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Abstract
Underwater scenarios are influenced by various factors such as light attenuation, scattering, and absorption, which
degrade the quality of images and pose significant challenges for underwater object detection in marine research and
ocean engineering. To address these challenges, we propose a novel adaptive-weight feature detection framework
based on YOLOv8, called AWF-YOLO, designed to detect objects in turbid underwater scenarios accurately. AWF-
YOLO incorporates several key components to improve detection performance. Firstly, a novel adaptive-weight fea-
ture pyramid network is introduced to facilitate the fusion of multi-scale feature semantics. In addition, an adaptive-
weight feature extraction module is proposed to enhance underwater object detection by capturing relevant and dis-
criminative information to enhance feature extraction further. We integrate a dedicated small object detection head
into the detection network to overcome the challenges associatedwith detecting small objects in complex underwater
scenarios. This component focuses on effectively identifying and localizing small objects, leading to improved overall
detection accuracy. Extensive experiments conducted on the detection underwater objects dataset demonstrate that
the proposed AWF-YOLO achieves significant performance improvements, thusmaking it highly suitable for complex
and dynamic underwater scenarios.
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1. INTRODUCTION
Amid increasing concern for deep-sea and marine resources, underwater intelligent exploration plays an es-
sential role in understanding marine ecosystems, conducting surveys in unexplored regions, and fostering
sustainable marine utilization [1–3]. This pivotal technology has emerged as a significant driving force behind
contemporary marine scientific research and exploration.

Underwater object detection holds immense significance in the realm of intelligent underwater exploration,
as it enables precise localization and recognition of submerged objects. However, this task presents distinc-
tive challenges that distinguish it from other computer vision applications [4]. Figure 1 illustrates the influence
of underwater environments on image quality, wherein factors such as light attenuation, scattering, and ab-
sorption result in blurry, noisy, and low-contrast underwater images. Moreover, the presence of numerous
dense small objects further complicates matters, thereby undermining the accuracy and reliability of detection
algorithms. Consequently, it becomes crucial to conduct further research aimed at effectively optimizing un-
derwater object detection techniques. These advancements should specifically address real-world application
scenarios encountered in underwater environments, with the ultimate objective of enhancing the accuracy
and robustness of underwater object detection.

Researchers have made significant progress in underwater object detection by leveraging the power of deep
learning. Convolutional neural networks (CNNs) [5] have demonstrated their capability to learn complex pat-
terns and extract discriminative features from underwater imagery, improving detection performance. The
ability of CNNs to automatically learn and adapt to different data distributions makes them particularly suit-
able for handling the challenges presented by the underwater environment. In recent years, numerous studies
have focused on developing specialized architectures and techniques to enhance underwater object detection.
The YOLO (You Only Look Once) [6] series of CNNs are widely used for object detection tasks. These mod-
els effectively balance the trade-off between accuracy and speed, making them suitable for underwater object
detection tasks. To tackle the challenges in underwater object detection, researchers adjust the YOLO series
of object detection algorithms to incorporate specific features of underwater objects, leading to noteworthy
advancements. For example, Al Muksit et al. [7] developed the YOLO-Fish network based on YOLOv3 [8] by
modifying the upsampling step and adding spatial pyramidal pooling to reduce the false detection of dense
small objects. Zhang et al. [9] proposed a lightweight and efficient underwater object detection network based
on YOLOv4 [10]. Additionally, they employed MobileNetv2 [11] as the backbone network for the lightweight
feature extraction. Zhao et al. [12] enhanced the feature extraction of YOLOv4 by optimizing the backbone net-
work and feature fusion module, thereby improving its ability to extract features from blurry images. Peng
et al. [13] enhanced multi-scale feature fusion by introducing fast connections on the feature pyramid and
proposed a piecewise focal loss function to alleviate the class imbalance. These modifications enable more
convenient feature fusion and improve the overall performance of the network. Shang et al. [14] addressed
the robust multi-scale coordination control issue against adversarial nodes in directed networks, proposing a
local-information-based multi-scale filtering algorithm and establishing conditions for achieving multi-scale
consensus and robustness. Dai et al. [15] introduced a multi-scale channel attention module (MS-CAM) to
address issues arising from scale variations and small objects in underwater scenes. The MS-CAM module
is designed to effectively highlight both large objects with broader distributions and small objects with more
localized patterns. By incorporating the MS-CAMmodule, the detection system becomes more capable of ac-
curately identifying objects at extreme scales. Building upon YOLOv5, Liu et al. [16] introduced the TC-YOLO,
which incorporates transformer and coordinate attention mechanisms into the feature extraction network and
feature fusion network, respectively. This novel architecture aims to enhance feature extraction and alleviate
the issue of inconspicuous underwater image features. Despite these advancements, these methods still face
challenges in accurately detecting objects in complex underwater environments. Difficulties persist in effec-
tively addressing issues such as image feature blurring and the presence of dense small objects in underwater
scenes, resulting in suboptimal accuracy. Lei et al. [17] introduced an enhanced YOLOv5 algorithm based on
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Figure 1. Some examples of challenging underwater detection scenarios.

the Swin Transformer backbone network, designed for images of underwater blurry objects. Li et al. [18] pro-
posed an underwater object detection algorithm based on an improved YOLOv4. This algorithm utilizes the
K-means++ algorithm to recluster anchor boxes in underwater scenes and employs the MSRCR method for
underwater image enhancement. Ge et al. [19] introduced a single-stage underwater object detection method
based on a dual-optimization network with feature anchor boxes. Qi et al. [20] proposed a novel underwater
object detection network called UTD-Net, which is based on a hyperspectral unmixing method and a depth
estimation model. This network introduces a novel joint anomaly detector and explores an autoencoder based
on the depth estimation model to unmix target-water mixed pixels. In the domain of underwater image prior
enhancement, Li et al. [21] established an Underwater Image Enhancement Benchmark (UIEB), consisting of
950 real-world underwater images, out of which 890 images have corresponding reference images. Addition-
ally, Li proposed an underwater image enhancement network trained on this benchmark as a baseline, offering
a reference point for future research in underwater image enhancement. In a parallel vein, Zhuang et al. [22]
put forth a novel Retinex variational model guided by hyper-laplacian reflectance priors. This model simplifies
a complex underwater image enhancement problem into a more manageable subproblem, allowing simulta-
neous estimation of reflection and illumination in a Retinex variational framework to enhance underwater
images. Despite the impressive accuracy achieved by image prior enhancement, the integration of prior meth-
ods often results in a substantial investment of time in the enhancement process, leading to prolonged overall
inference times. This issue is particularly pertinent for underwater object detection tasks with stringent real-
time requirements. Hence, the design of an end-to-end model becomes exceedingly important to ensure swift
inference times and meet the demands of real-time underwater object detection tasks.

In this paper, we propose an adaptive-weight underwater object detection framework called AWF-YOLO. Our
proposed method addresses the challenges associated with complex and dynamic underwater scenes, specifi-
cally tackling issues such as image blurring caused by low contrast and the reduced detection accuracy result-
ing from dense small objects. By employing AWF-YOLO, we achieve improved accuracy in underwater object
detection compared to existing approaches. To overcome the challenge of inconspicuous underwater image
features, we propose three key modules: an AdaptiveWeighted Feature Pyramid Network (AWFPN), an Adap-
tive Weighted Feature Extraction (AWFE) module, and a dedicated detection head. The AWFPN performs a
weighted multi-scale fusion between deep feature maps with strong semantic information and shallow feature
maps with rich spatial information but weaker semantic information. This fusion process ensures that each

http://dx.doi.org/10.20517/ces.2023.19


Page 4 of 16 Guo et al. Complex Eng Syst 2023;3:16 I http://dx.doi.org/10.20517/ces.2023.19

feature map at different scales retains both strong semantic and spatial information, resulting in an optimal
balance. Furthermore, this fusion approach is designed to maintain computational efficiency, ensuring that
the network operates efficiently without compromising its accuracy. In addition, the AWFE module addresses
the issue by assigning weights to the output feature maps of each branch within the module. These weights are
dynamically learned, allowing the network to adaptively determine the importance of each feature map. By up-
dating the weights, the module effectively integrates the feature maps, enhancing underwater object detection
by capturing relevant and discriminative information. To specifically address the challenge of detecting dense
small objects in underwater environments, we introduce a dedicated detection head designed to effectively
locate and detect dense small objects underwater, leading to improved overall detection accuracy. Our main
contributions are as follows:

(1) A highly accurate framework for underwater object detection is proposed to effectively address the chal-
lenges associated with complex and dynamic underwater scenes.

(2) A novel AWFPN is proposed to facilitate the fusion of multi-scale feature semantics. An AWFE module
is proposed to enhance underwater object detection by capturing relevant and discriminative information.
Furthermore, we integrate a dedicated small object detection head specifically designed for detecting dense
small objects.

(3) The proposed AWF-YOLO is evaluated through numerous experiments on the DUO dataset, consistently
demonstrating significant performance improvements. These results establish its suitability for handling com-
plex underwater scenarios effectively.

2. METHODOLOGY
In this paper, we propose a highly accurate framework for underwater object detection to effectively address
the challenges posed by image blur and dense small objects. Firstly, we introduce an AWFPN, which empowers
each feature map at different scales with strong semantic and spatial information. These improvements aim to
enhance the accuracy and robustness of underwater object detection by addressing the unique challenges posed
by underwater environments. Secondly, we propose anAWFEmodule that enables the network to dynamically
learn the importance of each feature map and subsequently fuse them together. Lastly, we enhance the original
YOLOv8 architecture by introducing a dedicated small detection head specifically designed for detecting dense
small objects in underwater environments.

2.1. YOLOv8
YOLOv8 is an advanced real-time object detection algorithm based on deep learning. It employs a single-
stage detection strategy, treating object detection as an end-to-end regression problem. The network follows a
specific flow, where the input image undergoes feature extraction in the backbone network. Subsequently, the
extracted features are fused in the neck region to capture low-level and high-level representations. Finally, the
fused features are used for object regression prediction in the detection heads. This sequential process allows
the network to extract and utilize features for accurate object detection. In our proposed method, we leverage
the latest version of YOLOv8. To strike a balance between accuracy and lightweight design, we opt for the
YOLOv8-s variant. The network architecture of YOLOv8 is illustrated in Figure 2.

The network architecture of YOLOv8mainly consists of the backbone network, neck, and head. Its architecture
components and features are as follows�

Backbone: A lightweight CNN is employed as the backbone to extract image features. The backbone network
commonly utilizes architectures similar to EfficientNet [23] or CSPDarknet53 [10]. These architectures consist of
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Figure 2. YOLOv8 architecture.

multiple convolutional layers and pooling layers that progressively extract and represent the semantic features
of the image. This enables the network to capture informative and discriminative features essential for accurate
object detection.

Neck: To enhance the detection performance, YOLOv8 introduces a feature fusion module known as the
”Neck”. Thismodule plays a crucial role inmerging featuremaps fromdifferent layers, providing valuablemulti-
scale background information. Two commonly used ”Neck” architectures are the Feature Pyramid Network
(FPN) [24] and the Path Aggregation Network (PAN) [25]. These architectures achieve feature fusion through
inter-layer connections and upsampling operations, effectively enhancing the feature information available for
object detection.

Head: The detection head is a critical component of YOLOv8 responsible for object detection and localization
on the feature map. It comprises a sequence of convolutional and fully-connected layers designed to extract
information about object location, class, and confidence from the feature map. YOLOv8 employs multiple
detection heads, each specialized in detecting objects at different scales. Thismulti-scale approach significantly
improves the detection performance for both small objects and long-range objects. By incorporating these
multiple heads, YOLOv8 enhances its ability to accurately detect objects of various sizes within the input image.

By employing effective feature extraction, multi-scale fusion, and precise object detection techniques, YOLOv8
demonstrates high detection accuracy while maintaining efficient performance for various real-time object
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Figure 3. The proposed AWF-YOLO architecture.

detection tasks. However, considering the complexities of the underwater environment, further improvements
are required to adapt the model for underwater object detection and enhance the accuracy of YOLOv8 in
such scenarios. It is essential to address challenges specific to underwater imaging, such as image blur, color
distortion, and the presence of dense small objects.

2.2. AWF-YOLO
We propose a highly accurate framework for underwater object detection to effectively address the challenges
posed by image blur and dense small objects, depicted in Figure 3.

2.2.1. Adaptive weighted feature pyramids network
In our proposed method, we propose the AWFPN to handle the multi-scale feature fusion task, replacing
the neck component of YOLOv8. The AWFPN significantly enhances the representational capacity of fea-
ture maps. It achieves this by establishing connections between feature maps at different resolutions through
a combination of upsampling and downsampling operations. To provide further clarification, the AWFPN
employs a hierarchical structure. It starts by taking the low-level feature maps from the backbone network,
which have a relatively high resolution. These feature maps are then downsampled through bottom-up down-
sampling operations, resulting in feature maps with reduced resolution but higher-level semantic information.
Simultaneously, the AWFPN performs top-down upsampling operations to gradually increase the resolution
of feature maps. This process involves upsampling the lower-resolution feature maps and merging them with
the higher-resolution feature maps from the backbone network. This fusion of multi-scale information en-
ables the AWFPN to capture both fine-grained details and high-level contextual information, facilitating more
accurate object detection.

To better utilize semantic information across various scales, we propose a dual PANet architecture that fa-
cilitates comprehensive feature aggregation between different layers through both top-down and bottom-up
pathways. Our approach incorporates the adaptive weighted fusion concept from AWFE (see Section 2), en-
abling the differentiated fusion of different input features and learning the importance of each input feature.
Unlike previous feature pyramid fusionmethods, we believe that existing feature fusionmodules have not fully
exploited the semantic information available in the same-scale feature maps from the preceding layer. Conse-
quently, the features from the previous layer remain underutilized. To address this limitation, we introduce a
selective aggregation process within each feature aggregation module. We carefully choose a subset of same-
scale feature maps from the previous layer for aggregation and apply adaptive weighted processing to enhance
the representational information of the aggregated feature maps.
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Figure 4. The detailed structure of the Adaptive Weighted Feature Extraction (AWFE) module.

Each feature aggregation module in AWFPN can be described as follows: Given the input feature maps 𝐹𝑖𝑛, we
apply the adaptive weighting fusion process to the pre-layer feature maps 𝐹𝑙𝑜𝑤 at the same scale as 𝐹𝑖𝑛. We cal-
culate each 𝐹𝑙𝑜𝑤 adaptive weight 𝑤𝑖 by normalizing the weights with a small constant 𝜖 to avoid instability. The
adaptive weights indicate the importance of each featuremap in the fusion process. Assuming the featuremaps
of 𝐹𝑙𝑜𝑤 and 𝐹𝑖𝑛 have sizes of𝑀 rows and𝑁 columns, we have (𝑀, 𝑁) ∈ {(20, 20), (40, 40), (80, 80), (160, 160), (320, 320)}.
The adaptive weighted fusion is performed as follows:

𝐹𝑎𝑔𝑔 =

[
𝑤1

𝜖 +∑𝑛+1
𝑗=1 𝑤 𝑗

· 𝐹𝑖𝑛,
𝑤2

𝜖 +∑𝑛+1
𝑗=1 𝑤 𝑗

· 𝐹1
𝑙𝑜𝑤 ,

𝑤3

𝜖 +∑𝑛+1
𝑗=1 𝑤 𝑗

· 𝐹2
𝑙𝑜𝑤 , . . . ,

𝑤𝑛+1

𝜖 +∑𝑛+1
𝑗=1 𝑤 𝑗

· 𝐹𝑛
𝑙𝑜𝑤

]
, (1)

where 𝑛 represents the size of a subset of the same-scale feature maps in the previous layer. Finally, we obtain
the aggregated feature map, denoted as 𝐹𝑎𝑔𝑔 . By incorporating an adaptive weighting fusion process into each
feature aggregation module, the AWFPN effectively exploits the semantic information present in each layer
of the feature map. This process aims to enhance the feature representation specifically for underwater object
detection.

2.2.2. Adaptive weighted feature extraction module
We propose the AWFE module, which serves as a replacement for all C2f modules (as depicted in Figure 2) in
the YOLOv8 backbone network. Due to the inconsistent nature of the output feature information from each
branch, their contributions to the final output are unequal. To address this concern, we present the AWFE
module, which aims to handle the output feature maps from each branch. This module enables the network
to learn the significance of each feature map and subsequently merge them in the dimension. Additionally,
we introduce an extra branch that directly connects to the output features of the other two branches using
weighted connections. This approach promotes feature reuse and mitigates the loss of image details. Figure 4
provides a visual representation of the AWFE module.

We represent the calculation process of adaptive weighted fusion as follows: Let 𝑂 denote the current output
feature map, 𝐼𝑖 denote the feature map of the 𝑖-th layer, 𝑛 denote the number of feature maps, and 𝑤𝑖 represent
the learnable weights indicating the importance of the 𝑖-th feature map. To ensure stability, we introduce a
small parameter 𝜖 set to 0.0001. The fusion operation between two feature maps 𝑋 and 𝑌 , along the channel
dimension, is denoted as [𝑋,𝑌 ]. Therefore, the calculation can be summarized as follows:

Normalize the weights:

𝑤𝑖 =
exp(𝑤𝑖)∑𝑛

𝑗=1 exp(𝑤 𝑗 ) + 𝜖
. (2)

http://dx.doi.org/10.20517/ces.2023.19


Page 8 of 16 Guo et al. Complex Eng Syst 2023;3:16 I http://dx.doi.org/10.20517/ces.2023.19

Figure 5. The distribution of objects in the DUO.

Compute the weighted feature maps:
𝐼′𝑖 = 𝑤𝑖 · 𝐼𝑖 . (3)

Perform fusion of the weighted feature maps:

𝑂 = [𝐼′1, 𝐼′2, . . . , 𝐼′𝑛] . (4)

Through the utilization of the proposed adaptiveweighted fusion scheme, we successfully integrate information
from multiple feature maps, taking into account their respective importance weights. This process enhances
the overall representation and ultimately enhances the performance of underwater object detection.

For the AWFE module, the computation process of adaptive weighted fusion of feature maps of each branch
can be expressed as:

𝐹𝑜𝑢𝑡 = [ 𝑤1

𝜖 +∑3
𝑗=1 𝑤 𝑗

· 𝑓1(𝐹𝑖𝑛),
𝑤2

𝜖 +∑3
𝑗=1 𝑤 𝑗

· 𝑓2(𝐹𝑖𝑛),
𝑤3

𝜖 +∑3
𝑗=1 𝑤 𝑗

· 𝐹𝑖𝑛], (5)

where 𝐹𝑜𝑢𝑡 represents the output features, 𝐹𝑖𝑛 represents the input features, and 𝑓1 and 𝑓2 represent two non-
linear transformations that efficiently extract features and enhance the non-linearity of the features.

2.2.3. A dedicated small object detection head
To tackle the challenge of detecting dense small objects underwater, we have extended the YOLOv8 architecture
by incorporating a dedicated detection head with a scale size of 160×160. This supplementary detection head
possesses lower semantic information but higher resolution when compared to other network layers. It is
specifically tailored to address the detection of dense small objects in underwater environments.

Moreover, the inclusion of this high-resolution detection head in the feature fusion process enriches the se-
mantic and spatial information within each feature layer. This integration successfully mitigates the adverse
effects of low contrast often encountered in underwater images, thereby greatly enhancing the capability of
the network to accurately detect small object features.

The incorporation of this dedicated detection head in the proposed AWF-YOLO represents a significant en-
hancement to tackle the specific challenges associated with underwater object detection, and it has yielded sub-
stantial improvements in the precision and robustness of detecting dense small objects in underwater scenes.
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3. RESULTS
In this section, we conduct comparison experiments and ablation experiments to thoroughly assess the per-
formance of our proposed AWF-YOLO. To evaluate accuracy and robustness, we utilize several evaluation
metrics, including mAP@0.5:0.95. This metric calculates the average precision (AP) across 10 Intersection
over Union (IoU) thresholds ranging from 0.5 to 0.95. Additionally, we report mAP@0.5 and mAP@0.75,
which represent the AP at IoU thresholds of 0.5 and 0.75, respectively. These metrics provide a comprehensive
evaluation of the performance in accurately and robustly detecting underwater objects.

3.1. Dataset
In our experiments, we select the DUO dataset, which is a publicly available annotated underwater object
dataset introduced by Liu et al. [26]. The DUO dataset is created by gathering and re-annotating various un-
derwater datasets from the URPC series. After filtering out highly similar images, we obtain a total of 7,782
images. Among these, 6,671 images are used for training, and the remaining 1,111 images are allocated for
testing purposes. The dataset exhibits a retention rate of 95%, indicating that only a small number of similar
images are retained in the new dataset.

The DUO dataset includes annotations for four types of objects: Holothurian, Echinus, Scallop, and Starfish.
These annotations encompass a total of 74,515 objects, comprising 7,887Holothurian instances, 50,156 Echinus
instances, 1,924 Scallop instances, and 14,548 Starfish instances. Figure 5 illustrates the distribution of object
counts for each category in the DUO dataset.

3.2. Experimental environment
To validate the effectiveness of the proposed network model, we conduct experiments using the following
setup. The experiments are performed on a machine running Ubuntu 18.04 with an Intel i9-12900KF CPU
and anNVIDIAGeForce RTX 3090GPUwith 24GB of VRAM.The systemhad 32GB of RAM.The experiment
environment is set up with Python 3.8, and the deep learning framework is PyTorch 1.13.1. We initialize the
learning rate to 0.001 and use a decay coefficient of 0.0005 for weight decay. The momentum parameter is set
to 0.937. The batch size for training is set to 16. These experimental settings are chosen to ensure a reliable
and efficient evaluation of the performance of the model.

3.3. Evaluation criteria
The classification of real and predicted scenarios is presented in Table 1. True Positive (TP) corresponds to
cases where both the predicted and real scenarios are positive. False Positive (FP) refers to cases where the
predicted scenario is positive, but the real scenario is negative. False Negative (FN) indicates cases where
the predicted scenario is negative while the real scenario is positive. Lastly, True Negative (TN) represents
cases where both the predicted and real scenarios are negative. The evaluation metrics employed in this paper
encompass AP and mean AP (mAP). mAP serves as the primary performance measure for object detection
algorithms and is widely used to evaluate the effectiveness of object detection models. A higher mAP value
indicates superior detection performance on the given dataset. The precision-recall (P-R) curve is constructed
by plotting precision on the vertical axis and recall on the horizontal axis. AP corresponds to the area under
the P-R curve, while mAP is the average of the AP values across all categories. IoU quantifies the overlap
between predicted and ground truth bounding boxes. Performance metrics follow the standard COCO [27]

style metrics.mAP@0.5 signifies the mAP value computed with an IoU threshold of 0.5, whereas mAP@0.75
represents the mAP value with an IoU threshold of 0.75. mAP@0.5:0.95 denotes the average mAP value across
different IoU thresholds ranging from 0.5 to 0.95, with a step size of 0.05.

According to the confusion matrix provided in Table 1, the metric for precision (𝑃) can be defined as 𝑇𝑃
𝑇𝑃+𝐹𝑃 ,

and the metric for recall (𝑅) can be defined as 𝑇𝑃
𝑇𝑃+𝐹𝑁 . To calculate the AP, we integrate the precision values

𝑃(𝑟) over the range of 0 to 1. Furthermore, the mAP can be represented as follows:
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Table 1. Confusion matrix

Predicted

Positive Negative

Actual
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 2. Ablation analysis on the DUO dataset

Baseline(YOLOv5) Small head AWFE AWFPN mAP@0.5(%) mAP@0.75(%) mAP@0.5:0.95(%)

! % % % 82.1 71.1 62.6

! ! % % 85.4 73.9 65.5

! ! ! % 86.0 74.9 66.5

! ! ! ! 86.2 75.0 67.0

Table 3. Ablation analysis on the DUO dataset

Baseline(YOLOv8) Small head AWFE AWFPN mAP@0.5(%) mAP@0.75(%) mAP@0.5:0.95(%)

! % % % 85.7 75.7 67.9

! ! % % 85.8 76.3 68.5

! ! ! % 86.8 77.5 69.8

! ! ! ! 87.2 77.8 70.1

𝑚𝐴𝑃 =

∑𝑛
𝑖=1 𝐴𝑃𝑖

𝑛
, (6)

where 𝑛 represents the number of classes.

We have explicitly outlined the inclusion of time indicators, spatial metrics, and floating-point operations
measurements, denoted as ”Speed”, ”Parameters”, and ”GFLOPs”, correspondingly. In this context, ”Speed”
signifies the inference speed of the model, quantified in milliseconds (ms). ”Parameters” reflects the tally of
model parameters, measured in units of individual parameters. Additionally, ”GFLOPs” represents the count
of billion floating-point operations executed per second (operations/s).

3.4. Ablation experiments on DUO
The proposed AWF-YOLO model presents substantial improvements over the original YOLOv8 model by
integrating advancements in feature extraction, feature fusion, and detection heads. To evaluate the influ-
ence of different enhanced modules and their combinations on model performance, we conducted a series
of comprehensive ablation experiments. Furthermore, to verify the effectiveness and general applicability of
our proposed method, we performed experiments using YOLOv5 and YOLOv8 as baselines. The outcomes of
these experiments are summarized in Table 2 and Table 3, respectively.

The results in Table 2 demonstrate the substantial improvements in performance metrics for YOLOv5 upon in-
tegrating the small detection head. Notably, themodel achieved increases of 3.3%, 2.8%, and 2.9% inmAP@0.5,
mAP@0.75, and mAP@0.5:0.95, respectively. Moreover, the introduction of the AWFE architecture in the
backbone network further elevated the model performance, with gains of 0.6%, 1.0%, and 1.0% in mAP@0.5,
mAP@0.75, and mAP@0.5:0.95, respectively. Additionally, modifying the neck network to AWFPN led to
improvements of 0.2%, 0.1%, and 0.5% in mAP@0.5, mAP@0.75, and mAP@0.5:0.95, respectively.

Based on YOLOv8, Table 3 reveals significant improvements in performance metrics after incorporating the
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Figure 6. Visualization of ablation effect.

small detection head, with increases of 0.1%, 0.6%, and 0.6% in mAP@0.5, mAP@0.75, and mAP@0.5:0.95,
respectively. Introducing the AWFE architecture in the backbone network further enhances the model per-
formance, resulting in improvements of 1.0%, 1.2%, and 1.3% in mAP@0.5, mAP@0.75, and mAP@0.5:0.95,
respectively. Moreover, modifying the neck network to AWFPN leads to performance improvements of 0.4%,
0.3%, and 0.3% in mAP@0.5, mAP@0.75, and mAP@0.5:0.95, respectively.

From Table 2 and Table 3, it is evident that the incorporation of the small detection head, AWFE architecture,
and AWFPN architecture in both YOLOv5 and YOLOv8 frameworks leads to significant improvements in
performance metrics. These results demonstrate the effectiveness of each module in our approach.

To provide a more intuitive demonstration of the significance of each module, we conducted tests in three
distinct scenarios: low-contrast scenes, dense small object scenes, and low-contrast dense small object scenes.
As our baseline, we employed YOLOv8 and subsequently incrementally integrated modules while applying
visual processing. The experimental findings are showcased in Figure 6.

In low-contrast scenes, the addition of the AWFE and AWFPNmodules significantly improves the model’s de-
tection performance, successfully identifying all objects with indistinct features. In dense small object scenes,
the inclusion of the small detection head notably enhances the model’s ability to detect small objects, success-
fully identifying a large number of small targets. In low-contrast dense small object scenes, as we progressively
incorporate the small detection head, AWFE module, and AWFPN module, the model’s detection capabilities
improve significantly. These results demonstrate the effectiveness of each module in our approach.

3.5. Quantitative evaluation
Table 4 displays the comparative experimental results on the DUO dataset, which comprises complex under-
water scenes and objects of various scales, posing significant challenges to object detection algorithms. As
depicted in Table 3, our method exhibits the most remarkable performance in terms of mAP@0.5, mAP@0.75,
and mAP@0.5:0.95, outperforming all other single-stage and two-stage object detection models. To be spe-
cific, in mAP@0.5, mAP@0.75, and mAP@0.5:0.95, our method surpasses Faster-RCNN [28] by 10.4%, 14.7%,
and 13.9%, respectively. In the same metrics, it also outperforms Cascade RCNN [29] by 7.1%, 9.3%, and 10%.
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Table 4. Comparison of object detection networks for underwater object detection

Method mAP@0.5(%) mAP@0.75(%) mAP@0.5:0.95(%)

Multi-stage

Fast RCNN [32] 75.6 62.3 55.7

Faster RCNN [28] 76.8 63.1 56.2

Grid RCNN [33] 74.5 64 56.3

Cascade RCNN [29] 80.1 68.5 60.1

One-stage

SSD [34] 70.3 57.2 49.5

RetinaNet [35] 71.2 58.4 51.7

FCOS [36] 77.5 60.3 53.0

YOLOv3 [8] 83.6 69.7 62.1

YOLOv5 [37] 82.1 71.1 62.6

YOLOX [38] 82.4 69.0 62.8

YOLOv6 [30] 84.8 73.5 65.6

YOLOv7 [31] 85.4 74.6 66.8

RT-DETR [39] 77.6 55.2 49.0

YOLOv8 [40] 85.7 75.7 67.9

AWF-YOLO(Ours) 87.2 77.8 70.1

Table 5. Comparing across spatial and temporal dimensions

Method Speed parameters GFLOPs

YOLOv5 45.1 9,111,923 23.8

YOLOv6 39.3 16,297,619 44.0

YOLOv8 38.4 11,127,132 28.4

AWF-YOLO(Ours) 53.4 16,566,421 55.5

Additionally, at the identical performance metrics, our method demonstrates superior performance compared
to YOLOv6 [30] by 2.4%, 4.3%, and 4.5%, and YOLOv7 [31] by 1.8%, 3.2%, and 3.3%. These comparative results
further validate the effectiveness of our AWF-YOLO in underwater environments.

Wehave conducted a comprehensive comparative assessment, contrasting our proposed approachwithYOLOv5,
YOLOv6, and YOLOv8. The summarized comparative outcomes are presented in Table 5. The table distinctly
indicates that compared to the benchmark techniques, our method achieves significant accuracy improve-
ments while incurring some trade-offs in terms of speed and space. Given the notable accuracy enhancement
and the absence of substantial differences in speed and space, we consider this trade-off acceptable. Nonethe-
less, we fully acknowledge the potential for further improvement in these dimensions, and addressing this
challenge remains a significant objective for our future efforts.

3.6. Perceptual comparisons
Our proposed AWF-YOLO effectively solves the problem of low detection accuracy caused by dense small
objects and underwater scenes with low contrast. To visually demonstrate the effectiveness of our method,
we prepare image sets representing three different scenes: dense small objects, low contrast, and dense small
objects at low contrast. For each scene, we choose three representative images. We apply the YOLOv8 method
and our AWF-YOLO method to detect the objects in each scene. The results are shown in Figure 7, 8, and 9.
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Figure 7. Qualitative comparison results on the low contrast scenario.

Figure 8. Qualitative comparison results on the dense small objects scenario.

In Figure 7, we showcase the detection outcomes of ground truth bounding boxes, YOLOv8, Cascade RCNN,
and AWF-YOLO. It is evident from the illustration that YOLOv8 and Cascade RCNN fail to detect certain
sea cucumbers, starfish, and sea urchins. Particularly in underwater blurry environments, their performance
exhibits poor noise resilience. In comparison, AWF-YOLO demonstrates superior recall and accuracy in de-
tecting low-contrast underwater objects, thereby exhibiting heightened noise resilience.

In Figure 8, we present the detection results of ground truth bounding boxes, YOLOv8, Cascade RCNN, and
AWF-YOLO. It is evident that both YOLOv8 and Cascade RCNN fail to detect numerous sea urchins, par-
ticularly in densely populated areas. The accuracy and recall rates of YOLOv8 and Cascade RCNN perform
poorly. In contrast, AWF-YOLO demonstrates higher recall and precision in detecting densely packed small
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Figure 9. Qualitative comparison results on the dense small objects under low contrast scenario.

underwater objects when compared to YOLOv8 and Cascade RCNN.

In Figure 9, we present visual detection results of real bounding boxes, YOLOv8, Cascade RCNN, and AWF-
YOLO. It is evident that both Cascade RCNN and YOLOv8 failed to detect numerous densely packed small
sea urchins. In comparison, AWF-YOLO exhibits higher recall and accuracy in detecting dense small objects
in low-contrast underwater scenarios when compared to them.

4. CONCLUSIONS
In this study, we present AWF-YOLO, an advanced underwater object detection algorithm meticulously de-
signed to address the intricate challenges posed by dynamic and complex underwater environments. Specifi-
cally, it effectively handles issues such as image blurring due to low contrast and reduced detection accuracy
caused by the presence of closely-packed small objects. Our approach revolves around the novel AWFPN.
This architectural innovation adeptly integrates multi-scale feature semantics by capturing both pertinent and
distinctive information, thereby augmenting underwater object detection capabilities. To further elevate the
performance of underwater object detection, we introduce an AWFE Module. This module is dedicated to
extracting task-relevant and distinctive features, thereby elevating the overall detection accuracy. Further-
more, we seamlessly integrate a specialized small object detection head into the framework. This component
is meticulously tailored for the precise detection of densely-clustered small objects, which often pose chal-
lenges in underwater scenarios. Rigorous qualitative and quantitative experiments conducted on the DUO
dataset affirm the superiority of our proposed AWF-YOLO over existing methodologies, showcasing remark-
able performance. AWF-YOLO stands as a powerful tool for advancing efficient underwater exploration. It
significantly bolsters the efficiency of underwater intelligence gathering, enabling devices to navigate and com-
prehend underwater ecological resources more effectively. Our work makes valuable contributions by enhanc-
ing the efficacy of underwater object detection tasks, and its insights extend to detection tasks across diverse
fields. For instance, our methodology has the potential to extend to target detection from the vantage point of
unmanned aerial vehicles, which frequently encounter challenges such as detecting small-sized objects with
unclear features. However, it is important to acknowledge the hardware limitations of certain underwater
intelligence gathering devices, which impose stringent constraints on model parameter counts. Therefore,
the development of lightweight underwater object detection algorithms has become imperative. Tradition-
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ally, reducing model parameters might result in a discernible accuracy drop. The incorporation of multiple
fusion structures in our model has led to the introduction of a notable number of parameters. Hence, a piv-
otal research trajectory in underwater object detection revolves around investigating approaches that achieve
lightweight models through parameter reduction without compromising accuracy. This avenue holds substan-
tial promise for the future of underwater object detection, allowing for the deployment of efficient algorithms
that strike a delicate balance between model size and detection performance.
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