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Abstract
This review explores the pivotal role of the blood-brain barrier (BBB) in maintaining central nervous system (CNS) 
homeostasis and its dynamic involvement in the pathogenesis of cerebral small vessel disease (CSVD), i.e., the 
major precursor of age-related neurodegenerative diseases such as vascular dementia and Alzheimer’s disease. It 
underscores the BBB as a critical physiological boundary that regulates the exchange between the bloodstream and 
the cerebral milieu through a complex and dynamic interface composed of endothelial cells, astrocyte endfeet, and 
pericytes. The integrity of this barrier is paramount for neural function, shielding the brain from toxicants and 
pathogens while facilitating the transport of essential nutrients. Nevertheless, BBB dysfunction is recognized as a 
lead in the pathogenesis of neurodegeneration including CSVD, emphasizing the need for focused research on 
maintaining or restoring BBB function. This review highlights recent advancements in our understanding of BBB 
dynamics in both health and disease states, its involvement in CSVD pathomechanisms, and the challenges and 
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future directions of translational research and emerging technologies. The review advocates for a multidisciplinary 
approach to uncover the complexity of BBB dysfunction in CSVD, as well as insights into potential therapeutic 
targets aimed at preserving BBB integrity, thereby minimizing its impact given the notable world’s aging 
demographics.
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INTRODUCTION
The blood-brain barrier (BBB) represents a vital physiological frontier in the central nervous system (CNS) 
that meticulously orchestrates the selective exchange between the circulation and the cerebral 
microenvironment. This complex and dynamic interface is composed of endothelial cells (ECs) sealed by 
tight junctions (TJs) and adherens junctions (AJs), and supported by other cell types, such as astrocytes and 
pericytes. Together, they form a highly selective barrier that not only shields the brain from potentially 
neurotoxic compounds, but also facilitates the transportation of essential nutrients and molecules necessary 
for an optimal neural function. The regulatory mechanisms of BBB ensure cerebral homeostasis by 
safeguarding the delicate microenvironment essential for neural signaling and brain health[1,2]. Disruption to 
the integrity and/or dynamics of BBB is increasingly implicated in the pathogenesis of various CNS 
disorders[3]. Such disruptions can lead to the uncontrolled entry of harmful substances, inflammation, and 
subsequent detrimentally compromise neural function, thus emphasizing the critical need for research 
focused on maintaining or restoring BBB functionality[2,4].

In addition to the BBB, the glymphatic pathway plays a pivotal role in the maintenance of cerebral 
homeostasis in facilitating the clearance of interstitial solutes, such as metabolic by-products, from the 
brain. This complex pathway is distinguished by the movement of cerebrospinal fluid (CSF) into the brain 
parenchyma through perivascular space (PVS) that accompanies the brain's vascular network. Astrocytes, a 
specific type of glial cells, play a crucial role in this process. Their endfeet envelop the brain’s blood vessels, 
housing aquaporin-4 (AQP4) water channels that help in the facilitation of CSF influx into the interstitial 
space[5-7]. The glymphatic pathway functions in a series of steps: CSF enters the brain along para-arterial 
spaces fueled by arterial pulsation, integrates with interstitial fluid within the brain tissue that assists in 
clearing the metabolic by-products, and afterward through the para-venous passages to be cleared into the 
lymphatic systems[5].

Cerebral small vessel disease (CSVD) is a prevalent neurological condition of significant concern with the 
growing global aging population that contributes to full-blown stroke and vascular dementia[8,9]. In clinical 
practice, the neuroimaging features of CSVD as seen on magnetic resonance imaging (MRI) include recent 
small subcortical infarct, lacune, white matter hyperintensity (WMHs), enlarged perivascular space (ePVS), 
cerebral microbleed, cortical superficial siderosis, cortical cerebral microinfarcts, and brain atrophy[10-12]. 
Every case of CSVD has an underlying microvascular pathology, which adds to the complexity of its 
pathophysiological mechanism that is yet unknown[13]. The breakdown of the BBB has been specifically 
linked with the development and progression of CSVD, impacting cerebral blood flow (CBF) dynamics, and 
thus increasing the risk for cognitive impairment and dementia[14,15]. In fact, with increasing age and the 
presence of chronic hypertension, damage to the cerebral endothelium of the BBB is inevitable owing to the 
stress caused by hemodynamic changes[16].

Therefore, in this narrative review, we aimed to explore the relationship between BBB integrity and CSVD, 
with a focus on preclinical studies that shed light on how aberrant BBB dynamics affects the progression 
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and development of CSVD. By delving into the complexities of BBB dynamics in the context of CSVD, this 
review underscores the importance of the BBB, the neuro-glio-vascular unit (NGVU), and the glymphatic 
system in both the maintenance of brain health and the development of neurodegenerative diseases. Finally, 
we discussed the current research status and potential therapeutic options to overcome aberrant BBB 
dynamics in CSVD.

THE BLOOD-BRAIN BARRIER: FUNDAMENTAL CONCEPTS
The human brain is home to over 80 billion neurons, a myriad of glial cells, and more than 600 km of blood 
vessels[3,17]. The BBB serves a crucial role in maintaining the homeostasis of the brain's microenvironment by 
acting as a dynamic interface between the CNS interstitial fluid and the circulating blood. This separation 
regulates solutes and toxicants, maintaining a stable environment conducive to neuronal function[18]. In 
essence, as illustrated in Figure 1, this homeostasis is delicately regulated by the NGVU and glymphatic 
system, which control the flow of CSF, interstitial fluids (ISF), metabolic waste, and their clearance through 
the venous circulation. NGVU stands for the integration of neuronal structures, glial cells (including the 
microglial), and vasculature (specifically capillaries, arteries, and/or arterioles) that is controlled by the 
astrocytes. As the brain’s metabolic rate increases, the NGVU continuously releases neurotoxic soluble 
waste products into the ISF area. The glymphatic system is recognized as a principal route of draining these 
metabolites. This pathway involves the perivascular spaces around capillaries, arteries, venules, and veins, 
facilitating the bi-directional flow of CSF and ISF within the brain[5-7]. The driving force behind the 
movement of interstitial fluid reverting to the glymphatic system is an intricate process. Arterial pulsation 
assists in the convective influx of CSF into the interstitial space while the perivenular spaces act as the 
conduit for the CSF to exit, thus securing efficient removal and clearance across the glymphatic system[5,6]. 
These mechanisms accentuate the importance of both arterioles and venules in sustaining the homeostasis 
of ISF. The hypothesis states that the perivascular space acts as a conduit for the CSF to flow into the brain 
parenchyma perivascular space[19].

Endothelial cells
The BBB contains specialized cells called endothelial cells (ECs), which are crucial for preserving the 
microenvironment of the brain and controlling the flow of substances between the bloodstream and the 
brain[20]. The brain is protected from neurotoxins, drugs, and other potentially harmful substances by the 
ECs within the BBB[21]. This function is fully supported by TJ proteins and the high densities of transporters 
and receptors to ensure that essential molecules can readily enter the brain[22]. Moreover, the interaction 
between ECs and the adjacent astrocytes emphasizes the structural integrity of the BBB. ECs within the BBB 
physiologically balance CNS protection and immune cell infiltration by regulating neurovascular coupling, 
CBF, and immune surveillance[23]. Additionally, to maintain CNS homeostasis, TJs comprised of several 
proteins including claudins, occludin, and junctional adhesion molecules [JAMs], are interconnected 
through cytoplasmic accessory proteins such as zonula occludins [ZOs], which help maintain the integrity 
of the BBB, resulting in high trans-endothelial electrical resistance and limited paracellular permeability[24]. 
Therefore, BBB responses are dynamically regulated by crosstalk between ECs and surrounding cells in 
response to both physiological and pathological stimuli[25].

Astrocytes
Astrocytes are essential parts of the NGVU, which maintains the homeostasis of the CNS. Their wide 
branching processes, which encircle the capillaries in the brain, allow them to come into close contact with 
ECs, which is essential for the structural and functional integrity of the BBB[21]. Astrocyte endfeet, which 
make up more than 99% of the brain's capillary surfaces, support the glia limitans and maintain the integrity 
of the BBB[26]. By releasing substances like glial-derived neurotrophic factor (GDNF) and angiopoietin-1 
(Ang1), which improve TJs proteins expression and structure in ECs, astrocytes influence the BBB integrity 
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Figure 1. The components of BBB, NGVU, and the glymphatic system. The NGVU is composed of neuronal cells, glial cells, and the 
vascular system that includes arteries, veins, smooth muscle cells (not depicted in the figure), and pericytes that encircle the vascular 
endothelial cells. The glymphatic system is primarily made up of astrocytes and the endfeet of astrocytes that envelop the vasculature. 
It drains waste products through the CSF from the artery, flowing into the ISF through astrocytic AQP4 channels, thereby mixing the 
CSF with ISF. Waste solutes and/or by-products subsequently traverse the glymphatic pathway for absorption and processing by the 
waste clearance system.

and dynamics[27]. Moreover, through neurovascular coupling, they control CBF, aid in the movement of 
nutrients and waste products, and modify local metabolic demands[28,29]. Furthermore, astrocytes play a 
crucial role in CNS immunological processes such as inflammatory response orchestration, modulation of 
BBB permeability, pathogen and injury detection and response, and immune cell recruitment[30]. Thus, these 
diverse functions highlight the importance of astrocytes in CNS defense and BBB physiology.

Pericytes
Essential to the structural and functional dynamics of the BBB, pericytes are a fundamental component of 
the NGVU. Pericytes are distributed in capillary basement membranes and interact intimately with 
extracellular matrix constituents, astrocytes, and ECs. Pericytes, with a spindle-shaped morphology and 
distinct markers such as platelet-derived growth factor receptor-beta (PDGFR-β) and neuron-glial antigen 2 
(NG2), govern the function of the endothelium barrier and capillary blood flow via direct contact and 
paracrine signaling[31,32]. Moreover, pericytes play roles in angiogenesis and the integrity of the BBB 
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dynamics, whereby they stabilize ECs and respond to endothelium-derived PDGF-β by multiplying and 
differentiating[32]. Furthermore, by tightening endothelial connections and controlling capillary blood flow 
through alpha-smooth muscle actin (α-SMA) expression, pericytes impact waste disposal, nutrient delivery 
and reduce paracellular leakage[33]. Finally, pericytes modulate BBB permeability to immune cells and 
control leukocyte trafficking as part of CNS immune surveillance[34]. Thus, in the setting of 
neurodegenerative disease, where the buildup of toxic chemicals contributes to pathology, this element of 
pericyte activity is aptly pertinent[35].

Microglia
Microglia cells, the resident immune cells of the CNS, play an essential role in supporting BBB integrity. In 
1919, Pío del Río-Hortega depicted microglia as ‘vascular satellites” because of their inseparable relationship 
with cerebral vessels[36]. This historical outlook emphasizes the well-known acclaim of the close association 
between microglia and the brain’s vascular system. Newer research has clarified the importance of this 
perivascular positioning in brain angiogenesis[37,38]. Microglia, by their interactions with ECs and other 
elements of the NGVU, play an essential role in sustaining vascular integrity and enhancing the 
configuration of new blood vessels[39,40]. Moreover, these cells portray a dual role in neuroinflammation and 
perivascular biology, significantly influencing the NGVU. Current research indicates that microglial cells 
cooperate closely with ECs and pericytes, establishing a triad that is critical for BBB function. This 
interaction encompasses bi-directional signaling that assists in modulating immune cell trafficking, vascular 
tone, and responses to injury. For example, microglia-derived factors such as tumor necrosis factor-alpha 
(TNF-α) and interleukin-1 beta (IL-1β) can regulate the expression of TJ proteins in ECs, thereby affecting 
BBB permeability[41]. Microglia can react to pathological stimuli according to their different phenotypes, 
ranging from a protective, anti-inflammatory state to a pro-inflammatory neurotoxic state. Chronic 
activation of microglia unfolds the release of pro-inflammatory cytokines and reactive oxygen species 
(ROS), which can annihilate BBB integrity by disrupting ECs and TJ proteins[42,43]. Microglia, which 
originated from myeloid progenitors, display a distinct profile in comparison with neuroglia like astrocytes, 
which are derived from neuroprogenitor cells. This distinctness is essential as microglia serve as the 
predominant immune defense in the CNS by actively inspecting the brain environment, removing debris, 
and responding to injuries via processes like phagocytosis and cytokine release. Astrocytes, instead, 
maintain the BBB, act as repair mechanisms post-injury and give nutritional support[44].

Basement membrane
The basement membrane of the BBB controls the transit of substances from the bloodstream to the brain 
and provides structural support. It produces a specific extracellular matrix composed of laminins, collagen 
type IV, nidogen, and heparan sulfate proteoglycans (HSPGs). Laminins support movement, adherence of 
cells, and stability of phenotypes, with unique isoforms contributing to the distinctiveness of the BBB[45]. 
Apart from that, the structural stability is provided by collagen type IV, whereas laminin and collagen 
networks are connected by nidogen. HSPGs control cell signaling and barrier permeability. The basement 
membrane promotes angiogenesis, protects the CNS, and regulates cell transmigration and neuroimmune 
interactions. It is essential for brain development and injury response because it directs the migration of 
ECs during vessel creation and repair. Additionally, CBF and BBB functions are regulated by interactions 
between astrocytes and pericytes, which is crucial for neurophysiology and BBB dynamics. Hence, current 
knowledge of the basement membrane provides insights into CNS health and disease through BBB 
physiology and NGVU dynamic interactions[46,47].

BBB DYSFUNCTION AND NEUROLOGICAL DISORDERS: AN OVERVIEW
In physiological conditions, the BBB’s integrity, maintained by TJs among ECs, pericytes, and astrocyte 
endfeet, is paramount for neural function, protecting the brain from toxins and pathogens, while strictly 
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allowing nutrients and signaling molecules to pass through[48]. Consequently, BBB dysfunction appears to 
play an important role in the early stages of various neurological disorders such as Alzheimer's disease, 
Parkinson's disease, traumatic brain injuries (TBI), multiple sclerosis, epilepsy, and CSVD[49-53]. Studies on 
these conditions provide significant insights into the multifaceted impact of BBB dysfunction, underlining 
the crucial need for a better understanding of its aberrant mechanisms and translational therapeutic 
opportunities.

In Alzheimer’s disease, BBB breakdown contributes to amyloid-beta (Aβ) accumulation and 
neurodegeneration[52]. Sweeney et al. (2019) demonstrated that disrupting the BBB increases the 
accumulation and hinders the effective clearance of Aβ[53]. More recently, Custodia et al. (2023) emphasized 
that endothelial dysfunction at the BBB, driven by known vascular risk factors, facilitates the passage of 
toxic substances to the cerebral parenchyma, leading to neuroinflammation and neuronal degeneration, 
both of which are central to cognitive deterioration in Alzheimer’s disease[54]. As for Parkinson’s disease, 
Joo et al. (2023) argued that chronic neuroinflammation induced by activated microglia promotes BBB 
permeabilization, which is detrimental to dopamine neurons[55]. This process highlights the role of pro-
inflammatory cells and cytokines in exacerbating BBB dysfunction in this condition. Additionally, de Rus 
Jacquet et al. (2023) used a brain-chip model to demonstrate how inflammatory astrocytes contribute to 
BBB dysfunction in Parkinson’s disease, providing insights into the disease's pathogenic mechanisms[56].

TBI is another condition where BBB dysfunction plays a critical role. Cash and Theus (2020) investigated 
the cellular and molecular mechanisms involved in BBB stability regulation following TBI. They emphasized 
that TBI induces BBB disruption through mechanisms such as oxidative stress, neuroinflammation, and 
cellular injury, which compromise the BBB’s integrity[57]. Huang et al. (2022) explored how factors such as 
increased permeability and ECs damage contribute to BBB disruption, underscoring the important role BBB 
dysfunction plays in the pathophysiology of TBI[58]. Furthermore, in conditions like multiple sclerosis, BBB 
dysfunction permits the entry of autoreactive T cells into the CNS, causing the autoimmune attack on 
myelin that characterizes this disease[59,60]. Meanwhile, in epilepsy, Vezzani (2012) investigated the brain-
autonomous mechanisms responsible for BBB dysfunction during seizures[61]. The research emphasizes how 
seizures can activate inflammatory responses and trigger the Src kinase pathway, which is a downstream 
effector of receptor tyrosine kinases (RTKs). This activation led to the derangement of TJ proteins and 
heightened BBB permeability. The Src’s pathway’s main role in regulating BBB integrity underlines its 
significance in both pharmacological interventions and neuropathological conditions. Furthermore, the 
dysfunction of ATP-binding cassette (ABC) transporters at the BBB surface, as detailed by 
Mohi-ud-Din et al. (2022), emphasizes the importance of nanotechnology-enabled drug delivery systems to 
overcome these barriers in epilepsy treatment[62].

Notwithstanding, BBB dysfunction is increasingly implicated in CSVD manifestation, as characterized by 
endothelial damage, TJs disruption, and basement membrane alterations, contributing to the leakage of 
blood constituents into the brain parenchyma and subsequent neuroinflammation and white matter 
damage[63]. Importantly, vessels in the vicinity of ePVS in older subjects showed arterial wall thickening and 
tortuosity, venular widening, inflammation, and BBB failure[64]. Emerging evidence underscores the role of 
the Wingless and Int-1 (WNT)/β-catenin signaling in ECs and oligodendrocyte interactions as a crucial 
pathway in maintaining BBB integrity, suggesting that dysregulation of this pathway may exacerbate BBB 
permeability and hinder white matter repair in CSVD[63]. Furthermore, genetic factors such as gap junction 
alpha-1 (GJA1) gene polymorphisms have been linked to variations in the topographic distribution and 
severity of CSVD, implying a genetic predisposition to BBB vulnerability and emphasizing the complexity of 
BBB dysfunction in disease pathogenesis[65].
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BBB dysfunction is recognized in numerous neurological disorders, but the extent to which it is causal or 
merely a consequence of complex pathophysiological processes remains unclear. The evidence signifies that 
in some conditions, such as Alzheimer’s disease and multiple sclerosis, BBB disintegration appears to be an 
early and potential causative event, facilitating the assemblage of neurotoxic substances and the entrance of 
immune cells into the CNS[1,2]. On the contrary, in disorders like Parkinson’s disease and CSVD, BBB 
dysfunction frequently results from chronic neuroinflammation, systemic diseases, and oxidative stressors 
such as hypertension and diabetes, implying it is a secondary consequence[16,56]. Continued research is 
required to indisputably define these associations, which would benefit novel therapeutic strategies aimed at 
mitigating and/or averting BBB breakdown[66,67]. Interestingly, the gut-brain axis also emerges as a novel 
player in CSVD, where gut dysbiosis has been associated with BBB breakdown and neurovascular 
pathologies, highlighting the interplay between systemic factors and neurovascular health[68].

This section discusses the involvement of BBB dysfunction in a variety of neurological disorders, including 
Alzheimer’s disease, Parkinson’s disease, TBI, multiple sclerosis, epilepsy, and CSVD. It reviews how BBB 
dysfunction leads to disease progression and the significance of extrapolating these mechanisms for 
therapeutic developments. In essence, it emphasizes the roles of inflammation, oxidative stress, and genetic 
factors in BBB disruption and the intricate interaction between these components in the pathogenesis of 
neurological conditions.

EVIDENCE OF ABERRANT BBB DYNAMICS IN CSVD: CLINICOPATHOLOGICAL LESSONS 
FROM PRECLINICAL MODELS
In vivo models
CSVD is a serious yet frequently disregarded condition that underlies both stroke and dementia, two of the 
primary causes of illness and death on a global scale[69]. Despite its substantial impact on public health and 
the well-being of countless individuals, the intricate mechanisms driving CSVD remain largely elusive. This 
lack of comprehension is partly due to the inherent difficulties in replicating the complex and diverse nature 
of the disease in experimental conditions.

The examination of BBB dysfunction in the context of CSVD exemplifies these challenges, highlighting the 
need for advanced animal models that can accurately replicate the subtle nuances of the human pathology 
associated with this condition[70,71]. Such models are indispensable for delving into the pathophysiological 
processes underlying BBB disruption in CSVD, offering insights critical for the development of effective 
interventions. By accurately replicating human CSVD pathology, including the hallmark BBB dysfunction, 
these models facilitate critical advancements in our understanding, paving the way for innovative 
therapeutic approaches.

Moreover, the elucidation of BBB dysfunction through these models sheds light on the disease's 
contribution to the broader spectrum of neurovascular and neurodegenerative disorders, underscoring the 
interconnectedness of cerebral microvascular health with overall brain function and disease[72,73]. Given the 
substantial impact of CSVD on the progression of stroke and dementia, unraveling the complexities of BBB 
dysfunction stands as a cornerstone in mitigating these conditions' burden. This endeavor requires a 
multidisciplinary approach, integrating insights from animal studies with human clinical observations, to 
foster a holistic understanding of CSVD. This section aims to explore the central role of animal models in 
enhancing our comprehension of BBB dysfunction within CSVD, highlighting their contributions to our 
understanding of the disease.
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Aging models
The aging rodent models, particularly mice and rats, have demonstrated that aging is associated with 
increased permeability of the BBB, modifications in the expression of proteins involved in TJs, and a 
decrease in CBF. Notably, research on aged rodents revealed a decrease in the levels of TJ proteins such as 
claudin-5 and occludin, which are integral for maintaining the integrity of BBB[74]. One of the primary 
mechanisms by which aging contributes to BBB dysfunction is an increase in oxidative stress and 
inflammation. The accumulation of ROS damages BBB components, while chronic inflammation increases 
adhesion molecules and the recruitment of immune cells, further compromising BBB integrity[75].

The endothelial nitric oxide synthase-deficient mice, a model for age-dependent CSVD, developed cerebral 
hypoperfusion, BBB leakage, oxidative stress, astrogliosis, cerebral amyloid angiopathy, microbleeds, 
microinfarction, and white matter pathology, all of which are characteristic features of CSVD[76]. 
Furthermore, aging is linked to microvascular degradation, which encompasses a decrease in the number of 
cerebral capillaries and thickening of the basement membrane. These alterations hinder the transportation 
of nutrients and oxygen to the brain, thereby contributing to hypoxia and facilitating the breakdown of the 
BBB dynamics[77]. Aged ECs displayed a decrease in the expression of transporters and receptors required 
for the proper functioning of the BBB and their ability to repair themselves. Thus, the dysfunction of the 
ECs is a key factor in the disruption of the BBB associated with aging, and likely to contribute to the onset of 
CSVD[78]. In addition, the morphology and functionality of astrocytic endfeet change with age, such as 
swelling and modified potassium buffering, disrupting the neurovascular coupling and the integrity of the 
BBB[79].

In conclusion, the aging models have enhanced our comprehension of BBB impairment and its role in 
CSVD. Future investigations should prioritize translating these findings into clinical interventions to 
prevent or decelerate the progression of BBB dysfunction and CSVD in at-risk individuals across the general 
population.

Hypertensive models
Hypertension serves as a significant risk factor for CSVD and BBB impairment. The spontaneously 
hypertensive stroke-prone rat (SHRSP) model is extensively employed to investigate this association 
because it exhibits the development of severe hypertension, resulting in the occurrence of spontaneous 
brain lesions similar to those witnessed in the human CSVD, including BBB disruption. This model 
revealed that hypertension-induced oxidative stress and inflammation play a role in BBB malfunction[80].

The SHRSP model is derived from the spontaneously hypertensive rat (SHR), which is highly vulnerable to 
stroke and cerebrovascular lesions when exposed to a high-salt diet or other environmental stressors. A 
recent study used salt-sensitive “Sabra” hypertension-prone rats (SBH/y) and discovered that “Sabra” 
hypertension-prone deoxycorticosterone acetate (SBH/y-DOCA) rats displayed multiple cerebrovascular 
pathologies associated with CSVD, including BBB permeability and inflammation[81]. Chronic hypertension 
causes ECs dysfunction, which manifests as reduced nitric oxide (NO) levels, increased oxidative stress, and 
an upregulation of adhesion molecules[82]. These alterations disrupt the BBB endothelial barrier, increasing 
permeability, and facilitating leukocytes to infiltrate the brain parenchyma. Consequently, vascular injury 
worsens, fostering the development of CSVD pathology[83].

Moreover, hypertension-induced disruption of the BBB is predominantly due to oxidative stress. The 
occurrence of ROS in hypertensive conditions causes significant damage to various cellular components, 
particularly the TJ proteins, resulting in increased BBB permeability. Additionally, oxidative stress activates 
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inflammatory pathways, thereby generating the expression of cytokines and chemokines that further 
contribute to the disruption of BBB integrity[84]. For instance, in SHRSP models, hypertension causes 
downregulation or abnormal localization of TJ proteins, namely claudin-5 and occludin. These adjustments 
undermine the structure of the TJs complex, increasing BBB permeability and subsequently contributing to 
the development of CSVD[85].

Furthermore, chronic hypertension induces structural and functional changes in cerebral microvessels, 
including wall thickening, luminal narrowing, and increased vessel tortuosity. These microvascular 
alterations impair CBF regulation and contribute to hypoxic conditions, further damage the BBB and 
exacerbate CSVD pathology[86]. Another study that simulated microgravity in rats discovered that it 
disrupted the BBB, increased oxidative stress levels, and downregulated TJ and AJ proteins expression in the 
rat brain[87]. Additionally, a study on bilateral common carotid artery ligation (BCCAL) in SHRSP rats 
revealed alterations in both brain and heart function, including disrupted autonomic functionality and 
elevated brain-heart coupling, which were associated with the risk of sudden death[88].

While these studies provide insights into BBB dysfunction in CSVD using SHRSP rat models, no specific 
study focusing solely on BBB dysfunction in CSVD in SHRSP rat models was found. By clarifying the 
underlying mechanisms, such as endothelial dysfunction, oxidative stress, inflammation, changes in TJ 
proteins, and microvascular remodeling, this model could emphasize the intricate nature of BBB disruption 
in the context of hypertension. Targeting these pathways appears to be a promising strategy for the 
prevention or improvement of CSVD in individuals with hypertension.

Models of chronic cerebral hypoperfusion
Models of chronic cerebral hypoperfusion (CCH) involves a prolonged decrease in CBF, which gradually 
induces notable changes in both the structure and function of the brain, thereby contributing to the 
occurrence of CSVD. Animal models for CCH induction have been established in both mice and rats. These 
models, such as bilateral common carotid artery stenosis (BCAS), offer a means of exploring this specific 
aspect of cerebral hypoperfusion.

The BCAS models have provided insights into the mechanisms behind BBB dysfunction in CSVD, 
including oxidative stress, microvascular injury, excitotoxicity, and secondary inflammation[89,90]. The 
studies have also explored potential therapeutic targets for CSVD, such as drugs that can regulate BBB 
function and protect against brain damage caused by chronic hypoperfusion[89,90]. CCH has a direct effect on 
ECs, causing oxidative stress, inflammation, and subsequent harm to the BBB. Decreased CBF reduces the 
delivery of oxygen and nutrients, exacerbates oxidative stress, and stimulates the secretion of pro-
inflammatory cytokines, which disrupt TJs integrity[91].

CCH has been demonstrated to reduce the expression of TJ proteins such as claudin-5, occludin, and ZO-1, 
leading to increased paracellular permeability and subsequent BBB leakage[92]. CCH-activated microglia lead 
to the induction of a pro-inflammatory environment within the CNS, inflicting additional harm to the BBB 
and worsening ECs dysfunction. This inflammatory reaction plays a crucial role in the advancement of BBB 
disruption in CSVD[85]. At the same time, astrocytes undergo alterations in their cellular structure in 
response to CCH. The phenomenon of astrocyte endfeet swelling has been consistently observed in various 
animal models of CCH, providing compelling evidence for the disruption of astrocyte-mediated support 
and maintenance of the BBB[93].
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CCH plays a crucial role in the impairment of BBB function in CSVD, affecting various components such as 
ECs, TJs integrity, and neurovascular elements. It is imperative to continue conducting research on the 
intricate interplay between CCH and BBB dysfunction to stimulate the development of efficacious 
treatment strategies for CSVD and its associated neurological consequences such as vascular dementia, 
Alzheimer’s, and Parkinson’s diseases.

Diabetic models
Diabetes mellitus (DM), characterized by persistent hyperglycemia, is a recognized predisposing factor for 
CSVD, owing to its detrimental impact on the BBB. The streptozotocin (STZ)-treated rodents exhibited 
hallmark features of DM, including hyperglycemia and insulin deficiency, which parallel to human diabetic 
conditions. This model demonstrated that hyperglycemia exacerbates BBB permeability, leading to 
enhanced leakage of plasma constituents into the brain parenchyma, a characteristic feature of CSVD[94].

Moreover, models of type 2 DM, such as db/db mice and Zucker diabetic fatty rats, have shed light on the 
role of insulin resistance and hyperlipidemia in BBB dysfunction. These models exhibited BBB alterations, 
including reduced expression of TJ proteins and increased inflammatory marker levels, contributing to 
CSVD pathology[53]. In diabetic models of CSVD, the disruption of the BBB is increasingly attributed to the 
interplay between oxidative stress and inflammation as a central mechanism. Hyperglycemia-induced 
oxidative stress damages ECs, disrupting TJs integrity. Concurrently, diabetes fosters a pro-inflammatory 
state that further compromises the BBB, emphasizing the role of anti-inflammatory and antioxidant 
therapies[95].

Apart from that, DM accelerates microvascular complications, including endothelial dysfunction and 
capillary degeneration, that are critical in CSVD pathogenesis, leading to hypoperfusion and hypoxia, which 
potentiate BBB dysfunction[96]. Advanced Glycation End (AGEs) products, resulting from prolonged 
exposure to high glucose levels, interact with RAGE (receptor for AGEs) on ECs of BBB, triggering 
oxidative stress and inflammatory pathways. This interaction is a key factor in diabetes-associated BBB 
disruption and CSVD[97]. Understanding the mechanisms by which DM exacerbates BBB dysfunction in 
CSVD has significant therapeutic implications. Strategies aimed at reducing oxidative stress, inflammation, 
and hyperglycemia hold promise. Additionally, interventions targeting AGE-RAGE interactions and 
preserving endothelial function may offer new avenues for mitigating the impact of DM on CSVD[93].

Transgenic models
Transgenic models afford the opportunity to investigate specific gene mutations and their impact on the 
pathology of CSVD, such as the breakdown of the BBB. Notably, unlike sporadic CSVD, Cerebral 
Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is an 
inheritable form of CSVD that is caused by genetic mutations in the NOTCH3 gene. By duplicating various 
aspects of the human illness, including the deposition of granular osmiophilic material, degeneration of 
vascular smooth muscle cells, and most importantly, malfunction of the BBB, these mouse models provide 
significant insights into the mechanisms underlying CADASIL[98].

Transgenic models have revealed that NOTCH3 gene mutations disrupt NOTCH signaling pathways, which 
are critical for vascular development and integrity. Altered NOTCH signaling in ECs and pericytes leads to 
BBB breakdown, highlighting a pathway for therapeutic targeting[99]. Other than that, the degeneration of 
vascular smooth muscle cells is a hallmark of CADASIL. In transgenic models, vascular smooth muscle cell 
degeneration contributes to BBB dysfunction through destabilization of the vascular wall, leading to 
increased permeability and leakage[100].
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Additionally, the expression of mutant NOTCH3 has been associated with an upregulation in pro-
inflammatory cytokines and adhesion molecules, indicating the role of inflammation in BBB disruption. 
This, in turn, promotes leukocyte adhesion and transmigration across the BBB, which ultimately worsens 
vascular damage[101]. Oxidative stress plays a pivotal role in the disruption of BBB in transgenic models of 
CSVD. The accumulation of mutant NOTCH3 protein results in an increase in the generation of ROS, thus 
leading to deleterious effects on the integrity of TJ proteins and ECs. Therefore, the BBB permeability 
increases,  consequently affecting its functionality[102]. Furthermore, the amyloid precursor 
protein/presenilin 1 (APP/PS1) transgenic mouse model is widely recognized for studying the 
pathophysiological processes underlying Alzheimer’s disease and CSVD. These mice express human genes 
with familial Alzheimer’s disease mutations, leading to overproduction and accumulation of Aβ peptides. 
Aβ accumulation in cerebral vessels, known as cerebral amyloid angiopathy (CAA), is a critical feature of 
amyloidal CSVD in APP/PS1 mice. Aβ deposition, particularly in cerebral vessels, mirrors the hallmark 
features of CSVD and offers a unique window into the disease's vascular components[103]. Aβ deposition 
compromises vascular integrity, leading to vessel wall thickening, reduced vascular elasticity, and impaired 
CBF. These changes contribute to hypoperfusion and ischemia, exacerbating BBB dysfunction and neural 
damage[104].

Recent studies have explored the temporal dynamics of Aβ deposition and BBB dysfunction in APP/PS1 
mice, suggesting that BBB breakdown precedes significant Aβ accumulation in the brain parenchyma. This 
early BBB dysfunction may facilitate Aβ entry from the blood to the brain, highlighting the BBB's critical 
role in the pathogenesis and progression of amyloidal CSVD and Alzheimer’s disease[1]. Specifically, 
interventions targeting the regulation of β-secretase (BACE1) activity, an enzyme crucial in Aβ formation, 
have shown promise in decreasing cerebrovascular Aβ accumulation and alleviating BBB impairment in 
models of APP/PS1[105]. In conclusion, transgenic CSVD models play a crucial role in elucidating the 
complex interplay between genetic factors, BBB dysfunction, and the development of CSVD. These models 
provide a powerful platform for dissecting the molecular mechanisms driving the disease and for testing 
novel therapeutic strategies aimed at mitigating BBB dysfunction and its consequences on brain health.

In vitro models
The in vitro models have become indispensable tools in the neurological research arsenal, offering a 
meticulously controlled environment to dissect the multifaceted interactions among key cellular 
components of the BBB, including ECs, astrocytes, pericytes, and the extracellular matrix. Each of these 
components plays a pivotal role in maintaining BBB integrity, and their dysfunction contributes to the 
pathogenesis of CSVD.

In vitro models have been instrumental in elucidating the impact of oxidative stress, inflammation, and the 
altered cellular crosstalk that characterizes BBB dysfunction in CSVD. For example, studies have shown 
how oxidative stress can lead to endothelial damage, compromising the barrier function and facilitating the 
entry of potentially neurotoxic substances into the brain parenchyma[106]. Similarly, in vitro models have 
shed light on the role of inflammation in BBB breakdown, demonstrating how inflammatory mediators can 
disrupt endothelial TJs and increase permeability[107]. Moreover, the development of advanced in vitro 
models, including three-dimensional (3D) cultures and organ-on-a-chip technologies, has further refined 
our ability to simulate the physiological and pathological states of BBB. These sophisticated models mimic 
the BBB's dynamic and complex nature more accurately, enabling detailed investigations into the cellular 
and molecular mechanisms of CSVD-associated BBB dysfunction[108,109]. They have also facilitated the 
evaluation of potential therapeutics, offering insights into their ability to restore BBB integrity and function.
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The next section of this paper will explore recent advancements in in vitro BBB models, highlighting their 
contributions to our understanding of CSVD pathophysiology. It will delve into the innovative 
methodologies employed to replicate the BBB's complexity and the insights gained from these models 
regarding disease mechanisms.

ECs monolayer
ECs monolayers have become a cornerstone in this research, especially in the investigation of CSVD-related 
BBB dysfunction. ECs monolayers, derived from human or animal cerebral microvessels or established ECs 
lines, provide a simplified yet powerful model to study BBB properties. These models allow for direct 
manipulation of the ECs, the innermost layer of the BBB, to investigate their response to various stimuli or 
conditions associated with CSVD. The studies have focused on the pathological changes in CSVD, 
including small subcortical infarcts, white matter hyperintensities, lacune, cerebral microbleeds, ePVS, and 
brain atrophy[110].

Additionally, the studies have discussed the criteria for defining endothelial dysfunction, such as endothelial 
activation, impaired endothelial mechanotransduction, and reduced NO release[111]. Recent studies have 
brought to light the dynamic nature of TJ proteins in response to stressors relevant to CSVD by using ECs 
monolayers. An example of this is hyperglycemia, which has been demonstrated to reduce the expression of 
claudin-5 and occludin, crucial elements of TJs, thus compromising the integrity of the barrier[112]. 
Advanced imaging techniques and molecular methods have further clarified the signaling pathways 
involved in this phenomenon, including the participation of protein kinase C (PKC) and mitogen-activated 
protein kinase (MAPK) pathways[113].

ECs monolayers have also been utilized for the examination of the endothelium's role in the initiation and 
propagation of inflammatory responses within the BBB. The exposure to inflammatory cytokines, such as 
TNF-α and IL-1β, which are commonly elevated in CSVD, triggers the upregulation of adhesion molecules 
such as vascular cell adhesion molecules (VCAM-1) and intercellular cells adhesion molecules (ICAM-1) on 
ECs. This upregulation facilitates the adhesion and transmigration of leukocytes, as described by 
Béguin et al. (2019)[114]. The recruitment of leukocytes exacerbates the disruption of the BBB, thus playing a 
role in a cycle of inflammation and vascular damage that is typical of CSVD. Moreover, under inflammatory 
circumstances, endothelial cells release matrix metalloproteinases (MMPs), particularly MMP-9, which 
break down components of the extracellular matrix and proteins of TJs, further compromising the integrity 
of the BBB[115].

Moreover, studies have indicated that ROS, produced because of hyperglycemia or ischemic circumstances, 
possess the ability to directly harm ECs, resulting in modifications to the expression of TJ proteins and an 
increase in permeability[116]. Various antioxidants and pharmacological agents inhibiting ROS generation 
have been experimentally evaluated on ECs monolayers, revealing potential therapeutic advantages in 
maintaining BBB functionality[117-119]. In models of ECs monolayers, a diabetic environment characterized by 
persistent hyperglycemia is efficiently replicated to examine its influence on the properties of the 
BBB[17,50,120]. Hyperglycemia-induced activation of the polyol pathway and increased formation of AGEs have 
been implicated in endothelial dysfunction and increased BBB permeability. This process is mediated 
through the interaction of AGEs-RAGE on ECs, triggering inflammatory and oxidative stress pathways that 
disrupt BBB integrity[121].

Recent studies have also focused on ECs metabolism, revealing that metabolic shifts within ECs under 
pathological conditions can influence BBB integrity. For example, alterations in endothelial glycolysis and 
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mitochondrial function have been linked to changes in TJs protein expression and endothelial barrier 
function, suggesting novel targets for therapeutic intervention[122]. The utilization of ECs monolayers has 
made a substantial contribution to the comprehension of BBB dysfunction in CSVD, offering insights into 
mechanisms and pinpointing possible therapeutic targets. With the progression of this model, there is 
potential for revealing new dimensions of BBB physiology and pathology, enhancing our capacity to address 
CSVD and its harmful impacts on brain well-being.

Co-culture models
In neurovascular research, co-culture models are particularly valuable for studying the BBB because they 
allow the growth of two or more different cell types together in a controlled environment. This method is 
designed to mimic the interactions between these cell types as closely as possible to how they occur in the 
body, allowing researchers to study the complex dynamics of cellular communication, behavior, and 
function within a more physiologically relevant context. Co-culture models of the BBB typically involve the 
growth of ECs alongside one or more other cell types to investigate how their interactions influence BBB 
integrity, function, and response to pathological stimuli.

A study by Park et al. (2023) developed advanced co-culture models that simulate the BBB by incorporating 
ECs, astrocytes, pericytes, and neurons[123]. These models were specifically tailored to replicate various 
neurodegenerative conditions, including those mimicking CSVD. The researchers found that 
neurodegenerative conditions led to distinct patterns of BBB disruption, highlighting the role of 
inflammatory mediators, oxidative stress, and the dysregulation of TJ proteins. Specifically, the study 
underscored the differential impact of Aβ peptides and hyperphosphorylated tau proteins on BBB integrity, 
reflecting the complex interplay between neurodegenerative disease markers and BBB function[123]. 
Additionally, recent studies using co-culture models have highlighted the critical role of pericytes in 
maintaining BBB integrity and their involvement in the pathogenesis of CSVD. Pericytes, through their 
interactions with ECs, regulate CBF, angiogenesis, and ECs proliferation. In the context of CSVD, pericyte 
detachment and dysfunction have been associated with BBB leakage, emphasizing the importance of 
pericyte-ECs signaling in preserving BBB integrity[124].

Thus, co-culture models have revolutionized our understanding of BBB dysfunction in CSVD by providing 
a more accurate representation of the NGVU. These models enable the study of interactions between ECs, 
astrocytes, pericytes, and neurons, shedding light on how disruptions in these interactions contribute to 
BBB breakdown in CSVD. Importantly, co-culture systems have facilitated the identification of potential 
therapeutic targets and the evaluation of treatment strategies aimed at preserving BBB integrity. As research 
progresses, these models hold promise for uncovering novel insights into CSVD pathomechanism and 
accelerating the development of effective therapies.

Organ-on-a-chip models
Organ-on-a-chip models leverage microfluidic platforms to create cell culture environments that simulate 
the physical and biochemical aspects of human organs, providing a dynamic system to study complex 
physiological responses[125]. These micro-engineered devices integrate various cell types into a single chip, 
creating organ-specific models that accurately replicate organ microenvironments and functions. Organ-on-
a-chip models stand out for their ability to model human physiology more realistically than traditional 2D 
cell cultures, offering profound implications for drug discovery, disease modeling, and personalized 
medicine. By closely mimicking the in vivo environment, organ-on-a-chip technology provides a critical 
bridge between in vitro experiments and clinical reality, paving the way for advancements in understanding 
human biology and developing safer, more effective therapies.
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Organ-on-a-chip technology represents a breakthrough in BBB modeling, offering dynamic systems that 
replicate blood flow and mechanical forces of the cerebral microenvironment. The BBB-on-a-chip (μBBB) 
technology has been widely used in the study of brain cancer[126]. Additionally, a linked alveolus-BBB organ 
chip platform has been proposed to investigate the effects of severe acute respiratory syndrome - 
coronavirus 2 (SARS-CoV-2) on human brains in a multi-organ context[127]. Organ-on-a-chip technology 
has emerged as a new approach to better recapitulate the highly dynamic in vivo human brain 
microenvironment, including the neural neurovascular unit and the BBB[128].

Furthermore, microfluidic technology and microfabrication have been used to rebuild the BBB in vitro, with 
a focus on drug delivery studies[129]. Human BBB-on-a-chip technologies have also been developed for 
studying neurodegenerative diseases such as Alzheimer's disease and for drug prescreening[130]. These 
models have been instrumental in studying the effects of shear stress on BBB integrity and the impact of 
CSVD risk factors, such as hypertension, on ECs function and barrier properties[131]. Organ-on-a-chip 
models have shed light on several critical aspects of BBB dysfunction in CSVD, including the role of ECs 
pathology, the impact of inflammatory mediators, and the consequences of altered blood flow and shear 
stress on BBB integrity. By simulating the pathological conditions of CSVD, such as chronic hypertension 
and hyperglycemia, researchers are able to observe the direct effects of these factors on BBB permeability 
and TJs integrity, advancing our understanding of CSVD pathophysiology[132]. Furthermore, these models 
have facilitated the study of Aβ accumulation and its effects on BBB function, a hallmark of both 
Alzheimer's disease and CSVD. Organ-on-a-chip technology has enabled the detailed examination of how 
Aβ interacts with various components of the neurovascular unit, contributing to endothelial dysfunction 
and neurovascular uncoupling, critical processes in the development and progression of CSVD[133]. 
Nevertheless, more focused research is required to elucidate the dysfunction of the BBB in organ-on-a-chip 
models for CSVD due to the limited number of studies in this particular area.

3D BBB models
The 3D BBB models represent a transformative advance in neurological research, bridging crucial gaps in 
our understanding of BBB function and dysfunction. These models employ cutting-edge bioengineering 
techniques to recreate the complex structure and function of the BBB in vitro, offering a more 
physiologically relevant and dynamic system than traditional two-dimensional cultures. By mimicking the 
3D architecture and cellular interactions of the BBB, these models provide invaluable insights into the 
mechanisms of neurovascular coupling, the pathophysiology of neurological diseases, and the evaluation of 
drug delivery systems across the BBB[134]. The incorporation of various cell types found in the BBB, 
including ECs, astrocytes, pericytes, and neurons, into a cohesive 3D structure allows for the study of 
cellular responses to pathological stimuli and therapeutic agents in an environment that closely resembles 
in vivo conditions.

Wei et al. (2023) developed a human-cell-based BBB platform with integrated electrodes to monitor barrier 
tightness in real time[135]. They demonstrated that oxygen-glucose deprivation (OGD) induced rapid 
remodeling of cellular actin structures and subsequent morphological changes in ECs, leading to barrier 
breakage. Chen et al. (2021) summarized the development of microfluidics-based BBB models derived from 
human stem cells, which can provide a better platform for high-throughput drug screening and targeted 
delivery[136]. Potjewyd et al. (2021) discussed the use of induced pluripotent stem cells (iPSCs) to generate 
human NGVU models for studying BBB function and disease mechanisms, including CSVD[137]. 
Bouhrira et al. (2020) investigated the effect of disturbed flow on BBB integrity using a 3D perfusable 
bifurcation model, showing that disturbed flow caused barrier disruption in the CNS[138].
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Therefore, 3D BBB models have shed light on the molecular mechanisms leading to BBB dysfunction in 
CSVD. These models have also been instrumental in exploring the accumulation of neurotoxic substances, 
including Aβ, and their impact on BBB integrity and neural health[133]. The 3D BBB models have emerged as 
a crucial innovation in neurological research, offering a dynamic approach to studying the complexities of 
the BBB and its role in CSVD. By more accurately mimicking the in vivo environment of the BBB, these 
models provide a platform for in-depth exploration of the pathophysiological changes associated with 
CSVD, including the breakdown of barrier integrity and the resultant impact on brain health. The 
incorporation of key cellular components of the neurovascular unit in a 3D matrix allows for a better 
understanding of the cellular crosstalk and molecular mechanisms that underlie BBB dysfunction. This 
advancement holds promise for uncovering novel therapeutic targets and enhancing drug screening 
processes, ultimately contributing to the development of more effective treatments for CSVD and related 
neurological conditions.

This section elaborates on the preclinical models used to study BBB dysfunction in CSVD, spanning from 
aging, systemic hypertension, chronic cerebral hypoperfusion, diabetes mellitus, and transgenic to in vitro 
models. Such models illuminate key insights about the pathophysiology of CSVD and possible therapeutic 
targets. The significance of advanced animal models in mimicking human CSVD pathology is also 
promising for enhancing our understanding of its natural history and its contribution to neurovascular and 
neurodegenerative interactions.

MECHANISMS OF ABERRANT BBB DYNAMICS IN CSVD: PRECLINICAL INSIGHTS
The integrity of the BBB is paramount for the normal functioning of the CNS, as it serves as a vital 
connection between the brain's microenvironment and the systemic circulation. CSVD represents a 
spectrum of pathological conditions affecting the small vessels of the brain, causing lesions in both the white 
and grey matter and resulting in significant morbidity through its impact on cognitive decline, stroke, and 
dementia. A pivotal aspect of CSVD pathology involves the disruption of the BBB, a process mediated by a 
complex interplay of cellular and molecular mechanisms. Advancements in preclinical models, including 
transgenic and in vitro approaches, have been pivotal in our understanding of CSVD, particularly 
concerning BBB disruption. By replicating the complex pathology of CSVD and its impact on BBB integrity 
within controlled environments, these models have revealed key mechanisms at play, such as oxidative 
stress, inflammation, and endothelial dysfunction[70,71]. This evidence not only deepens our comprehension 
of the disease’s cellular and molecular landscape but also highlights potential therapeutic targets to preserve 
BBB integrity and counter CSVD progression. This section delves into the preclinical insights into the 
potential pathomechanisms of BBB dysfunction in CSVD, drawing upon recent advancements in research 
to elucidate the cellular and molecular processes driving this disruption.

Endothelial dysfunction and CSVD: impacts on cell integrity, TJs, and trans-endothelial transport
Endothelial dysfunction plays a pivotal role in the pathogenesis of cardiovascular diseases. It fundamentally 
alters the endothelium's ability to maintain vascular homeostasis, leading to impaired regulation of vascular 
tone, increased permeability, and pro-inflammatory state. This dysfunction is central to the 
pathophysiology of CSVD, leading to a cascade of vascular abnormalities that compromise cerebral 
microvascular health. CSVD disrupts ECs integrity by promoting ECs activation and dysfunction. This is 
characterized by the shift toward a pro-inflammatory and prothrombotic state, vasoconstriction, and cell 
proliferation, as highlighted by Gallo et al. (2022)[139].

Studies on animal models, like the smooth muscle knockout mice with specific deletion of Myosin 
Phosphatase Target Subunit 1 (MYPT1SMKO), a novel spontaneous model for age- and hypertension-



Page 16 of Zul Ramli et al. Vessel Plus 2024;8:30 https://dx.doi.org/10.20517/2574-1209.2024.2228

dependent CSVD, have demonstrated how genetic and environmental factors contribute to endothelial 
dysfunction. This model unraveled the complex interplay between hypertension, a common risk factor for 
CSVD, and endothelial health, highlighting the role of oxidative stress and inflammation in damaging 
ECs[17]. Disruption in TJs, often observed in CSVD, leads to increased BBB permeability, allowing harmful 
substances to enter the brain parenchyma. Studies have shown that certain pathogens can exploit TJs to 
invade intestinal epithelial cells, suggesting a similar vulnerability might exist in cerebral ECs, potentially 
contributing to CSVD pathogenesis[140].

Research on models of sterile corneal inflammation revealed that inflammation, a key feature of CSVD, 
leads to a decrease in ZO-1 expression, suggesting a direct link between inflammatory processes and the 
compromise of TJs integrity[141]. This has significant implications for CSVD, as it underscores the 
importance of managing inflammatory pathways to protect TJs and maintain BBB integrity. Moreover, the 
trans-endothelial transport in CSVD is significantly affected, as the disease compromises the endothelium's 
selective permeability. The CSVD-induced endothelial dysfunction allowed the unregulated transport of 
lipoproteins and inflammatory cells into the brain tissue, contributing to the disease's progression and 
severity[115]. A pioneering study demonstrated that sphingosine-1-phosphate receptor 3 (S1P3) regulates the 
trans-endothelial transport of high-density lipoproteins (HDL) and high-density lipoproteins (LDL) in 
opposite ways, indicating that lipid transport across the endothelium is finely regulated and that disruption 
can contribute to CSVD pathology[142]. These findings suggest that targeting specific receptors and pathways 
involved in trans-endothelial transport may offer new therapeutic avenues for managing CSVD.

Inflammatory responses: the role of inflammation in BBB breakdown in CSVD, including the 
involvement of cytokines and leukocyte trafficking
CSVD is a pathology characterized by the disruption of this essential BBB, mediated by complex 
inflammatory responses that include the pivotal roles of cytokines and leukocyte trafficking. The roles of 
cytokines and leukocyte trafficking in disrupting the BBB have been extensively studied through preclinical 
models, offering invaluable insights into the underlying mechanisms. These studies not only illuminate the 
intricacies of BBB dysfunction but also pave the way for novel therapeutic strategies aimed at mitigating 
inflammation and preserving BBB integrity in the context of CSVD. The integrity of the BBB is 
compromised in CSVD through the action of pro-inflammatory cytokines, such as interleukin-6 (IL-6), 
interleukin-17 (IL-17), and TNF-α, which orchestrate a cascade of events leading to endothelial dysfunction 
and barrier permeability. These cytokines not only disrupt TJs between ECs, but they also facilitate the 
recruitment and adhesion of immune cells to the BBB, exacerbating its breakdown[143].

The inflammatory milieu is further compounded by astrocytes and microglia, which, upon activation, 
release additional cytokines and chemokines, perpetuating the cycle of inflammation and barrier disruption. 
Research using BBB-on-a-chip models has offered a dynamic platform for assessing the real-time effects of 
cytokine exposure on BBB function, revealing concentration-dependent disruptions in barrier integrity[144]. 
Microglia, the resident immune cells of the CNS, also act as a double-edged sword in CSVD. While they are 
essential for maintaining CNS homeostasis and responding to injury, their chronic activation can exacerbate 
BBB disruption by releasing pro-inflammatory cytokines and ROS. In addition to the resident microglia, the 
brain’s immune response to injury involves the employment of peripheral immune cells across the BBB. 
This recruitment depicts a key component of the brain’s ability to react to injury, encompassing a complex 
interaction between resident and recruited immune cells that manage reparative, inflammatory, and 
regenerative mechanisms[145]. Preclinical models have highlighted the contribution of microglial activation 
in the pathogenesis of BBB dysfunction in CSVD, suggesting that modulating microglial responses could be 
beneficial[146]. Though their classical markers such as the fractalkine receptor CX3CR1, cluster of 
differentiation receptors (CD68, CD11b, CD14, CD45, CD80 and CD115), and ionized calcium-binding 
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adaptor molecule (Iba1) have been identified, it is worth mentioning that microglial are a heterogenous 
population and their activation is dynamic; therefore, recent advances in single-cell RNA sequencing 
(scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) technologies have been approached to 
comprehensively characterize microglia in neurodegenerative diseases[147].

Oxidative stress: evidence linking oxidative stress to BBB disruption in CSVD
Oxidative stress arises when there is an imbalance between the generation of ROS and the body's capacity to 
neutralize their adverse effects, playing a key role in the compromise of the BBB. High levels of ROS not 
only initiate inflammatory reactions but also affect autophagic activities, together impairing the BBB. This 
interaction highlights the critical need to regulate ROS levels to safeguard against BBB impairment. Proper 
management of ROS production and clearance is essential, as elevated ROS levels can prompt inflammation 
and alter autophagic functions, further compromising the integrity of the BBB[148]. This process is mediated 
through several molecular pathways, leading to endothelial dysfunction, TJs alterations, and increased 
barrier permeability[148].

Dysregulated autophagy, which is influenced by oxidative stress in ECs, can lead to the accumulation of 
damaged proteins and organelles, contributing to endothelial dysfunction and BBB disruption[149]. A crucial 
antioxidant defense mechanism within endothelial cells involves the nuclear factor erythroid 2-related 
factor 2 (Nrf2) signaling pathway. Activation of Nrf2 leads to the upregulation of antioxidant response 
element (ARE)-driven genes, which encode several antioxidant enzymes, including superoxide dismutase 
(SOD) and glutathione peroxidase (GSH-Px). This mechanism is pivotal in counteracting ROS-induced 
endothelial damage and preserving TJs integrity[110]. Other than that, the study by Sun et al. (2023) provides 
evidence that lanthanum-induced activation of MMP9, facilitated by oxidative stress, can lead to the 
degradation of TJ proteins such as occludin and ZO-1[150]. This process is mediated by a reduction in Nrf2 
expression, a key transcription factor involved in cellular antioxidant responses, underscoring the critical 
role of the Nrf2 pathway in protecting TJs integrity against oxidative stress-induced damage[151].

Oxidative stress also can cause mitochondrial damage, contributing to the disruption of ECs and TJs. 
Mitochondrial dysfunction in ECs leads to decreased ATP production, increased ROS generation, and the 
release of pro-apoptotic factors. These events contribute to ECs apoptosis and TJs disruption, emphasizing 
the role of mitochondria as targets for therapeutic intervention[152]. Additionally, ATN-161, a synthetic 
peptide derived from fibronectin specifically stands for the amino acid sequence Ac-PHSCN-NH2, where 
“Ac” represents an acetyl group and “NH2” represents an amide group, ameliorates ischemia/reperfusion-
induced oxidative stress, fibro-inflammation, mitochondrial damage, and apoptosis-mediated tight junction 
disruption, suggesting mitochondrial pathways as targets for preserving BBB integrity[153]. This study 
demonstrates the multifaceted role of ATN-161 in counteracting oxidative stress and its downstream effects 
on the BBB, emphasizing the interconnection between oxidative stress, mitochondrial dysfunction, and BBB 
integrity.

The evidence from preclinical studies underscores the significant role of oxidative stress in BBB disruption 
within the context of CSVD[148,154,155]. By elucidating the molecular pathways affected by oxidative stress, 
these studies offer valuable insights into potential therapeutic targets. Continued exploration of these 
mechanisms is essential for developing effective treatments aimed at preserving BBB integrity and 
mitigating the progression of CSVD.

Blood flow alteration: changes in CBF in CSVD models affect BBB integrity
In CSVD, alterations in CBF are not merely symptoms but act as catalysts exacerbating the disease’s 
underlying mechanisms. The BBB’s compromised integrity due to fluctuating CBF underscores a critical 
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vulnerability in CSVD, leading to the disruption of cerebral homeostasis and contributing to the pathology's 
progression. Preclinical investigations have played a crucial role in elucidating these mechanisms, 
demonstrating how even minor alterations in blood circulation can initiate a series of harmful consequences 
within the vascular system of the brain. These insights underscore the pivotal role of maintaining 
hemodynamic stability, not just for preserving vascular health but also for safeguarding the brain against the 
insidious advances of CSVD.

Zhang et al. (2022) highlighted that decreased CBF and delayed arterial transit are independently associated 
with WMHs, suggesting contributions to CSVD pathology through BBB compromise[16]. The independent 
associations of reduced CBF and delayed arterial transit with WMHs suggest that alterations in blood flow 
not only reflect underlying vascular pathology but actively contribute to the disease process by 
compromising the BBB. The study by Wang et al. (2020) underscores the compounded impact of aging and 
CSVD on CBF autoregulation and cognitive function in diabetic rats’ model, highlighting the 
interconnectedness of these factors in contributing to BBB disruption[156]. Aging exacerbates the diabetic-
induced impairments in CBF autoregulation, leading to unstable cerebral perfusion that can damage the 
BBB and affect cognitive health.

Besides that, the research conducted by Ali et al. (2022) emphasizes the crucial role of vascular endothelial 
growth factor (VEGF) signaling, particularly VEGF-A, in modulating CBF and BBB integrity, drawing 
parallels between Alzheimer’s disease and CSVD[157]. In both conditions, the adhesion of leukocytes to the 
brain microvascular endothelium, leading to stalled capillary blood flow and a consequent reduction in 
CBF, is identified as a key pathological mechanism exacerbating cognitive decline. Targeting VEGF 
signaling is a potential therapeutic approach to enhance CBF and maintain BBB integrity in CSVD, similar 
to observations in Alzheimer’s disease models. Advanced multi-layer Monte Carlo modeling has improved 
the accuracy of CBF quantification in the presence of systemic physiology crosstalk, offering new insights 
into the relationship between CBF and tissue microstructural integrity. This approach may provide a more 
accurate assessment of how changes in CBF impact BBB integrity and, consequently, the progression of 
CSVD[158].

Apart from that, Ling et al. (2023) highlighted the critical link between the ability of the brain to regulate its 
blood flow dynamically and the integrity of the BBB in reversible cerebral vasoconstriction syndrome 
(RCVS)[159]. Their research demonstrated that disruptions in the brain's capacity to adjust blood flow in 
response to changes in blood pressure are significantly associated with BBB disturbances. Such disturbances 
are central to the pathology of RCVS, potentially allowing harmful substances to penetrate the brain and 
intensify neurological manifestations. This study emphasizes the protective role of dynamic cerebral 
autoregulation in safeguarding the BBB and suggests focusing on therapies that enhance this regulatory 
function as a strategy to preserve BBB integrity and alleviate the adverse neurological outcomes linked to 
RCVS. In summary, CSVD presents a complex challenge where alterations in CBF not only signal the 
disease’s presence but actively exacerbate its mechanisms, impacting the critical functionality and integrity 
of the BBB. As summarized in Figure 2, these preclinical insights collectively provide a deeper 
understanding of the mechanisms underpinning CSVD and underscore the importance of maintaining 
hemodynamic stability and BBB health.

This section highlights the specific mechanism by which BBB dysfunction occurs in CSVD, focusing on 
endothelial dysfunction, inflammatory responses, oxidative stress, and blood flow alterations. It emphasizes 
how these mechanisms impair BBB integrity, resulting in increased permeability and subsequent 
neurovascular damage. The discernment obtained from preclinical models highlights the importance of 
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Figure 2. Mechanisms of aberrant BBB dynamics in CSVD. This illustration portrays the correlation between the BBB and the glymphatic 
system within the framework of common risk factors for CSVD, like hypertension, diabetes, and aging. These factors may result in the 
dysfunction of the NGVU and the dynamics of the glymphatic system, such as reduced polarization of AQP4, ePVS, and increased BBB 
permeability. The right panel connects these alterations with endothelial cells and the decrease of the lumen size, depicting the 
mechanism including endothelial activation, endothelial dysfunction, oxidative stress, and CBF alteration, which collectively lead to a 
cascade of inflammatory and thrombotic responses, culminating in impaired vasodilation and potentially contributing to CSVD disease 
progression.

understanding this process to develop targeted interventions aimed at conserving BBB function and 
mitigating the development of CSVD.

CHALLENGES AND FUTURE DIRECTIONS IN PRECLINICAL RESEARCH
Translational challenges
Preclinical research plays a crucial role in unveiling the fundamental mechanisms of CSVD, with a specific 
focus on significant factors such as alterations in CBF, disruptions in the integrity of the BBB, and 
abnormalities in vascular signaling pathways. Despite the tremendous relevance of these discoveries, a 
variety of obstacles can hinder their direct implementation in clinical contexts. The most recent study 
showed a significant alteration in the BBB leakage rate of gadolinium chelates (Ktrans) and BBB water 
exchange rate (kw) between subtypes of CSVD (sporadic CSVD, CADASIL and HTRA-1-related CSVD), 
showing the heterogeneity of BBB dysfunction[160]. Another major hurdle is the sex discrepancies in CSVD 
and the BBB. According to a systematic review and meta-analysis, CSVD is more prevalent and/or severe in 
men than in women, especially among those presenting with stroke. Nonetheless, further research is 
necessary to identify sex-specific biological and social disparities and understand their roles in these sex 
differences[161]. In contrast, women but not men were likely to have more severe and arteriosclerosis/
lipohyalinosis asymptomatic SVD with increased levels of circulatory homocysteine[162]. Although beyond 
the scope of this review, it is particularly important to emphasize that sex hormones play a role in the BBB 
integrity[163]. Steroid hormones - especially sex hormones - can easily cross the BBB bidirectionally through 
the process of transmembrane protein because of their small size and lipid solubility[164]. A study reported 
that the administration of estrogen protected the brain from the immunological response during 
inflammation by increasing BBB functionality and decreasing leukocyte extravasation across the BBB[165]. 
The influence of sex in BBB disruption and neurodegenerative diseases is still understudied[166].



Page 20 of Zul Ramli et al. Vessel Plus 2024;8:30 https://dx.doi.org/10.20517/2574-1209.2024.2228

While in vivo models and in vitro models are crucial for understanding disease mechanisms, they frequently 
fail to capture the full array of genetic, environmental, and lifestyle factors influencing CSVD in humans, 
potentially skewing therapeutic efficacy assessments. As a result, translating preclinical findings into clinical 
applications for the treatment of CSVD requires a multitude of complexities that underscore the significant 
difference between experimental models and the complex characteristics of human pathology. The disease’s 
intricate nature, characterized by vascular and neurological alterations, demands comprehensive treatment 
strategies that the preclinical model’s reductionist approaches might not address. Additionally, the 
variability in symptoms and disease progression among patients necessitates personalized treatment 
approaches, further complicating the development of universal therapies. Ethical and safety considerations 
add to the complexity of translating research into practice because interventions deemed safe in animal 
models may pose risks to humans. Therefore, a nuanced and multidisciplinary approach is crucial for 
developing effective, personalized treatments that can navigate the intricate nature of CSVD and the ethical 
implications of translating research into practice.

Emerging technologies
Overcoming these challenges to improve patient care requires innovative research methods, cross-
disciplinary collaboration, and a commitment to translating scientific discoveries into meaningful clinical 
interventions, fostering hope for significant advancements in CSVD treatment[51,86,104]. The potential of new 
technologies, particularly advanced imaging techniques, in advancing BBB research in CSVD cannot be 
overstated. These emerging tools are bridging the gap from preclinical insights to clinical applications, 
offering unprecedented opportunities to visualize and understand the intricate dynamics at play in BBB 
integrity and dysfunction.

One such advancement is the utilization of high-resolution MRI techniques, including dynamic contrast-
enhanced MRI (DCE-MRI) and magnetic resonance spectroscopy (MRS). These techniques provide 
detailed insights into BBB permeability and the biochemical changes occurring within the brain's 
microenvironment. For instance, Montagne et al. (2015) employed DCE-MRI to quantify BBB leakage in 
aging and dementia, providing a direct link between BBB integrity and neurodegenerative processes[74]. 
Similarly, the use of ultra-high-field MRI offers enhanced resolution and sensitivity, enabling the detection 
of microvascular changes and subtle BBB disruptions that precede overt CSVD symptoms[167,168]. Emerging 
non-invasive imaging technologies, such as near-infrared spectroscopy (NIRS) and transcranial Doppler 
sonography (TCD), also hold promise for BBB research in CSVD. NIRS, for example, can assess cerebral 
oxygenation and hemodynamics, indirectly reflecting BBB function, while TCD measures cerebral blood 
flow velocity, offering insights into hemodynamic impairments associated with BBB disruption[169-172].

Additionally, molecular imaging techniques that employ specific biomarkers for BBB integrity, such as 
radiolabeled tracers in positron emission tomography (PET), are being explored. These tracers can target 
and visualize molecular processes associated with BBB disruption, enabling a more targeted approach to 
understanding CSVD pathology and evaluating therapeutic interventions[2].

Future research priorities
A critical avenue for future research is the identification and exploration of novel molecular pathways 
contributing to BBB dysfunction in CSVD. Recent studies have emphasized the role of inflammation and 
oxidative stress in BBB compromise; however, the intricate signaling cascades within these broad categories 
remain to be fully delineated. For instance, the contributions of microRNAs in regulating ECs functions and 
their potential as therapeutic targets need further exploration[173]. Additionally, the role of autophagy in BBB 
integrity presents another promising area for investigation, offering the potential for therapeutic 
modulation[174]. Enhancing the fidelity of preclinical models to human CSVD pathology is paramount.
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While traditional animal models have provided invaluable insights, there is a pressing need for models that 
more accurately replicate the complex interplay of genetic, environmental, and pathological factors 
characteristic of CSVD. Human-induced pluripotent stem cell (hiPSC) technologies and organ-on-a-chip 
models represent cutting-edge advancements in this direction, enabling the study of human BBB 
characteristics in vitro and offering new opportunities for drug screening and mechanistic studies[109,132]. 
Longitudinal studies using advanced imaging and biomarker analyses are needed to track BBB integrity over 
time and correlate these findings with cognitive outcomes[50]. Such studies will provide insights into the 
temporal relationship between BBB disruption and neurodegeneration, potentially identifying early 
intervention points to halt or slow disease progression.

The development and validation of biomarkers for CSVD and BBB integrity are essential for advancing the 
field. Biomarkers found in blood, CSF, or detected through non-invasive imaging techniques could provide 
a means for early diagnosis, monitoring disease progression, and assessing the efficacy of therapeutic 
interventions[107]. Efforts should also be directed toward identifying genetic markers that predispose 
individuals to CSVD and BBB dysfunction, offering opportunities for personalized medicine approaches. 
Emerging technologies, such as single-cell RNA sequencing and organ-on-a-chip models, should be 
integrated into CSVD research. These technologies can offer unprecedented insights into the cellular and 
molecular heterogeneity of the BBB in CSVD and enable high-throughput screening of potential therapeutic 
agents[132,175].

CONCLUSION
In view of the current complex and elusive pathogenesis of CSVD, this review attempts to highlight the 
crucial role of BBB in sustaining CNS homeostasis and its potential involvement in the CSVD 
heterogeneous clinical manifestations. The BBB disruption in CSVD leads to the leakage of harmful 
substances into the brain parenchyma, initiating a cascade of deleterious effects such as inflammation, 
oxidative stress, and white matter damage. We outlined the issues and opportunities in translating 
preclinical discoveries into clinical practice, particularly potential therapeutic targets to conserve BBB 
function and/or alleviate CSVD manifestation that is vulnerable with aging. Such targets may enhance BBB 
tight junctions, reduce endothelial inflammation, or improve the clearance of toxic metabolites that may 
collectively halt the progression of CSVD, as well as promoting research on specific BBB integrity 
biomarkers. Of note, recent scRNA-seq could be employed to examine the molecular diversity of BBB 
elements, disclosing specific cell populations and their involvements in BBB integrity and dysfunction[176]. 
Spatial transcriptomics can map gene expression alterations within the BBB, deepening our comprehension 
of disease pathology[177]. Predictive computational models can spur research on genetic mutations and 
environmental stressors that can affect BBB integrity and offer hope for viable treatments[53]. Moreover, 
investigating the effects of environmental factors like drugs and pollutants on BBB function can furnish the 
understanding of their role in neurodegenerative diseases and CSVD, guiding plans to alleviate these 
impacts[178]. Here, we reiterated the association of BBB integrity and its dysfunction with that of key CSVD-
centric pathomechanisms which include endothelial damage, inflammation, oxidative stress, and altered 
cerebral blood flow, based on the latest evidence from related preclinical models. These findings underscore 
the importance of understanding the role of BBB as a novel and critical target in combating CSVD and its 
consequences, given the notable rapidly expanding world’s aging demographics.
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