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Intrinsic polarization is an important property that distinguishes ferroelectric materials from others. Tuning 
the polarization configuration is crucial for promoting the electric performance, including the piezoelectric 
and dielectric properties. For example, the traditional strategy of constructing phase boundaries, including 
morphotropic phase boundaries (MPBs) and polymorphic phase boundaries (PPBs), is usually adopted to 
tune the polarization configuration with coexisting multiple ferroelectric phases to cause a more flexible 
polarization configuration than that of a single phase, resulting in higher ferroelectricity or 
piezoelectricity[1-5]. To enhance the energy storage performance of ferroelectrics, macrodomains with an 
ordered configuration due to long-range polarization are generally broken by tuning the polarization 
configuration to nanodomains or polar nanoregions (PNRs)[6-8]. These approaches, however, have limited 
degrees of freedom in further tuning the polarization configuration and improving electrical performance. 
“High entropy” is a new materials design strategy developed in the 1980s-1990s, but only recently realized in 
high-entropy alloys in 2004 by Yeh et al.[9], and was gradually extended into the fields of metal carbides and 
oxides[10,11]. Its excellent high-entropy effect increases the disorder of a system by forming solid solutions of 
multi-component elements, effectively controlling various properties benefiting from the entropy-
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dominated phase stabilization, atomic disorder with lattice distortion, sluggish diffusion kinetics and 
property synergy from multiple components[12-16]. Recently, Chen’s group proposed a high-entropy strategy 
to successfully promote piezoelectric and energy storage performance in perovskite oxide ceramics by 
tuning the polarization configuration [Acta Mater. 236 (2022) 118115 - high entropy piezoelectrics 
Pb(Ni,Sc,In,Ti,Nb)O3

[17]; N a t .  C o m m u n .  1 3  ( 2 0 2 2 )  3 0 8 9  -  h i g h  e n t r o p y  d i e l e c t r i c  
(K,Na,Li,Ba,Bi)(Nb,Sc,Hf,Zr,Ta,Sb)O3

[18]], opening up new ideas for high-entropy piezoelectrics and high-
entropy energy storage materials.

It is well known that different elements have different valence states, ionic radii, electronic configurations, 
electronegativity and polarizabilities. In recent studies, the high-entropy concept has been tuned to enable 
various elements, such as Ni2+, Mg2+, Sc3+, Yb3+, In3+, Zr4+, Hf4+, Ti4+, and Nb5+, to simultaneously occupy 
equivalent lattice sites, such as B-sites, in perovskites to enhance the local polarization fluctuation as much 
as possible, achieving the effect of increasing entropy[17]. After introducing multiple components, as shown 
in Figure 1A, large-scale transition regions (green color) that are spread out over the whole area 
demonstrate the high flexibility of this unique polarization configuration. An almost even distribution of 
polarization angles (θ) over the whole range of 0-45° can be observed in the statistical results [Figure 1B], 
breaking the constraints of crystallographic symmetry and promoting the polarization rotation under 
excitation by an electric field[19]. From another perspective, the unique polarization configuration can be 
considered as coexisting multiple monoclinic phases with different θ values on the atomic scale, which play 
a bridge-like role between the polarizations of different phases[20], facilitating the flexible rotation between 
different phases under electric fields. Benefiting from this unique polarization configuration caused by 
increasing configuration entropy, an ultrahigh piezoelectric coefficient (d33) of ~1210 pC/N can be achieved 
in the multi-component perovskite ceramics [Figure 1C].

A local diverse polarization configuration can greatly enhance the polarization response rate under electric 
fields, leading to high Wrec and efficiency η in energy storage capacitors[21]. Chen’s group introduced the 
high-entropy concept into KNN-based ceramics and designed “local polymorphic distortion” to tune the 
local diverse polarization configuration with coexisting rhombohedral - orthorhombic - tetragonal - cubic 
(R-O-T-C) multiphase nanoclusters [Figure 1D][18]. Notably, the cations (Li+, Ba2+, Bi3+, Sc3+, Hf4+, Zr4+, Ta5+, 
Sb5+) introduced by the high entropy strategy take into account the substitution on A-sites and B-sites in 
perovskites, greatly enhancing the occupancy disorder and perturbation of the polarization. Meanwhile, the 
cations are also considered as additives used to tailor the phase transition temperatures TR-O, TO-T, and TT-C to 
construct room-temperature R-O-T-C multiphase nanoclusters coexisting at the local scale. Compared with 
the dielectrics with single-phase and coexisting two-phase polarization configuration, the high-entropy 
sample exhibited smaller and more diverse PNRs with weak correlation embedded in the nonpolar cubic 
phase, providing higher η and delayed polarization saturation under electric fields. In addition, different 
types of oxygen octahedral distortions exist in different nanophases, which would introduce coexisting 
multiple randomly-distributed oxygen octahedral tilts, further breaking the local polarization order. As a 
result, high-entropy designed KNN-based ceramics with local polymorphic distortion achieved 
breakthroughs in the ultrahigh Wrec (≥ 10 J cm-3) and ultrahigh η (≥ 90%) for lead-free ceramics for the first 
time [Figure 1E]. The results demonstrate that high-entropy design opens a new avenue to enhance 
electrical performance by tuning the polarization configuration.

The multiple components introduced by high entropy can cause significant local compositional disorder 
and random fields, resulting in flexible and diverse local polarization configurations in both high-entropy 
piezoelectrics and high-entropy energy storage dielectrics. It has to be mentioned that the various elements 
introduced by the high-entropy strategy endow the material with more performance control freedom and 
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Figure 1. (A) Contour map of the distribution of polarization angles (θ). (B) Statistics of the distribution of θ in the range of 0°-45°, 
extracted from over 30, 000 polarization vectors. (C) Strong correlation between d33 and the number of B-site element types (nB) for a 
series of PbBO3-based solid solutions. Reproduced with permission from[17], Copyright 2022, Elsevier. (D) Atomic-resolution high-angle 
annular dark field - scanning transmission electron microscopy (HAADF STEM) polarization vector image along [110]c. (E) Comparison 
of the recoverable energy storage density, Wrec (efficiency, η ≥ 90%), of (K,Na)NbO3 (KNN)-based high-entropy ceramic with other 
representative lead-free bulk ceramics with Wrec ≥ 1 J cm-3. Reproduced with permission from[18], Copyright 2022, Nature Publishing 
Group.

control methods, rather than a single ferroelectric/piezoelectric performance improvement. We believe that 
high-entropy design will become an important way to enhance the electrical properties of perovskite 
materials, enriching the design of material components thanks to the rapid development of machine 
learning and materials genome engineering.
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