggestions for future research steps are given in Section 7.

2. BACKGROUND

2.1. Post-quantum cryptography

The post-quantum public key cryptographic algorithms are mainly classified into one of the following categories:

- Code-based cryptography includes cryptographic algorithms whose security rests with the difficult problem of decoding an erroneous codeword that has been generated through an unknown error correcting code.
- Lattice-based cryptography includes cryptographic algorithms whose security relies on the difficulty of specific mathematical problems in the field of lattices. Such problems are the shortest vector problem (SVP), being NP-hard, which is related to the finding of the shortest non-zero vector within a lattice, as well as other similar lattice-based difficult problems such as the closest vector problem (CVP) and the shortest integer solution (SIS). An important lattice-based problem is the "learning with errors" (LWE) problem^[16], which has security reductions to variants of SVP.
- Multivariate cryptography includes cryptographic algorithms whose security relies on the complexity of solving systems of multivariate equations, which have been demonstrated to be either NP-hard or NP-complete. Some of the most promising multivariate-based schemes are based on hidden field equations (HFE) (for a generic survey of mathematical problems in the field of multivariate cryptography, see^[17]).
- Hash-based cryptography includes digital signature cryptographic algorithms whose security is based on known properties of cryptographic hash functions, such as pre-image resistance, second-order pre-image resistance, and collision resistance.
- Supersingular elliptic curve isogeny cryptography includes cryptographic algorithms whose security relies on the isogeny protocol for ordinary elliptic curves presented in^[18] but enhanced to withstand the quantum attack detailed in^[19].

In addition, there exist a few algorithms that are based on the security of zero-knowledge proofs. Such postquantum cryptographic schemes are generalizations of hash-based cryptographic schemes, enriched by nice cryptographic properties of symmetric ciphers towards constructing zero-knowledge proofs.

The NIST standardization process for post-quantum public key cryptography provided its first outcomes at the

end of its in third round in July 2022. In this round, seven algorithms, being called finalists, were reviewed for consideration for standardization. Four of them are being considered for encryption, key exchange, and key encapsulation mechanisms — namely Crystals-Kyber, NTRU, Saber (which are lattice-based cryptographic algorithms), and McEliece (which is code-based) — while the remaining three are being considered for digital signatures — namely Crystals-Dilithium and Falcon (which are lattice-based cryptographic algorithms) and Rainbow (which is based on multivariate cryptography). Moreover, during the third round, there were still eight alternates, spanning all possible categories of post-quantum cryptography, for which NIST stated that *they may still potentially be standardized, although that most likely will not occur at the end of the third round. NIST expects to have a fourth round of evaluation for some of the candidates on this track. Several of these alternate candidates have worse performance than the finalists but might be selected for standardization based on high confidence in their security. Other candidates have acceptable performance but require additional analysis or work to inspire sufficient confidence in their security or security rationale. In addition, some alternates were selected based on NIST's desire for a broader range of hardness assumptions in future post-quantum security standards, their suitability for targeted use cases, or their potential for further improvement.*

During the research conducted for this work and the drafting of this paper, the NIST process was in its third round, and thus, as subsequently described in detail, all the aforementioned finalists for key exchange and KEM were considered for our analysis. However, on 5 July 2022, NIST announced, at the end of this round, the first four quantum-resistant cryptographic algorithms — i.e., the "winners" of this round. These are:

- For general encryption, used when we access secure websites, the CRYSTALS-Kyber algorithm was selected.
- For digital signatures, often used when there is a need to verify identities during a digital transaction or to sign a document remotely, the CRYSTALS-Dilithium, FALCON, and SPHINCS+ (the last one is from the list of the alternates) were selected.

At the same time, NIST announced candidates for a fourth round of analysis — i.e., new algorithms are also expected to be selected for public key encryption and key encapsulation mechanism, in addition to the already chosen CRYSTALS-Kyber. The fourth round of the NIST process analyzes McEliece, BIKE, HQC, and SIKE (the last three had been alternatives during the third round). One reason that NIST intends to standardize some more algorithms is to increase the diversity in security assumptions in the case there is a breakthrough in attacks on structured lattices on which Kyber is based.

2.2. The TLS protocol

The TLS protocol, aims to ensure confidentiality as well as data and entity authentication. The latest version of the protocol is 1.3 (RFC 8446), being approved by the Internet Engineering Task Force (IETF) in March 2018^[2].

The main procedures that the TLS protocol follows can be simply described by the following two phases: the first one is the connection setup (known as the handshake protocol), which is followed by steady-state communication (known as the record protocol). During the handshake protocol, the client and server negotiate to commonly decide on a number of parameters, such as the cryptographic algorithms that are to be used, as well as the relevant secret information from which the secret symmetric keys are being computed. After the setup phase, communication begins (record protocol), which is encrypted and authenticated through symmetric cryptographic primitives. The public key encryption is present in TLS at the handshake phase, since: (i) the client authenticates the server through its digital certificate, signed by a certificate authority; and (ii) it is being used so that the client and the server will commonly securely agree on the secret parameters for the symmetric authenticated encryption that is to be used in their communication that will follow.

There are no known practical weaknesses to TLS 1.3; all earlier versions of the protocol (including TLS 1.2) have some weaknesses, which are either inherent to the protocol's design (for some old versions) or may occur

in the case of misconfigurations of the protocol (see^[4] for a survey on these weaknesses). All versions, however, are not post-quantum secure, due to the existence of public-key ciphers such as RSA and elliptic curve (EC) cryptography.

3. RELEVANT PREVIOUS WORK

Embedding post-quantum secure ciphers in the TLS protocol has already been studied by many researchers, due to its high importance. Our research heavily relied on the work presented in^[10], which presents a frame-work for running relevant experiments in TLS by emulating network conditions; more precisely, the testbed developed therein allows controlling variables such as link latency and packet loss rate, and then examining the performance impact of various post-quantum ciphers, both for key establishment and for digital signatures, based on the implementations from the Open Quantum Safe project^[15]. As illustrated by the work in^[10], the network latency hides most of the impact from algorithms with slow performance, while, for some of the algorithms studied therein, a packet loss rate above 3-5% seems to have an impact on the performance.

In^[12], an assessment, through relative experiments, of the concurrent use of quantum-resistant key exchange and authentication in TLS 1.3, as well as SSH protocols, under realistic network conditions, is carried out. It is shown that there exist combinations of algorithms that offer handshake performance close to the current standards (a minimum slowdown of about 1% has been monitored). It is interesting to point out that these "nice" combinations include the lattice-based Kyber cipher, which has been subsequently selected by NIST as the first post-quantum secure standard for public key encryption and KEM. A similar approach is also followed in^[13] but for post-quantum digital signature algorithms. The performance of post-quantum digital signature algorithms is also performed therein.

In parallel with our work, a nice study on the performance of the TLS based on post-quantum secure algorithms is presented in^[21]; this work utilizes the liboqs software library^[22] that was also used in our experiments, as subsequently described. A main outcome of this work is that Saber or CRYSTALS-KYBER for key exchange together with the FALCON signature seems to be a right combination for achieving the best performance, while in general lattice-based cryptography can be compared to RSA and elliptic curve cryptography, outperforming these classical schemes at higher security levels. The work in^[21], however, does not take into account network parameters.

Another relative work in the field is found in^[14], which focuses explicitly on the Google-Cloudflare CECPQ2 experiment for integrating post-quantum key-exchange algorithm into TLS 1.3 for developing a solution achieving higher performance; however, since this experiment utilizes a variant of one of the algorithms in the NTRU proposal, the proposed solution is also based on NTRU. Finally, an integration of the post-quantum KEM scheme Kyber for key establishment and the post-quantum signature scheme SPHINCS+ into the embedded TLS library (mbed TLS) is presented in^[11], illustrating that embedded systems can (at least) act as post-quantum secure TLS clients, for those studied algorithms.

4. THE TESTING ENVIRONMENT

This seciton describes the experiments that were carried out to evaluate the performance of TLS 1.3 (under several configuration parameters) if its public key algorithms for symmetric key exchange are being replaced by post-quantum secure ciphers — namely, by the finalists in the third round of the NIST evaluation process.

The testing environment consisted of one Google cloud device (Intel Xeon Cascade Lake n2-custom, with 8 vCPUs and 16 GB memory at 2.8 GHz) and two local devices, being executed as virtual devices through the Oracle Virtual Box (version 6.1). The first one was running over a desktop PC with Intel Core i-7 6700k at 4

GHz, whereas the second was running over a laptop with Intel Core i5-8250U at 1.6*G*Hz. Each virtual device was assigned with 2 Gb memory and a single-core processor. For all virtual devices (i.e., the two local devices and the cloud device), the operating system was Ubuntu 18.04.5 LTS (Bionic Beaver). All processors made use of Advanced Vector Extensions 2 (AVX2), an extension of AVX, which was first introduced in Intel Haswell family of processors; this is an important feature since many of the algorithms that were being studied in this experiment take advantage of this technology to improve their efficiency. It should be pointed out that the utilization of processors with varying processing capabilities allowed conducting experiments to see how the processor power affects the performance of post-quantum TLS.

To implement simulations that resemble realistic scenarios with regard to client-server connections, Linux network namespaces were used with the aim to develop different network entities, which in turn can be interconnected through virtual Ethernet. A network emulator was used to perform experiments for several probabilities of packet loss and for several round-trip times (RTTs).

The experiments are based on the following:

- 1. On a fork of the pq-tls-benchmark^[23] which contains code and associated data for benchmarking postquantum cryptography in TLS 1.3, appropriately adapted to fit our context; this fork constitutes a companion to the work presented in^[10], which forms the basis for our work.
- On liboqs, an open source C library for quantum-resistant cryptographic algorithms from the Open Quantum Safe (OQS) Project^[15], which provides an open-source implementation of the post-quantum secure algorithms for the TLS 1.3, either from the PQClean project or directly from their submissions to the NIST. This library is available for research purposes.

More precisely, the aforementioned fork was used for the first two types of experiments, while for the third experiment, we used liboqs^[22].

Our experiments included all the post-quantum secure ciphers for key exchange that were analyzed in the third round of the NIST evaluation procedure for all possible security levels; an exemption was the McEliece cipher for the first two experiments due to the large delay that occurred. Indeed, the McEliece cipher, as stated in the NIST Status Report on the Second Round of the Post-Quantum Cryptography Standardization Process^[24], has a very large public key and, thus, does not fit well with Internet protocols as they are currently specified (although it is still an appealing choice for standardization, since it achieves the smallest ciphertext among alls KEMs and, thus, is preferable for some applications). We also examined hybrid versions of these ciphers — i.e., being combined with a classic elliptic curve cipher. Such versions are provided by the OQS project, such as, if quantum-safe public-key algorithms are used in conjunction with traditional public key algorithms, the derived implementation is *at least no less secure than existing traditional cryptography*^[15]. More information on hybrid implementation for key exchange in TLS 1.3 can be bound in ^[10].

The ciphers (for the key exchange) examined for the first two experiments, which utilize simulation of TLS connections, are shown in Table 1. Each cipher has several versions depending on its parameters to achieve a specific security level according to the NIST requirements; as it can be seen, a classical elliptic curve (EC) algorithm for key exchange was also considered — namely, the elliptic curve Diffie-Hellman (ECDH) algorithm, with the NIST Curve P-256.

In all cases, the most recent version, TLS 1.3, of the protocol was used, whereas the data exchanged were encrypted by AES-256 GCM (Galois/Counter Mode). The server's authentication was based on the ECDSA certificate, signed with ECDSA P-256 with SHA-384.

We also executed a third experiment focusing explicitly on the post-quantum algorithms without incorporating

Table 1. The key exchange algorithms that were considered for the first two experiments

Algorithm	Security level
Куре	er
Kyber512	L1
Kyber512-90s	L1
Kyber768	L3
Kyber768-90s	L3
Kyber1024	L5
Kyber1024-90s	L5
p256_kyber512	Hybrid
p256_kyber512-90s	Hybrid
p384_kyber768	Hybrid
p384_kyber768-90s	Hybrid
p521_kyber1024	Hybrid
p521_kyber1024-90s	Hybrid
NTR	U
NTRU-HPS-2048-509	Lı
NTRU-HPS-2048-677	L3
NTRU-HRSS-701	L3
NTRU-HPS-4096-821	L5
p256_ntru_hps2048-509	Hybrid
p384_ntru_hps2048-677	Hybrid
p521_ntru_hps4096-821	Hybrid
p384_ntru_hrss701	Hybrid
Sabe	er
LightSaber	L1
Saber	L3
FireSaber	L5
p256_lightsaber	Hybrid
p384_saber	Hybrid
p521_firesaber	Hybrid
ECDH NIS	ST P-256
prime256v1	Non post-quantum

them into a TLS implementation. In this experiment, the McEliece variants were also taken into account.

4.1. Motivation for this work and relationships with similar works

This study aimed to exhaustively check all the finalists of the third round of the NIST competition for postquantum ciphers with respect to their performance in TLS, focusing on key exchange, under varying network parameters and different underlying computing powers. To this end, as stated above, we mainly utilized the benchmark used in^[10], which is considered a nice option for our experiments. Our analysis extended the analysis in^[10] as follows:

- All the finalists for key exchange, for all possible security levels, were examined in our experiment, while in^[10] the analysis focuses on only three instantiates for key exchange (SIKE p434, Kyber512-90s, and FrodoKEM-640-AES, i.e. instantiates of one finalist and two alternates).
- We additionally examined how the processing power affects the performance for fixed (optimal) network parameters. We also checked, as an additional aspect, the raw performance of each algorithm on different computing devices without using the TLS protocol.

5. RESULTS

This sections presents the results from our range of experiments that took place.

Figure 1. The setup of the first experiment.

5.1. First experiment: Analysis for several network parameters

The first experiment aimed to study the time needed for a complete TLS handshake for several network parameters. To this end, based on the approach in^[10], we created a pair of virtual Ethernets for client-server. In the client's network, a variation of the performance timing program s_timer of the OpenSSL was used to measure the performance as follows: (i) a prescribed number of TLS handshakes was executed, where the relevant post-quantum cipher was embedded each time; and (ii) the session was terminated, storing the time duration that was needed. On the server's side, an Nginx server was executed, which utilized the Open Quantum Safe project's OpenSSL.

We subsequently set several RTTs, depending on the distance assumed between the client and server. Our hypotheses on the RTTs were based on those in^[10]; as stated therein, four RTTs suffice to illustrate several realistic scenarios, from the optimum one (i.e., the smallest distance) to the worst one (i.e., with the largest distance). These four values of RTTs were 5.368 (best), 30.916 (moderate), 78.448 (bad), and 195.46 ms (worst).

Additionally, we set several values for the packet loss ratio, from 0% to 15%, which seemed to be realistic assumptions according to the information that can be obtained from work in^[25]. For each cipher, eight different timers (through the s_timer utility) were used, each of them initiating 500 handshakes with the Nginx server — i.e., a total of 4000 connections for each scenario. The device used as a server was the Google cloud. Our experiments were based on the code available in^[26], which is also a companion to the work presented in^[10]. The whole setup of this experiment is illustrated in Figure 1.

For the cases of ciphers at the highest security level according to the NIST's classification, Figures 2–5 illustrate the diagrams for the time needed to complete the TLS handshakes, for all possible RTTs that were examined (from the best to the worst) and for each possible post-quantum key exchange algorithm. All results from all the experiments, for all security levels, are analytically presented in Figures 13–20 in the Appendix. From these results, we can get the following outcomes:

- The NTRU, Saber, and Kyber variants at the security level L1 behave better than the classical elliptic curve key exchange and their hybrid versions. Even for the few cases that they do not behave better, they are still very close to them, since the worst case that was monitored is a slow down by 2.5%.
- For all security levels, the aforementioned variants seem to behave generally better than their hybrid versions, regardless of the RTT or packet loss ratio.

Figure 2. Results of the time to complete the TLS handshake, for post-quantum ciphers at the highest security level L5, in conjunction with hybrid implementations as well as with a conventional implementation with elliptic curve Diffie-Hellman key exchange with curve P-256. The first figure indicates the medians and the second the 95th percentile, for the optimal RTT.

- A packet loss ratio at 2% or beyond this value highly affects the overall handshake completion time, regardless of the underlying cipher; such a delay is expected, due to packet re-transmissions resulting from packet losses. As becomes clear from the subsequent experiments, the overall time for the handshake completion is much higher than the time of a pure cryptographic execution, and thus, this experiment is more relevant for assessing the effect of the network rather than the effect of the cipher; the latter was studied in the second experiment.
- The increase of packet loss ratio affects the ciphers at higher security levels L3 and L5 more than the ciphers at the L1 security level.
- For large values of RTT, which correspond to large distances between the client and server, we get that this large distance predominates with respect to the overall performance of completion of the handshake.

In principle, lightsaber seems to achieve the best performance for all network settings, but both Kyber and NTRU are also very close. This comparison was further examined by the subsequent experiments, which focused explicitly on the cryptographic procedure without considering network parameters.

Figure 3. Results of the time to complete the TLS handshake, for post-quantum ciphers at the highest security level L5, in conjunction with hybrid implementations as well as with a conventional implementation with elliptic curve Diffie-Hellman key exchange with curve P-256. The first figure indicates the medians and the second the 95th percentile, for the moderate RTT.

5.2. Second experiment: Comparative study for two different devices under an optimum network

For our second experiment, we fixed the values of RTT and packet loss ratio to zero — i.e., to assume an ideal case with no network delays at all (an optimal network). Our aim was to evaluate the performance of the post-quantum ciphers for different devices with different computing capabilities — i.e., one *high_core* at 4 GHz (the Google machine) and one *low_core* at 1.6 GHz (the local machine). The same code as in the first experiment was used, but for each TLS implementation with different post-quantum cipher, we set one timer through the s_timer utility, which initiates 4000 handshakes with the Nginx server. The two local devices were used for the client execution to perform the comparative study. We also examined conventional elliptic curve algorithms to have a comparative study with such contemporary algorithms.

The setup of this experiment is shown in Figure 6.

The results are presented in a similar manner as in the first experiments — namely, we computed the medians

Figure 4. Results of the time to complete the TLS handshake, for post-quantum ciphers at the highest security level L5, in conjunction with hybrid implementations as well as with a conventional implementation with elliptic curve Diffie-Hellman key exchange with curve P-256. The first figure indicates the medians and the second the 95th percentile, for the bad RTT.

for the handshake completion time as well the 95th percentile. These measurements took place for all key exchange ciphers with security levels L1, L3, or L5. The results are shown in Figures 7 and 8 for L1 ciphers, Figures 9 and 10 for L3 ciphers, and Figures 11 and 12 for L5 ciphers.

Focusing on the L1 ciphers, we get that the lightsaber seems to be the faster cipher for the key exchange, whereas — as was also apparent in the first experiment, when several network parameters were varied — it seems to be faster even from conventional elliptic curve algorithms with no post-quantum resistance. More-over, kyber90s512 seems also to have a nice performance. On the contrary, NTRU, as well as its hybrid implementation, seems to have the worst performance, being about 5 times slower than lightsaber and 3.5 times slower than Kyber90s512; in general, the differences in performance become greater in the high core machine.

Examining, for each post-quantum cipher, how the underlying computing power affects its performance, we

Figure 5. Results of the time to complete the TLS handshake, for post-quantum ciphers at the highest security level L5, in conjunction with hybrid implementations as well as with a conventional implementation with elliptic curve Diffie-Hellman key exchange with curve P-256. The first figure indicates the medians and the second the 95th percentile, for the worst RTT.

get that, moving from the high core to the low core machine, NTRU becomes slower by about 25%, Saber becomes slower by about 42%, and Kyber becomes slower by about 62%, while this decrease in performance for the conventional elliptic curve is about 30%.

Similar conclusions also hold for the L3 ciphers; in this case, however, the hybrid versions of lightsaber and kyber90s512 seem to be much more slower than in the case of the L1 ciphers. NTRU is 7.5 times slower than Saber and 6 times slower than Kyber768 (for the high core machine). Moreover, examining how the underlying computing power affects the performance, we get that, moving from the high core to the low core machine, NTRU becomes slower by about 45%, Saber becomes slower by about 33%, and Kyber becomes slower by about 27%, while this decrease in performance for the conventional elliptic curve is about 20%.

The L5 ciphers also have similar behavior and the above conclusions are much more clear; here, Firesaber is about 95% faster than the elliptic curve algorithm cipher with key length 256 bits. Good performance is also achieved by kyber1024 and kyber90s1024, which is also better than the performance of the conventional

Figure 6. The setup of the second experiment.

Figure 7. Results of the handshake time, with zero RTT and packet loss ratio, for ciphers at L1 security level (the median time in ms).

elliptic curve algorithm as well as their hybrid versions. Checking NTRU with respect to Saber and Kyber, we get that NTRU is about 9.3 times slower than Firesaber and about 7 times slower than Kyber1024 (at the high core machine). Moreover, examining how the underlying computing power affects the performance, we get that, moving from the high core to the low core machine, NTRU becomes slower by about 31%, Saber becomes slower by about 28%, and Kyber becomes slower by about 33%, while this decrease in performance for the conventional elliptic curve is about 24%.

For all security levels, and regardless of the underlying computing power (from those two that were used in our experiments), we get that the post-quantum algorithms are faster than their corresponding hybrid versions.

5.3. Third experiment: Raw performance

Our third experiment aimed to check the performance (execution time) of the key encapsulation ciphers based on measurements on the same device. Both local devices were also used to see the effect of the underlying com-

Figure 8. Results of the handshake time, with zero RTT and packet loss ratio, for ciphers at L1 security level (the 95th percentile — time in ms).

Figure 9. Results of the handshake time, with zero RTT and packet loss ratio, for ciphers at L3 security level (the median time in ms).

puting power on the performance of each cipher. For the experiments, we utilized the application speed_kem lying in the repository of liboqs. More precisely, each application was run for 10s, and at the end, we collected the time measurements.

Any such post-quantum cipher actually implements a key encapsulation mechanism (KEM), which consists of three algorithms: the keygen function, which generates a public encapsulation key p_k and a private decapsulation key s_k ; the encaps function, which has as input an encapsulation key p_k and produces at its output a ciphertext c and a symmetric key k; and the decaps function, which has as input a decapsulation key s_k and a ciphertext c and produces a symmetric key k (or a decapsulation failure). The main concept in KEMs is that encapsulating with the public key and decapsulating with the corresponding private key produce the same

Figure 10. Results of the handshake time, with zero RTT and packet loss ratio, for ciphers at L3 security level (the 95th percentile — time in ms).

Figure 11. Results of the handshake time, with zero RTT and packet loss ratio, for ciphers at L5 security level (the median time in ms).

shared secret key, when the encapsulated ciphertext is given as input to the decapsulate function.

All the results from this experiment are shown in Table 2. All the algorithms for security levels L1, L3, and L5 were tested on both devices, whereas the execution times were computed separately for the keygen function, the encaps function, and the decaps function; the mean values of these times are shown in Table 2 for the McEliece variants, Table 3 for the Kyber variants, Table 4 for the NTRU variants, and Table 5 for the Saber variants. Note that, in this experiment, contrary to the previous two, we also tested all the variants of the

Figure 12. Results of the handshake time, with zero RTT and packet loss ratio, for ciphers at L5 security level (the 95th percentile — time in ms).

McEliece cipher, which is one of the finalists in the ongoing NIST standardization process. All parameters for each variant are also shown in the tables, and, for all cases, the size of the shared secret is 32 bytes.

The results in Tables 2–5 illustrate the importance of the underlying computing power, in terms of measuring the performance of a cryptographic algorithm, since gains from about 42% to about 50% are generally observed when we move to a more powerful device. Additionally, this gain in performance becomes more prevalent when the key sizes increase.

Moreover, these measurements confirm the outcomes from the first two experiments, illustrating that Saber and Kyber achieve better performance than the remaining algorithms (with the light version of the Saber, at security level L1, being the fastest), whereas we can also verify that the McEliece variants do not behave well with respect to performance, as was expected.

6. DISCUSSION

Combining the above results, it becomes evident that — as expected — the sizes of the key and the ciphertext highly affect the overall performance of a cipher and, thus, a higher security level of the cipher yields degradation in performance. This is particularly obvious for the McEliece cipher, which is an observation that was also pointed out by NIST. More precisely, the McEliece cipher seems to be not an option for classical contemporary systems. Moreover, the NTRU variants seem to also have not as good behavior as Saber and Kyber in terms of performance, even though the relevant key and ciphertext sizes are comparable with those of the other post-quantum secure ciphers.

Moreover, the results also verify that the network parameters also affect the overall performance to a high extent — and, actually, it is a more decisive factor for the overall performance than the underlying cryptographic algorithms that are being used.

In any case, we can conclude that there are several promising solutions for post-quantum key exchange algorithms that can be used in network security protocols such as the TLS, even in conventional contemporary systems. Such ciphers have comparable or, in some cases, even better performance than classical elliptic curve

Algorithm	Mean time (ms) (Intel Core i7- 6700k @4 GHz)	Mean time (ms) (Intel Core i5-82500k @1.6 GHz)	Percentage difference between the two systems
	Class	sic-McEliece-348864 (L1)	
	Sizes (in bytes): Public	: key: 261120, Secret key: 6452, ciphertext	:: 128
keygen	124.698	173.083	38.80%
encaps	0.311	0.432	38.90%
decaps	0.190	0.269	41.80%
	Class Sizes (in bytes): Public	ic-McEliece-348864f (L1) : key: 261120, Secret key: 6452, ciphertext	:: 128
keygen	99.878	146.610	46.79%
encaps	0.308	0.446	44.81%
decaps	0.192	0.276	43.68%
	Class Sizes (in bytes): Public	sic-McEliece-460896 (L3) key: 524160, Secret key: 13568, ciphertex	t: 188
kevgen	370.397	607.631	64.05%
encaps	0.633	0.901	42.39%
decaps	0.431	0.618	43.49%
	Class Sizes (in bytes): Public	ic-McEliece-460896f (L3) key: 524160, Secret key: 13568, ciphertex	t: 188
kevgen	298.691	441.286	47.74%
encaps	0.613	0.881	43.69%
decaps	0.431	0.649	50.48%
	Class Sizes (in bytes): Public	ic-McEliece-6688128 (L5) key: 1044992, Secret key: 13892, ciphertex	dt: 240
keygen	547.710	974.409	77.91%
encaps	1.203	1.763	46.52%
decaps	0.484	0.706	45.96%
	Classi Sizes (in bytes): Public	ic-McEliece-6688128f (L5) key: 1044992, Secret key: 13892, ciphertex	kt: 240
keygen	401.450	616.208	53.50%
encaps	1.208	1.787	47.95%
decaps	0.485	0.708	45.93%
	Class Sizes (in bytes): Public	ic-McEliece-6960119 (L5) key: 1047319, Secret key: 13908, ciphertex	xt: 226
keygen	542.884	906.688	67.01%
encaps	1.225	1.767	44.26%
decaps	0.464	0.683	47.20%
	Class Sizes (in bytes): Public	ic-McEliece-6960119f (L5) key: 1047319, Secret key: 13908, ciphertex	xt: 226
keygen	383.001	586.975	53.26%
encaps	1.247	1.813	45.39%
decaps	0.463	0.687	48.29%
	Class Sizes (in bytes): Public	sic-McEliece-8192128 (L5) key: 1357824, Secret key: 14080, ciphertex	t: 240
keygen	545.983	843.698	54.53%
encaps	1.643	2.368	44.13%
decaps	0.481	0.705	46.61%
	Class Sizes (in hytes): Public	ic-McEliece-8192128f (L5) kev: 1357824 Secret kev: 14080 cinbertev	d: 240
kovern	410 410	CAE 055	24.010
Reygen	418.616	645.955	54.31%
decans	0.483	0.700	45.00%
accaps	0.700	0.700	1010070

Table 2. Time measurements for post-quantum KEM ciphers (the McEliece variants)

public key algorithms; interestingly, it seems that adopting a hybrid solution does not provide much gain in terms of performance compared to a fully post-quantum secure solution.

Algorithm	Mean time (ms) (Intel Core i7- 6700k @4 GHz)	Mean time (ms) (Intel Core i5-82500k @1.6 GHz)	Percentage difference between the two systems
		KubarE12 (1.1)	
	Sizes (in bytes): Public	c key: 800, Secret key: 1632, ciphertext:	736
keygen	0.065	0.094	43.86%
encaps	0.088	0.128	45.02%
decaps	0.112	0.159	42.38%
	Sizes (in bytes): Public	Kyber512-90s (L1) c key: 800, Secret key: 1632, ciphertext:	736
keygen	0.068	0.101	48.50%
encaps	0.090	0.129	43.27%
decaps	0.115	0.168	45.77%
	Sizes (in bytes): Public	Kyber768 (L3) key: 1184, Secret key: 2400, ciphertext:	1088
keygen	0.112	43.64%	
encaps	0.140	0.201	43.52%
decaps	0.172	0.248	43.98%
	Sizes (in bytes): Public	Kyber768-90s (L3) key: 1184, Secret key: 2400, ciphertext:	1088
keygen	0.120	0.172	43.23%
encaps	0.145	0.211	45.80%
decaps	0.178	0.256	43.98%
	Sizes (in bytes): Public	Kyber1024 (L5) key: 1568, Secret key: 3168, ciphertext:	1568
keygen	0.171	0.245	43.07%
encaps	0.202	0.293	44.81%
decaps	0.242	0.347 43.39%	
	k Sizes (in bytes): Public	(yber1024-90s (L5) key: 1568, Secret key: 3168, ciphertext:	1568
keygen	0.181	0.259	43.00%
encaps	0.213	0.303	42.16%
decaps	0.251	0.361	43.84%

Table 3	Time measurements	for post-quantum	KFM ciphers	(the Kyber variants)
Tuble of	Third Incubal children	for post quantant	iteriti cipitoro	(the hyber variance)

As a general conclusion, we can state that all the Saber variants — namely lightsaber, saber, and firesaber — as well as some variants of the Kyber — namely, kyber768, kyber90s768, kyber1024, and kyber90s1024 — could possibly be considered in terms of performance for adoption even for today's computing systems, since they exhibited nice performance properties for all sets of experiments that were carried out. It seems that there is also no need, from the performance point of view, to focus on hybrid implementations, since pure post-quantum secure ciphers seem to have better behavior. This general conclusion seems to remain valid regardless of the underlying computing power.

During the review phase of this paper, NIST completed its third round, as stated above. According to the relative status report that NIST issued^[27], *both KYBER and Saber are suitable for use on constrained devices, as each of these can be implemented (at least without protections against side-channel attacks) using less than 4 kB of RAM with less than 20 kB of storage for the code*, while the overall performance of NTRU, Saber, and CRYSTALS-Kyber as KEMs would be acceptable for general-use applications, although *NTRU is not quite as good as KYBER or Saber as a result of its slower key generation and somewhat larger public keys and ciphertexts.* In the same report, NIST points out that *while Saber has the lowest total cost due to its smaller public keys and ciphertexts, the cost difference between KYBER and Saber was not large enough to be considered significant.* The algorithm that has been chosen by NIST, as described above, is the CRYSTALS-Kyber. As stated in ^[27], deciding between KYBER, NTRU, and Saber was a difficult choice, since *most applications would be able to use any of them without significant performance penalties.* Since NIST intended to standardize only one of these finalists, as all three were based on lattices, the final choice was CRYSTALS-Kyber, since NIST found that the

Algorithm	Mean time (ms) (Intel Core i7- 6700k @4 GHz)	Mean time (ms) (Intel Core i5-82500k @1.6 GHz)	Percentage difference between the two systems
	NTR	RU-HPS-2048-509 (L1)	
	Sizes (in bytes): Publi	ic key: 699, Secret key: 935, ciphertext:	699
keygen	2.965	4.287	44.60%
encaps	0.181	0.264	46.07%
decaps	0.469	0.691	47.27%
	NTF	RU-HPS-2048-677 (L3)	
	Sizes (in bytes): Public	c key: 930, Secret key: 1234, ciphertext:	930
keygen	5.168	44.94%	
encaps	0.305	0.449	47.28%
decaps	0.814	1.201	47.57%
	Ν	ITRU-HRSS-701 (L3)	
	Sizes (in bytes): Public	key: 1138, Secret key: 1450, ciphertext:	1138
keygen	5.526	8.043	45.55%
encaps	0.304	0.447	46.95%
decaps	0.883	1.289	45.97%
	NTF	RU-HPS-4096-821 (L5)	
	Sizes (in bytes): Public	key: 1230, Secret key: 1590, ciphertext:	1230
keygen	7.596	11.363	49.60%
encaps	0.438	0.649	48.12%
decaps	1.196	1.768	47.83%

Table 4. Time measurements for post-quantum KEM ciphers (the NTRU variants).

Table 5. Time measurements for post-quantum KEM ciphers (the Saber variants)

Algorithm	Mean time (ms) (Intel Core i7- 6700k @4 GHz)	Mean time (ms) (Intel Core i5-82500k @1.6 GHz)	Percentage difference between the two systems										
	L	ightSaber-KEM (L1)											
	Sizes (in bytes): Public	c key: 672, Secret key: 1568, ciphertext:	736										
keygen	0.028	0.042	48.91%										
encaps	0.033	0.049	48.44%										
decaps	0.035	0.035 0.052											
		Saber-KEM (L3)											
Sizes (in bytes): Public key: 992, Secret key: 2304, ciphertext: 1088													
keygen	0.049	0.074	51.88%										
encaps	0.058	0.083	43.68%										
decaps	0.061	0.101	65.79%										
		FireSaber-KEM (L5)											
	Sizes (in bytes): Public	key: 1312, Secret key: 3040, ciphertext:	1472										
keygen	0.075	56.96%											
encaps	0.087	0.137	57.98%										
decaps	0.095	0.143	50.35%										

security assumption upon which CRYSTALS-Kyber is based is marginally more convincing than the security assumptions of NTRU and Saber, whereas *with regard to performance, KYBER was near the top (if not the top) in most benchmarks.*

The conclusions derived from the present research are fully in line with the final output of the third round of the NIST competition, since indeed the CRYSTALS-Kyber algorithm chosen by NIST illustrated in our work very good performance (either the best or almost the best) for key exchange in the TLS protocol, whereas the performance benefits of Saber — as pointed out by NIST — are also clear. Moreover, the performance achieved by the CRYSTALS-Kyber is comparable with the classical contemporary public key implementations for the TLS protocol, and this comparison is not actually affected by network parameters.

7. CONCLUSIONS AND FUTURE RESEARCH

This study focused on analyzing the performance of public-key post-quantum algorithms in light of their possible use for key exchange in the prominent TLS protocol. Based on known results and existing software that has already been developed for research purposes, we carry out a more extended set of experiments, taking into account the list of third round finalists of the NIST's standardization process. The main outcome is that there exist differences among the various finalists with respect to their performance, and the main conclusion with regard to the fastest algorithms are in line with the final choice of NIST at the end of this round — namely the choice of CRYSTALS-Kyber as a standard. Moreover, starting from now, employing post-quantum secure solutions into contemporary applications and network security protocols seems to be a viable option. However, even for those algorithms that have not been standardized—i.e. they are not being evaluated anymore in the current fourth round of the NIST evaluation — the results are of importance, taking into account that it cannot be excluded that some of these schemes might be standardized outside the NIST, especially those for which NIST pointed out that they have low "cost" and do not raise (to our current knowledge) security issues. In this regard, it is interesting to recall that Chacha20, which is a secure symmetric cipher supported by TLS 1.3 for encrypting communication data, is not officially standardized by NIST.

This is a highly evolving research field; one should carefully monitor the progress in the NIST evaluation procedure and the related research. Indeed, at the beginning of August 2022, it was announced in a research paper (a pre-print version is currently public^[28]) that SIKE, which is one of the four algorithms that are currently evaluated by NIST in the fourth round of evaluation (being one of the alternated algorithms in the third round), was cracked by using a computer running Intel Xeon CPU in 1 h.

It should be pointed out that our work focuses only on performance in the handshake phase of the TLS, having post-quantum secure algorithms for key exchange. Although known values of the sizes of the produced ciphertexts and keys are also being presented to allow a comparative study of these factors, we do not explicitly study relevant important parameters such as the bandwidth consumed by communication or the memory required. This could also be considered in future work, taking into account the relevant results announced by NIST. Moreover, the post-quantum digital signature algorithms should also be considered in the same context]such studies have already been performed, for some such algorithms, in several works (e.g., ^[10]), as described in Section 3].

Another important aspect that needs to be considered in future research is to determine the behavior of postquantum secure TLS implementations in restricted environments in terms of computing power and memory; to this end, it is important to focus on cases of IoT applications (e.g., on mobile devices, a Raspberry Pi, etc.) The current research illustrated that the differences in performance gains — among several post-quantum ciphers — seem to increase with the computing power, but such restricted environments have not been examined. Such research efforts have recently been started (see, e.g., ^[11]).

When dealing with an evaluation of ciphers' performance, it is also of importance to identify which underlying processes/computations are more "heavy", so as to focus appropriately on them in future research for algorithms optimization. This aspect was not studied here, and it constitutes an open research field.

Additionally, focusing on embedding post-quantum secure algorithms in other security protocols residing in lower network architecture levels, such as the IPsec, is also an interesting research area (see, e.g.,^[29]). More generally, focusing on post-quantum solutions in several existing protocols and infrastructures, such as the blockchain ecosystem^[30], becomes an essential issue in ensuring the appropriate safeguards for long-term data protection.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for their very useful comments and suggestions, as well as for drawing our attention to some very recent research papers in the field, that helped to significantly improve the paper.

DECLARATIONS

Authors' contributions

Made substantial contributions to conception and design of the study: Tzinos I, Limniotis K, Kolokotronis N Set up simulation environments, performed simulations and provided figures and tables with results: Tzinos I Data analysis and interpretation: Tzinos I, Limniotis K, Kolokotronis N Writing the paper: Tzinos I, Limniotis K, Kolokotronis N

Availability of data and materials

Not applicable.

Financial support and sponsorship None.

Conflicts of interest

All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Copyright

© The Author(s) 2022.

REFERENCES

- 1. Limniotis K. Cryptography as the Means to Protect Fundamental Human Rights. Cryptogr 2021;5:34. DOI
- 2. Rescorla E. The Transport Layer Security (TLS) Protocol Version 1.3.; 2018. Available from: https://datatracker.ietf.org/doc/html/rfc8446.
- Felt AP, Barnes R, King A, et al. Measuring HTTPS adoption on the web. In: Kirda E, Ristenpart T, editors. 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017. USENIX Association; 2017. pp. 1323–38. Available from: https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt.
- Limniotis K, Kolokotronis N. Cryptography threats. In: Kolokotronis N, Shiaeles S, editors. Cyber-Secur. Threat. Actors, Dyn. Mitigation. Boca Raton, FL, USA: CRC Press; 2021. pp. 123–59. DOI
- Shor PW. Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994. IEEE Computer Society; 1994. pp. 124–34. DOI
- 6. Grover LK. A Fast Quantum Mechanical Algorithm for Database Search. In: Miller GL, editor. Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. ACM; 1996. pp. 212–19. DOI
- 7. NIST. Post-Quantum Cryptography. Available from: https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
- Mosca M. Cybersecurity in an era with quantum computers: will we be ready?; 2015. https://ia.cr/2015/1075. Cryptology ePrint Archive, Report 2015/1075.
- Bos JW, Costello C, Naehrig M, Stebila D. Post-quantum key exchange for the tls protocol from the ring learning with errors problem. In: 2015 IEEE Symposium on Security and Privacy; 2015. pp. 553–70. DOI
- 10. Paquin C, Stebila D, Tamvada G. Benchmarking Post-Quantum Cryptography in TLS; 2019. https://ia.cr/2019/1447. Cryptology ePrint Archive, Report 2019/1447.
- 11. Bürstinghaus-Steinbach K, Krauß C, Niederhagen R, Schneider M. Post-quantum TLS on embedded systems: integrating and evaluating

kyber and SPHINCS+ with mbed TLS. In: Sun H, Shieh S, Gu G, Ateniese G, editors. ASIA CCS '20: The 15th ACM Asia Conference on Computer and Communications Security, Taipei, Taiwan, October 5-9, 2020. ACM; 2020. pp. 841–52. DOI

- Sikeridis D, Kampanakis P, Devetsikiotis M. Assessing the overhead of post-quantum cryptography in TLS 1.3 and SSH. In: Han D, Feldmann A, editors. CoNEXT '20: The 16th International Conference on emerging Networking EXperiments and Technologies, Barcelona, Spain, December, 2020. ACM; 2020. pp. 149–56. DOI
- Sikeridis D, Kampanakis P, Devetsikiotis M. Post-quantum authentication in TLS 1.3: A performance study. In: 27th Annual Network and Distributed System Security Symposium, NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet Society; 2020. Available from: https://www.ndss-symposium.org/ndss-paper/post-quantum-authentication-in-tls-1-3-a-performance-study/.
- Bernstein DJ, Brumley BB, Chen MS, Tuveri N. OpenSSLNTRU: Faster post-quantum TLS key exchange; 2021. https://ia.cr/2021/826. Cryptology ePrint Archive, Report 2021/826.
- 15. Stebila D, Mosca M. Avanzi R, Heys HM, editors. Post-quantum key exchange for the Internet and the Open Quantum Safe project. Springer; 2016. Available from: https://openquantumsafe.org.
- Regev O. On lattices, learning with errors, random linear codes, and cryptography. In: Gabow HN, Fagin R, editors. Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005. ACM; 2005. pp. 84–93. DOI
- Ding J, Yang BY. Multivariate public key cryptography. In: Bernstein DJ, Buchmann J, Dahmen E, editors. Post-Quantum Cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. pp. 193–241. DOI
- Rostovtsev A, Stolbunov A. Public-key cryptosystem based on isogenies; 2006. https://ia.cr/2006/145. Cryptology ePrint Archive, Report 2006/145.
- 19. Childs AM, Jao D, Soukharev V. Constructing elliptic curve isogenies in quantum subexponential time. J Math Cryptol 2014;8:1-29. DOI
- Raavi M, Wuthier S, Chandramouli P, et al. Security comparisons and performance analyses of post-quantum signature algorithms. In: Sako K, Tippenhauer NO, editors. Applied Cryptography and Network Security - 19th International Conference, ACNS 2021, Kamakura, Japan, June 21-24, 2021, Proceedings, Part II. vol. 12727 of Lecture Notes in Computer Science. Springer; 2021. pp. 424–47. DOI
- Döring R, Geitz M. Post-quantum cryptography in use: empirical analysis of the TLS handshake performance. In: 2022 IEEE/IFIP Network Operations and Management Symposium, NOMS 2022, Budapest, Hungary, April 25-29, 2022. IEEE; 2022. pp. 1–5.
- 22. Github. liboqs; 2019. Available from: https://github.com/open-quantum-safe/liboqs.
- 23. Github. pq-tls-benchmark; 2019. Available from: https://github.com/xvzcf/pq-tls-benchmark.
- 24. NIST. Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process; 2020. NISTIR 8309. Available from: https://csrc.nist.gov/publications/detail/nistir/8309/final.
- 25. Mozilla. The telemetry portal; 2022. Available from: https://telemetry.mozilla.org/.
- 26. Github. pq-tls-benchmark; 2020. Available from: https://github.com/kalhas/pq-tls-benchmark.
- 27. NIST. Status report on the third round of the nist post-quantum cryptography standardization proces; 2022. NISTIR 8413. Available from: https://csrc.nist.gov/publications/detail/nistir/8413/final.
- Castryck W, Decru T. An efficient key recovery attack on SIDH (preliminary version); 2022. https://eprint.iacr.org/2022/975. Cryptology ePrint Archive, Paper 2022/975. Available from: https://eprint.iacr.org/2022/975.
- Gazdag S, Grundner-Culemann S, Guggemos T, Heider T, Loebenberger D. A formal analysis of IKEv2's post-quantum extension. In: ACSAC '21: Annual Computer Security Applications Conference, Virtual Event, USA, December 6 - 10, 2021. ACM; 2021. pp. 91– 105. DOI
- Brotsis S, Kolokotronis N, Limniotis K. Towards post-quantum blockchain platforms. In: Sargsyan G, Kavallieros D, Kolokotronis N, editors. Security Technologies and Methods for Advanced Cyber Threat Intelligence, Detection and Mitigation. Netherlands: Now Publishers; 2022. pp. 106–30. DOI

APPENDIX

All the results obtained from the first experiment are given in Figures 13–20.

	0.0%	0.1%	0.5%	1%	1.5%	2%	2.5%	3%	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%
ntru_hps2048509	11.62	11.59	11.59	11.63	11.59	11.59	11.58	11.58	11.60	11.62	11.62	11.62	11.66	11.66	11.69	11.72	11.73	11.78	11.77	11.82
lightsaber	11.63	11.53	11.52	11.54	11.52	11.53	11.53	11.54	11.57	11.58	11.60	11.61	11.63	11.66	11.68	11.70	11.71	11.73	11.75	11.81
saber	11.69	11.62	11.62	11.62	11.62	11.62	11.64	11.63	11.66	11.67	11.69	11.70	11.75	11.76	11.78	11.81	11.82	11.84	11.99	11.98
ntru_hps2048677	11.71	11.69	11.66	11.64	11.66	11.65	11.67	11.70	11.68	11.69	11.70	11.71	11.73	11.75	11.76	11.79	11.81	11.88	12.09	11.95
prime256v1	11.74	11.66	11.64	11.65	11.73	11.70	11.69	11.74	11.77	11.79	11.78	11.79	11.81	11.82	11.84	11.85	11.87	11.88	11.91	12.00
ntru_hrss701	11.74	11.75	11.70	11.68	11.69	11.70	11.70	11.71	11.70	11.82	11.77	11.76	11.77	11.79	11.77	11.83	11.85	11.86	11.91	11.98
ntru_hps4096821	11.77	11.77	11.71	11.70	11.71	11.72	11.71	11.72	11.72	11.73	11.75	11.75	11.78	11.81	11.83	11.85	11.90	11.93	11.97	11.98
kyber90s512	11.84	11.80	11.78	11.79	11.84	11.88	11.84	11.87	11.86	11.89	11.90	11.93	11.91	11.94	11.95	11.94	11.97	11.98	12.00	12.02
kyber1024	12.03	11.99	11.93	11.94	11.94	11.94	11.98	11.96	12.00	12.04	12.02	12.00	12.02	12.05	12.06	12.07	12.10	12.11	12.14	12.16
kyber512	12.05	11.85	11.92	11.87	11.85	11.87	11.88	11.89	11.88	11.93	11.96	11.98	11.98	11.99	11.99	12.01	12.02	12.03	12.08	12.08
firesaber	12.05	11.89	11.89	11.90	11.89	11.89	11.90	11.92	11.93	11.92	11.92	11.94	11.93	11.97	11.99	11.98	12.00	12.01	12.03	12.04
kyber90s768	12.05	11.87	11.81	11.91	11.85	11.88	11.90	11.87	11.87	11.92	11.92	11.92	11.93	11.94	11.94	11.95	11.97	12.01	12.05	12.06
kyber90s1024	12.08	11.87	11.81	11.84	11.80	11.85	11.83	11.84	11.85	11.88	11.91	11.91	11.93	11.93	11.94	11.97	11.97	11.97	11.98	12.01
kyber768	12.16	11.90	11.88	11.89	11.85	11.89	11.91	11.94	11.90	11.96	11.97	12.00	11.98	11.99	12.01	12.04	12.06	12.08	12.07	12.13
p256_kyber90s512	12.17	12.08	12.08	12.10	12.11	12.12	12.14	12.14	12.18	12.16	12.17	12.21	12.19	12.23	12.24	12.24	12.24	12.26	12.27	12.31
p256_lightsaber	12.18	11.99	11.96	12.04	12.02	12.04	12.07	12.12	12.11	12.14	12.13	12.17	12.16	12.19	12.17	12.18	12.24	12.24	12.26	12.30
p256_kyber512	12.21	12.08	12.06	12.07	12.08	12.06	12.11	12.13	12.14	12.15	12.15	12.16	12.18	12.17	12.22	12.22	12.22	12.24	12.25	12.32
p256_ntru_hps2048509	12.52	12.28	12.30	12.26	12.31	12.27	12.32	12.29	12.32	12.32	12.34	12.37	12.38	12.37	12.37	12.40	12.41	12.40	12.34	12.45
p384_saber	16.50	16.26	15.65	15.60	15.56	15.57	15.57	15.55	15.58	15.58	15.57	15.57	15.60	15.60	15.62	15.61	15.56	15.65	15.61	15.73
p384_ntru_hrss701	16.77	16.51	15.93	15.71	15.77	15.74	15.70	15.67	15.65	15.70	15.68	15.71	15.70	15.75	15.77	15.77	15.80	15.83	15.87	15.92
p384_kyber768	16.81	16.61	16.10	15.92	15.92	15.93	15.93	15.94	15.93	15.92	15.97	15.92	15.95	15.95	15.96	16.01	15.99	16.03	16.07	16.12
p384_kyber90s768	16.87	16.50	16.06	15.88	15.91	15.96	15.91	15.94	15.88	15.91	15.88	15.92	15.92	15.93	15.94	15.96	15.98	15.95	16.04	16.03
p384_ntru_hps2048677	16.94	16.80	16.07	16.05	15.95	15.94	15.99	15.98	15.98	16.00	16.02	16.05	16.09	16.03	16.09	16.07	16.06	16.11	16.14	16.72
p521_firesaber	24.03	23.47	22.36	21.20	20.55	20.51	20.48	20.44	20.45	20.45	20.46	20.48	20.48	20.52	20.53	20.54	20.56	20.62	20.92	22.13
p521_kyber1024	24.19	23.83	22.64	21.66	20.60	20.62	20.53	20.70	20.86	20.86	20.84	20.80	20.62	20.57	20.56	20.57	20.61	20.66	20.84	21.12
p521_kyber90s1024	24.45	23.42	23.02	21.91	20.95	20.98	20.93	20.95	20.97	20.95	20.95	20.95	20.98	20.98	20.99	20.98	21.01	21.08	21.07	22.37
p521_ntru_hps4096821	24.73	24.08	23.06	22.59	21.26	21.16	21.16	20.95	20.63	20.67	20.67	20.73	20.70	20.75	20.86	20.87	20.87	20.95	20.94	23.77

Figure 13. Results of the handshake time for the best RTT scenario (the median time in ms).

	0.0%	0.1%	0.5%	1%	1.5%	2%	2.5%	3%	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%
kyber512	12.3	12.2	12.3	12.2	218.2	224.6	1012.3	1018	1022	1030	1034	1036	1038	1044	1236	1246	2035	2048	2253	3037
kyber768	12.4	12.2	12.2	12.3	39.0	223.1	1013.4	1018	1024	1030	1036	1041	1046	1234	1245	1281	1706	2051	2454	3040
kyber1024	12.4	12.3	12.3	12.4	39.7	45.3	246.5	1016	1026	1035	1040	1042	1068	1233	1264	1434	2061	2194	3046	3058
kyber90s512	12.2	12.1	12.1	12.0	220.0	225.3	1012.5	1019	1023	1029	1035	1037	1039	1041	1240	1256	1936	2325	3040	3040
kyber90s768	12.3	12.2	12.2	12.3	41.1	224.9	1013.6	1019	1027	1032	1039	1039	1044	1237	1248	1421	1696	2059	3033	3043
kyber90s1024	12.3	12.2	12.1	12.2	37.9	41.1	682.9	1023	1024	1034	1039	1040	1057	1232	1250	1553	2122	2060	2523	3253
p256_kyber512	12.6	12.5	12.4	12.6	216.7	223.0	265.9	1017	1028	1031	1040	1042	1044	1241	1256	1258	2063	2059	2053	3038
p384_kyber768	18.9	18.8	18.7	18.7	46.4	251.9	256.6	1023	1035	1040	1041	1046	1060	1235	1269	1705	2049	2099	3040	3051
p256_kyber90s512	12.6	12.5	12.5	12.7	217.1	227.2	250.6	1019	1028	1032	1037	1043	1224	1242	1257	1275	2012	2045	2063	3037
p384_kyber90s768	19.0	18.8	18.5	18.3	44.5	256.0	707.0	1024	1033	1039	1042	1044	1075	1247	1260	1541	2054	2299	3053	3051
p521_kyber90s1024	27.9	27.7	28.0	28.7	49.8	254.9	384.6	1027	1039	1041	1049	1050	1053	1262	1452	2048	2051	2258	3053	3269
p521_kyber1024	27.6	27.5	27.1	27.9	52.7	253.5	1022.2	1026	1037	1041	1048	1050	1073	1269	1831	1636	1845	2118	3048	3261
p256_ntru_hps2048509	13.0	12.7	12.8	12.8	38.6	226.4	248.6	1021	1027	1030	1040	1040	1046	1239	1248	1258	1444	2034	2613	3040
p384_ntru_hps2048677	19.1	19.2	18.4	19.8	224.1	228.0	1016.7	1024	1029	1038	1039	1041	1046	1242	1248	1260	1952	2050	3038	3058
p521_ntru_hps4096821	28.2	28.2	28.1	28.5	53.4	260.6	1025.2	1029	1037	1043	1051	1053	1237	1251	1444	1664	2065	2630	3059	3294
p384_ntru_hrss701	18.9	18.8	18.3	18.3	246.8	251.4	1017.3	1025	1031	1040	1042	1046	1115	1252	1305	1879	2045	2816	3040	3246
lightsaber	11.9	11.8	11.8	11.9	220.4	225.0	1012.2	1017	1021	1027	1032	1035	1036	1224	1238	1243	1450	2048	2259	2857
saber	12.0	11.9	11.8	11.9	13.6	244.6	1017.8	1012	1024	1032	1037	1038	1054	1235	1253	1545	2034	2057	3036	3043
firesaber	12.4	12.3	12.2	12.4	38.8	84.5	1015.0	1020	1026	1032	1037	1042	1045	1244	1259	1890	2043	2065	3053	3267
p256_lightsaber	12.7	12.3	12.4	12.5	217.3	224.6	249.2	1020	1027	1032	1040	1041	1044	1232	1252	1464	1894	2045	2834	3045
p384_saber	18.4	18.5	17.7	18.9	227.5	251.4	271.1	1022	1030	1034	1040	1044	1046	1239	1258	1254	1820	2280	2389	3038
p521_firesaber	27.5	27.2	27.3	27.7	51.1	258.2	372.7	1025	1038	1040	1049	1050	1055	1262	1275	1463	1887	2422	3044	3286
ntru_hrss701	12.1	12.0	12.1	12.1	216.0	227.3	253.3	1020	1025	1032	1035	1042	1043	1239	1241	1341	2040	1823	2063	3046
ntru_hps4096821	12.1	12.1	12.1	12.1	39.9	243.9	333.8	1022	1027	1032	1039	1042	1044	1250	1448	1622	2051	2275	2912	3044
ntru_hps2048509	11.9	11.9	11.8	12.0	220.7	225.7	227.4	1017	1023	1028	1032	1034	1037	1042	1240	1248	1250	2304	2458	3035
ntru_hps2048677	12.0	12.0	12.0	12.0	220.9	243.8	1012.3	1020	1026	1032	1037	1041	1043	1228	1241	1257	2047	2054	2398	3035
prime256v1	12.0	11.9	12.0	12.0	221.4	222.9	1012.4	1015	1026	1027	1033	1035	1035	1044	1227	1244	1441	2034	3031	3043

Figure 14. Results of the handshake for the best RTT scenario (the 95th percentile — time in ms).

	0.0%	0.1%	0.5%	1%	1.5%	2%	2.5%	3%	4%	5%	6%	7%	8%	9 %	10%	11%	12%	13%	14%	15%
lightsaber	62.9	62.7	62.7	62.7	62.7	62.7	62.7	62.7	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.9	62.8	62.9	62.9	62.9
saber	62.9	62.7	62.7	62.7	62.7	62.8	62.9	63.0	62.9	63.1	63.0	63.0	62.9	62.9	62.9	62.9	62.9	63.0	63.0	63.0
p256_kyber512	63.0	62.9	62.9	62.9	62.9	62.9	62.9	63.0	63.0	63.0	63.0	63.0	63.1	63.1	63.1	63.1	63.1	63.2	63.2	63.2
kyber512	63.0	62.8	62.7	62.7	62.7	62.7	62.7	62.8	62.8	62.8	62.8	62.8	62.8	62.9	62.8	62.9	62.9	62.9	63.0	63.2
kyber90s768	63.0	62.7	62.7	62.7	62.7	62.7	62.8	62.8	62.8	62.9	62.8	62.9	62.8	62.9	62.9	62.9	62.9	62.9	62.9	63.0
ntru_hps2048509	63.0	62.8	62.7	62.7	62.7	62.7	62.7	62.7	62.8	62.8	62.8	62.8	62.8	62.8	62.9	62.9	62.9	62.9	63.0	63.0
kyber768	63.0	62.8	62.7	62.7	62.7	62.7	62.8	62.8	62.8	62.8	62.8	62.8	62.9	62.9	62.9	63.0	63.0	63.2	63.2	63.1
kyber90s512	63.0	62.8	62.7	62.7	62.7	62.7	62.7	62.7	62.7	62.8	62.8	62.8	62.8	62.8	62.8	62.9	62.9	62.9	62.9	63.0
kyber1024	63.1	62.9	62.8	62.8	62.8	62.9	62.9	62.9	62.9	63.1	63.0	63.0	63.0	63.0	63.1	63.1	63.1	63.1	63.2	63.3
ntru_hps2048677	63.1	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.9	62.9	62.9	62.9	63.0	63.0	63.0	63.0	63.0	63.1
kyber90s1024	63.1	62.9	62.8	62.8	62.8	62.8	62.7	62.7	62.7	62.8	62.8	62.8	62.8	62.9	62.9	62.9	62.9	62.9	63.0	63.0
ntru_hrss701	63.2	62.8	62.8	62.8	62.8	62.8	62.8	62.8	62.9	62.9	62.9	62.9	62.9	63.0	63.0	63.0	63.0	63.1	63.2	63.2
ntru_hps4096821	63.2	62.9	62.9	62.9	62.9	62.9	62.9	62.9	62.9	62.9	63.0	63.0	63.0	63.0	63.0	63.1	63.1	63.1	63.1	63.2
firesaber	63.3	62.9	63.0	62.9	62.9	62.9	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.1	63.1	63.1	63.1	63.1	63.1
prime256v1	63.5	63.2	63.1	63.1	63.1	63.2	63.2	63.1	63.2	63.2	63.3	63.3	63.3	63.3	63.3	63.3	63.3	63.4	63.4	63.4
p256_kyber90s512	63.6	63.5	63.4	63.4	63.4	63.4	63.4	63.4	63.4	63.4	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.6
p256_lightsaber	63.6	63.4	63.4	63.3	63.3	63.3	63.3	63.3	63.4	63.4	63.4	63.4	63.4	63.4	63.5	63.5	63.5	63.6	63.6	63.6
p256_ntru_hps2048509	63.8	63.5	63.4	63.4	63.5	63.5	63.5	63.5	63.5	63.5	63.6	63.6	63.5	63.6	63.6	63.6	63.6	63.6	63.7	63.7
p384_saber	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.6	66.6	66.6	66.7	66.8	66.8	66.7	66.7	66.7	66.7	67.0
p384_kyber768	66.6	66.6	66.6	66.6	66.6	66.6	66.6	66.6	66.6	66.6	66.7	66.7	66.7	66.7	66.8	66.8	66.8	66.8	66.9	66.9
p384_kyber90s768	66.7	66.7	66.7	66.7	66.7	66.7	66.8	66.9	66.9	66.9	66.8	66.8	66.9	66.8	66.8	67.0	67.0	66.9	67.0	67.1
p384_ntru_hrss701	66.8	66.8	66.8	66.8	66.8	66.8	66.8	66.8	66.8	66.9	66.9	66.9	66.9	67.0	67.0	67.0	67.0	67.1	67.1	67.1
p384_ntru_hps2048677	67.0	67.0	67.0	67.0	66.9	66.8	66.8	66.8	66.8	66.9	66.9	66.9	66.9	67.0	67.1	67.0	67.0	67.2	67.1	67.1
p521_kyber1024	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.7	71.7	71.9	71.8	71.9	71.8	71.9	72.0
p521_firesaber	71.7	71.6	71.7	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.7	71.7	71.7	71.7	71.8	71.8	72.1
p521_ntru_hps4096821	71.8	71.9	71.9	71.8	72.0	72.1	72.1	72.1	72.0	71.9	71.9	72.0	71.9	72.0	72.1	72.1	72.1	72.1	72.1	73.5
p521_kyber90s1024	71.9	71.7	71.7	71.7	71.7	71.7	71.7	71.8	71.8	71.8	71.8	71.8	71.8	71.9	72.0	71.8	71.9	71.9	72.1	72.2

Figure 15. Results of the handshake time for the moderate RTT scenario (the median time in ms).

	0.0%	0.1%	0.5%	1%	1.5%	2%	2.5%	3%	4%	5%	6%	7%	8%	9 %	10 %	11%	12%	13%	14%	15%
kyber512	63.3	63.2	62.9	63.1	297	297	566	1069	1074	1076	1081	1088	1089	1264	1299	1377	1818	2102	2257	3090
kyber768	63.3	63.2	63.1	63.1	291	351	1066	1069	1088	1088	1094	1106	1108	1306	1384	2022	2081	2305	2384	3104
kyber1024	63.4	63.4	63.2	63.2	167	170	1066	1072	1079	1089	1102	1103	1329	1338	1550	1943	2883	2532	3121	3408
kyber90s512	63.3	63.1	63.1	63.1	296	298	1065	1071	1073	1076	1080	1088	1092	1095	1311	1378	2080	2099	3087	3087
kyber90s768	63.3	63.0	63.1	62.9	168	358	1066	1072	1082	1090	1098	1103	1109	1328	1358	1623	2083	2103	3088	3103
kyber90s1024	63.4	63.2	63.1	63.1	168	372	1064	1066	1078	1090	1096	1104	1309	1337	1561	2090	2602	2941	3117	3244
p256_kyber512	63.3	63.2	63.2	63.3	309	353	1064	1067	1079	1090	1099	1104	1106	1121	1381	1568	2075	2112	2497	3105
p384_kyber768	68.0	67.9	67.8	68.5	174	377	452	1072	1079	1090	1098	1118	1301	1602	1834	2027	2110	2629	3130	3422
p256_kyber90s512	64.1	63.8	63.7	63.9	169	305	1067	1070	1086	1090	1098	1103	1106	1304	1382	1507	2095	2115	2725	3104
p384_kyber90s768	68.2	67.8	68.0	69.4	173	376	407	1073	1082	1089	1100	1108	1115	1338	1601	2079	2120	2323	3134	3491
p521_kyber90s1024	75.7	75.5	75.7	77.2	178	383	417	1079	1085	1091	1104	1113	1123	1400	1528	2038	2089	2829	3146	3151
p521_kyber1024	75.3	74.2	75.5	76.1	178	381	1075	1077	1085	1092	1106	1112	1299	1397	1826	2033	2209	3123	3128	3214
p256_ntru_hps2048509	64.2	63.9	63.9	63.9	293	300	376	1073	1088	1094	1099	1105	1108	1168	1396	1384	2080	2097	3085	2626
p384_ntru_hps2048677	68.5	68.6	68.9	69.0	299	377	419	1076	1082	1089	1099	1098	1108	1337	1377	1662	2082	2315	3089	3103
p521_ntru_hps4096821	75.6	75.4	75.9	79.0	178	387	436	1076	1088	1097	1103	1116	1296	1391	1666	2112	2309	2712	3423	3380
p384_ntru_hrss701	68.2	67.8	68.2	68.7	172	376	1068	1073	1085	1088	1099	1105	1179	1388	2046	2105	2288	2450	3135	3159
lightsaber	63.1	63.0	63.0	63.0	296	299	344	1067	1074	1077	1085	1089	1090	1093	1309	1328	1600	2083	2407	3104
saber	63.2	63.0	63.1	63.0	169	372	377	1065	1077	1092	1095	1103	1113	1334	1382	1400	2104	2521	3081	3088
firesaber	63.6	63.3	63.3	63.4	168	371	375	1067	1081	1092	1103	1107	1132	1417	1632	2033	2159	2550	3130	3394
p256_lightsaber	64.0	63.9	63.7	63.8	172	374	1064	1073	1080	1089	1103	1103	1105	1336	1350	1809	1860	2097	3088	3112
p384_saber	68.2	68.4	68.2	68.4	295	378	379	1069	1080	1087	1091	1102	1107	1360	1406	1870	2030	2100	3041	3101
p521_firesaber	75.3	75.5	75.2	78.3	177	384	1073	1081	1088	1096	1103	1115	1180	1417	1546	2097	2122	3126	3170	3454
ntru_hrss701	63.5	63.3	63.0	63.2	295	371	1064	1068	1084	1088	1094	1106	1110	1360	1397	1505	1893	2112	3083	3097
ntru_hps4096821	63.5	63.3	63.3	63.3	169	374	1064	1070	1088	1093	1100	1103	1111	1337	1572	2017	2112	2401	3141	3297
ntru_hps2048509	63.3	63.1	62.9	63.1	294	302	358	1067	1071	1075	1083	1088	1089	1095	1312	1379	1562	2087	2465	3097
ntru_hps2048677	63.4	63.2	63.1	63.2	330	372	403	1071	1075	1090	1102	1104	1106	1344	1376	1591	1816	2097	2405	3104
prime256v1	63.8	63.6	63.5	63.5	295	339	1066	1065	1074	1075	1087	1088	1091	1304	1320	1362	2072	2316	2452	3091

Figure 16. Results of the handshake for the moderate RTT scenario (the 95th percentile - time in ms).

	0.0%	0.1%	0.5%	1%	1.5%	2%	2.5%	3%	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%
lightsaber	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158
kyber90s512	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158
kyber512	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158
ntru_hrss701	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158
ntru_hps2048509	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158
ntru_hps2048677	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158
firesaber	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158
kyber90s1024	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158
kyber768	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158
kyber90s768	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158
saber	159	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158
kyber1024	159	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158
ntru_hps4096821	159	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158
p256_kyber512	159	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	159	158	159
prime256v1	159	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	158	159
p256_kyber90s512	159	159	158	158	159	158	158	159	158	159	159	159	159	159	159	159	159	159	159	159
p256_lightsaber	159	159	158	158	158	158	158	158	159	159	159	159	159	159	159	159	159	159	159	159
p256_ntru_hps2048509	159	159	159	159	159	159	159	159	159	159	159	159	159	159	159	159	159	159	159	159
p384_saber	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162
p384_kyber90s768	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162
p384_ntru_hrss701	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162
p384_ntru_hps2048677	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	163
p384_kyber768	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162
p521_kyber90s1024	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167
p521_firesaber	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167
p521_kyber1024	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167
p521_ntru_hps4096821	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167

Figure 17. Results of the handshake time for the bad RTT scenario (the median time in ms).

	0.0%	0.1%	0.5%	1%	1.5%	2%	2.5%	3%	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%
kyber512	158	158	158	158	439	458	1159	1163	1167	1174	1178	1181	1184	1187	1484	1547	2176	2536	3175	3182
kyber768	159	159	158	158	444	612	1161	1164	1183	1238	1247	1252	1279	1536	1628	1638	2204	2417	3041	3200
kyber1024	159	158	158	158	406	408	687	1161	1178	1188	1245	1257	1454	1543	1784	2340	2263	3254	3255	3638
kyber90s512	158	158	158	158	443	467	1160	1163	1168	1173	1176	1181	1184	1186	1472	1747	2137	3175	2845	3188
kyber90s768	159	159	159	158	450	545	1159	1169	1177	1236	1242	1253	1259	1530	1552	1672	2254	2593	3182	3265
kyber90s1024	159	158	158	158	406	616	704	1165	1180	1244	1248	1258	1361	1533	1647	2191	2615	3254	3278	3573
p256_kyber512	159	159	159	159	406	544	701	1162	1179	1239	1241	1254	1258	1530	1557	1635	2185	2258	3186	3193
p384_kyber768	164	163	164	164	411	632	1163	1175	1187	1192	1253	1263	1432	1583	1855	2137	2207	2708	3303	3646
p256_kyber90s512	159	159	159	159	408	467	621	1169	1185	1237	1246	1253	1259	1529	1794	1643	2193	2666	3182	3253
p384_kyber90s768	163	163	162	165	411	640	1164	1171	1182	1240	1246	1375	1465	1547	1962	2257	2187	2792	3282	3440
p521_kyber90s1024	169	169	170	170	415	631	646	1184	1192	1247	1260	1268	1536	1638	2000	2201	2369	3266	3566	3865
p521_kyber1024	169	170	170	173	417	637	1170	1172	1190	1248	1259	1264	1478	1598	1865	2194	2437	2720	3278	3295
p256_ntru_hps2048509	159	159	159	159	411	459	534	1165	1179	1239	1243	1254	1260	1543	1548	1648	2137	2353	3177	3190
p384_ntru_hps2048677	163	163	163	164	410	626	963	1166	1187	1193	1247	1254	1257	1533	1552	1840	2202	3180	3181	3202
p521_ntru_hps4096821	169	170	169	170	415	645	1170	1179	1193	1197	1256	1267	1457	1580	1817	2194	2431	2905	3486	3293
p384_ntru_hrss701	163	163	163	164	411	783	1164	1167	1183	1224	1244	1263	1434	1627	1647	2147	2417	2696	3277	3549
lightsaber	158	158	158	158	455	468	1159	1163	1168	1172	1177	1181	1186	1188	1471	1544	2186	2187	2611	3183
saber	159	158	158	159	448	461	1158	1164	1178	1188	1250	1252	1436	1545	1553	1740	2194	2346	3178	3194
firesaber	159	159	158	158	406	628	1163	1168	1184	1243	1247	1257	1467	1538	1760	2176	2613	2748	3279	3475
p256_lightsaber	159	159	159	159	408	487	1159	1165	1185	1240	1247	1256	1257	1531	1545	1832	2185	3175	3183	3193
p384_saber	163	162	163	163	442	640	719	1166	1181	1189	1248	1252	1258	1546	1618	2024	1928	2445	3178	3194
p521_firesaber	170	169	170	170	416	631	647	1175	1190	1248	1255	1267	1477	1625	1677	2199	2923	3238	3291	3642
ntru_hrss701	159	159	158	158	442	544	624	1167	1181	1189	1242	1253	1387	1481	1543	1670	2193	2434	3179	3200
ntru_hps4096821	159	158	158	158	405	620	690	1169	1184	1188	1246	1259	1543	1557	1886	1832	2356	2549	3268	3357
ntru_hps2048509	158	158	158	158	454	473	536	1161	1167	1173	1178	1181	1186	1461	1465	1540	2195	2201	2941	3184
ntru_hps2048677	159	158	158	158	406	538	1160	1166	1186	1188	1246	1254	1259	1542	1556	1820	2183	2210	2980	3194
prime256v1	159	159	159	159	448	537	529	1161	1169	1174	1179	1183	1186	1189	1482	1487	1597	2295	2772	3184

Figure 18. Results of the handshake for the bad RTT scenario (the 95th percentile — time in ms).

	0.0%	0.1%	0.5%	1%	1.5%	2%	2.5%	3%	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%
lightsaber	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392
saber	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392
kyber90s1024	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392
ntru_hps2048509	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392
firesaber	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392
kyber1024	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392
kyber90s512	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392
ntru_hps2048677	393	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392
kyber512	393	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392
kyber90s768	393	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392
ntru_hrss701	393	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392
kyber768	393	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392
p256_kyber512	393	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	393	392
prime256v1	393	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	393	393
ntru_hps4096821	393	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392	392
p256_lightsaber	393	392	392	392	392	392	392	392	392	392	392	392	393	393	393	393	393	393	393	393
p256_kyber90s512	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393
p256_ntru_hps2048509	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393	393
p384_saber	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396
p384_kyber90s768	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396
p384_kyber768	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396
p384_ntru_hps2048677	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396
p384_ntru_hrss701	397	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396	396
p521_kyber90s1024	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401
p521_firesaber	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401
p521_kyber1024	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401
p521_ntru_hps4096821	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401	401

Figure 19. Results of the handshake time for the worst RTT scenario (the median time in ms).

	0.0%	0.1%	0.5%	1%	1.5%	2%	2.5%	3%	4%	5%	6%	7 %	8%	9 %	10%	11%	12%	13%	14%	15%
kyber512	393	393	393	392	985	1005	1012	1399	1404	1409	1414	1415	1600	1607	2014	2023	2420	3030	3425	3428
kyber768	393	393	392	393	995	1012	1404	1410	1426	1595	1602	1615	1656	2196	2240	2449	3198	3265	3609	4139
kyber1024	393	393	392	392	1008	1013	1408	1412	1591	1603	1608	1845	2202	2412	2425	2820	3197	3678	3625	4221
kyber90s512	393	392	392	393	988	1002	1395	1400	1406	1411	1414	1421	1594	1624	2012	2424	2432	2808	3424	3424
kyber 90s768	393	392	392	392	1002	1393	1411	1409	1423	1598	1598	1615	2010	2198	2415	2615	2810	3412	3447	3839
kyber90s1024	393	392	392	392	990	1015	1406	1416	1431	1598	1606	1677	2087	2212	2519	3100	3611	3617	4008	4767
p256_kyber512	393	393	393	392	997	1015	1405	1410	1427	1595	1607	1614	1998	2195	2416	2443	2811	3413	3508	3625
p384_kyber768	398	397	397	397	998	1022	1404	1417	1552	1603	1617	1909	2222	2424	2636	2668	3224	3620	3634	4520
p256_kyber90s512	393	393	393	393	991	1017	1394	1413	1419	1600	1609	1614	2004	2199	2424	2523	2609	3421	3638	4028
p384_kyber90s768	398	397	397	397	1000	1399	1407	1418	1428	1603	1613	1634	2196	2335	2469	3284	3268	3619	4036	5114
p521_kyber90s1024	403	403	403	407	1010	1406	1418	1427	1600	1612	1617	1726	2215	2437	2440	2806	3618	3620	4070	4235
p521_kyber1024	404	403	403	405	1008	1027	1415	1420	1600	1615	1617	2001	2211	2337	2597	3076	3268	3636	3999	4832
p256_ntru_hps2048509	393	393	393	393	984	1008	1017	1406	1432	1591	1603	1611	2010	2197	2225	2430	2783	3389	3456	3983
p384_ntru_hps2048677	397	397	397	398	1004	1400	1407	1415	1428	1600	1605	1613	1951	2203	2430	2439	3415	3416	3436	3624
p521_ntru_hps4096821	404	403	403	404	1022	1410	1421	1422	1469	1610	1620	1627	2016	2220	2452	2987	3500	3619	4249	4837
p384_ntru_hrss701	398	397	397	398	1013	1398	1408	1421	1600	1604	1614	2012	2194	2432	2446	2989	3097	3640	4241	4236
lightsaber	393	392	392	392	986	1000	1014	1400	1405	1410	1414	1418	1420	1995	2014	2020	2620	2778	3400	3433
saber	393	392	392	392	984	1010	1398	1411	1428	1601	1603	1611	2008	2020	2222	2590	2804	3439	3427	4030
firesaber	393	393	392	392	1002	1012	1400	1418	1422	1599	1614	1877	2026	2204	2424	2788	3350	3619	4026	4628
p256_lightsaber	393	393	393	393	988	1394	1403	1414	1588	1596	1605	1613	2001	2207	2425	2436	3023	2800	3437	3744
p384_saber	397	397	397	398	989	1012	1401	1417	1444	1601	1606	1617	2016	2202	2206	2452	3056	3328	3436	3996
p521_firesaber	404	402	404	404	1020	1409	1419	1420	1598	1614	1621	1674	2211	2432	2621	3111	3318	3661	4065	5317
ntru_hrss701	393	393	392	392	998	1009	1405	1409	1426	1593	1602	1613	1997	2013	2222	2600	2802	3426	3623	4028
ntru_hps4096821	393	393	393	393	1004	1018	1400	1410	1426	1603	1605	1676	2194	2423	2430	2786	3614	3617	4017	4815
ntru_hps2048509	393	392	392	392	392	1004	1393	1398	1408	1411	1413	1418	1422	1921	2016	2417	2434	2449	3423	3429
ntru_hps2048677	393	392	392	392	988	1014	1401	1411	1438	1597	1603	1612	1998	2196	2420	2585	2790	3424	3429	3630
prime256v1	393	393	393	393	986	1010	1395	1400	1409	1410	1414	1419	1421	1611	2010	2022	2444	2795	3409	3427

Figure 20. Results of the handshake for the worst RTT scenario (the 95th percentile — time in ms).